PARALLEL CABAC FOR LOW POWER VIDEO CODING

Vivienne Sze Madhukar Budagavi
Anantha P. Chandrakasan Minhua Zhou
Massachusetts Institute of Technology Texas Instruments
Cambridge, MA Dallas, TX
ABSTRACT that the codec be clocked at a frequency high dmdag

meet not just the average workload but the worsteca

With the growing presence of high definition videoworkload. In the near future, portable video desiare
content on battery-operated handheld devices sweh axpected to support high-definition (HD) resolutivitleo
camera phones, digital still cameras, digital cambers, and coding, which requires high performance codecs and
personal media players, it is becoming ever mogoitant consequently high operating frequencies (potentiallthe
that video compression be power efficient. A popfitam GHz range). In addition to consuming high powerchs
of entropy coding called Context-Based Adaptive dyn high frequency circuits are difficult to design and
Arithmetic Coding (CABAC) provides high coding implement. The frequency can be lowered by perifogm
efficiency but has limited throughput. This caadeo high operations in parallel to maintain the same overall
operating frequencies resulting in high power gagon. performance.
This paper presents a novel parallel CABAC schermietw This work focuses on the arithmetic coding (AC) iarg
enables a throughput increase of N-fold (dependimghe found in many compression algorithms due to itshhig
degree parallelism), reducing the frequency requére and compression efficiency. For instance, in H.264/AYAT,
expected power consumption of the coding enginethe Context-Based Adaptive Binary Arithmetic Coding
Experiments show that this new scheme (with N=2) ca(CABAC) provides a 9-14% improvement over the
deliver ~2x throughput improvement at a cost of6@7 Huffman-based Context-Adaptive Variable Length @gdi
average increase in bit-rate or equivalently a ek in [2]. Arithmetic coding is used for a wide varietf
average PSNR of 0.025dB on five 720p resolutiore@id applications, and is found in standards such a§#&/C,
clips when compared with H.264/AVC. H.263 and China AVS for video; JPEG-2000 and JPEG-L

for image; and MPEG-4 SNHC for 3D animation.

Index Terms—video coding, arithmetic coding, parallel While arithmetic coding provides significant

processing, CABAC. improvement in compression efficiency, its mainvavack
is its limited throughput (symbols/cycle). Arithtigecoding
1. INTRODUCTION is inherently serial due to strong data dependsnaad

typically only a single symbol is coded at a time.

The use of video is becoming ever more pervasive o@onsequently, the AC engine is often the bottleriecthe
battery-operated handheld devices such as camem@eph codec, requiring high frequency (cycles/sec) toieehthe
digital still cameras, personal media players, eftnnual desired performance (symbols/sec). For HD videoingpd
shipment of such devices already exceeds a humdilédn ~ symbols need to be coded at very high rates, whicher
units and continues to grow. As a result, it isréasingly increase the frequency requirement. Operating igh h
important that video compression become power ieffic frequencies limits our ability to voltage scale aad shown
since the battery life is limited by the size, weignd cost in Equation 1, results in significant power constiomp
of the portable devices. Voltage scaling is areaffe which is undesirable for battery operated devices.
technique to reduce power and energy (Equation 1). In this paper, we present a parallelized form of th
CABAC engine that improves throughput and lowers
frequency at both the encoder and decoder without

The tradeoff is that at lower voltages circuits dmee sacrificing coding efficiency. In single clock daim
slower, and the maximum operating frequency is cedu designs, lowering the frequency of the CABAC engine
This is an issue for applications such as real-tinteeo reduces the power of the entire codec, making étaactive
coding where a frame must be processed by a giveechnique to be used in today’s high performancergn
deadline. Specifically, the codec must operate aat constrained environment. As such, this approachiesdds
frequency that allows it to meet its performancguieement the desired features in future coding standardh sisclow
(based on resolution, frame rate and bit-rate)s ithportant power consumption and enhanced parallelism supprt

Power [] Capacitance x (Voltagék Frequency (1)

2. CONTEXT-BASED ADAPTIVE BINARY
ARITHMETIC CODING (CABAC)

Binary arithmetic codings based on recursive interval
subdivision. The sizes of the subintervals arerdgned
by multiplying the current interval by the probatyilof the
binary symbol (‘bin’). At the encoder, a subintais
selected based whether the bin is a least prolmajidol
(LPS) or most probable symbol (MPS). At the decpties
value of the bin (LPS/MPS) depends on which subiale
the offset is located. The range of the currergrirgl has a
limited bit-precision, so renormalization is recdr
whenever the range falls below a certain value revent
underflow.

In order to achieve optimal compression efficierlog
correct probabilities must be used to code each Alhbins
of the same type, with the same probability disiitm and
characteristics, are grouped together and useathe shodel
known as acontext Accordingly, the context of a bin
dictates the probability with which it is coded fla 1).
Note that context switching can occur at every bifihe
probabilities used for each context must be acelyat
modeled; this process of determining the probabilita bin

possible context switching at every bin, the H.264Z
CABAC operates serially, with a 1 bin/cycle thropgh
requiring very high operating frequencies to méet given
performance requirements stated above.

In the next section, we propose a method that esals
to process multiple bins per cycle while accountiiog
changing contexts to maintain coding efficiency.

4. PARALLEL CABAC

This work proposes a scheme (Fig. 1) that can parfo
CABAC on N-bins (symbols) per cycle. At the encqdbe
context modeler keeps track of the probabilitiegath bin
type and a probability table is constructed forhegmup of
bins to be encoded. This table is passed to tledamy
engine along with the bins to generate an encodstidam.
At the decoder, based on the previously decodes, bire
context modeler and decision tree determine thesiples
contexts of the next set of bins and generate hafibty
table which is passed to the decoding engine. rEx¢ two
sections describe the encoder and decoder in detall

Symbols (2-bins):

is called source modeling. Since the bins have- non (01),(00),(10) ... DECODER

stationary distributions, the probabilities are tirmmusly
updated by the context modeler making the engdeptive

Bin Probability
0 PEontex(o)
1 Prcontex(l) = (1'P50ntex(o))

Table 1. Probability table for binary arithmetic coding.

3. THROUGHPUT OF H.264/AVC CABAC

The performance requirement of the arithmetic cgdin
engine, and thus operating frequency, is dictaiethb rate
of the bins that need to be encoded and decodddatrthe
bits of the compressed data. For high definitibavel 3.1
to 4.2) in H.264/AVC, the maximum bin rate, avemhge
across a coded picture, ranges from 121 Mbinsto upl2
Gbins/s [1]. Depending on the architecture of slstem,
the instantaneous bin rate could be even highEar real-
time encoding and decoding, the CABAC engine musttm
this performance.

H.264/AVC CABAC [2] is done serially due to inheten
data dependency stemming from the fact that théegbnan
change for every bin. In many cases the conteitt@hext
bin is not known until the current bin is decodéithis serial
nature limits the throughput. We could reduce $keal
dependence by reducing the amount of context sestch
However, context adaptability is responsible fayhhcoding
efficiency. For instance, we found that if we dd adapt the
context for the first bin otoef f _abs | evel _m nusl
in H.264/AVC we get a 5% penalty To account for

Context: Probabilit Context:
+ o \j n_)riluy AB.C
Context | 2| Probability avle Decision
Modeler Table PrAQr*F;;B()v Tree
PrA(bin1),PrB(bin2)¢ t T3y " Comen
Arithmetic Arithmetic Modeler
Encoding Decoding T
| ¢
L |
ENCODER encoded ¥ Symbols (2-bins):
bitstream (01),(00),(10)...

Fig. 1. Block diagram of parallel CABAC (N=2).
4.1. Encoder

At the encoder, since the sequence of bins to be

compressed are known a priori, the contexts todasel dior

each bin are also known and multiple (N) bins ca&n b

encoded in parallel. Rather than using the Takteeihcode
a single bin at time (N=1), if we know the next tlns
belong to context A and B, we can encode N=2 birthe
same time by constructing Table 2. Effectively kimpwing
which probabilities to use for both bins, the alpfiacan be
expanded from two symbols to four.

1% Bin 2" Bin Pr obability
0 0 Pr(0)xPi(0)
0 1 PRr(0)xP(1)
1 0 Pr(1)xPi(0)
1 1 Pr(1)xPi(1)

Table 2. Probability table of 2-bin encoder in Fig. 1.

4.2. Decoder 4.3. Further Modifications

The main challenge of parallel CABAC occurs at the Several additional modifications were made to the
decoder. Typically the context to be used on adeipends CABAC engine to facilitate the 2-bins/cycle opevati
on thevalue of the previous bin. Thus, to decode two binsrirst, binary arithmetic coding is implemented gsin
in parallel, the context for the second bin is wnkn until myltipliers rather than the look up tables used in
the first bin has been decoded. Consequently, itais H.264/AVC. The probability for each bin is quaetizto 6-
significant challenge to decode the second birhatsame pits, and the probabilities are multiplied by 2sbitf the
time as the first since it is necessary to knowchtdontext range. Second, renormalization occurs only eveoyHins,

to use in order to correctly decode the compredaal which requires the size of the range to be inciésen 9-
Other techniques for parallel decoding either don'tyjt to 14-bits in order to prevent underflow errors
account for the varying context for each bin [4fjize a Finally, in the cases where the number of binsdd, @

predictive scheme to guess the context of the setdm gummy bin is inserted. For better coding efficienthe
which would still have limited throughput in the b case dummy bin is coded with a fixed skewed probabilitly
[5]; or concatenates two single bin engines and usg (015625, which is the smallest value based on6tbit
pipelining to increase throughput [6]; however thels yet quantization of the probabilities. This N-bins/eyc
to be an approach that is fundamentally parallet #&n approach can be applied to all bins or it can bectigely
deterministically decode several (N) bins with eiifnt applied to certain bins that dominate the workl@dcthe
contexts at the same time. engine. Dummy bins allow certain syntax elementdé
The algorithm proposed in this work achievescoded at 2-bins/cycle and other elements at 1ymtéc For
deterministic decoding that accounts for the d#feér jnstance, if syntax element A is to be coded atn2ejcle
contexts through the use adnditionalprobabilities. Atany followed by syntax element B at 1-bins/cycle, akeirent A

given time, there are only two possible outcomeste first js comprised of an odd number of bins, a dummyiin
bin (one or zero) and thus there are only two odstéhat jnserted before transitioning to element B .

could be used for the second bin based on the wltige
first bin; let's assume they are contexts B ang&pectively
(Fig. 2). B and C are determined using a decisiea (Fig.
1). Table 3 can be used to decode two bins simedtasly,

4.4. Complexity Impact

Note that the total number of contexts remainsstmae

with nd o Ao | st o regardless of the degree of parallelism. Contesis be

PrB(an Bin) = Pr (an Bin | L Bin= 0) cached to enable concurrent updates of multipléeats

Prc(2™ Bin) = Pr (2 Bin | I Bin = 1). The parallel CABAC can be extended to N bins
. —— — potentially giving an Nx increase in throughput, dan
1" Bin 2" Bin Probability reducing the required frequency by 1/N. The addil cost

0 0 Pr(0)xP(0) is an increase in the number of multiplications per and

0 1 PR(0)xPrs(1) increased complexity in the decision tree. For Nihgre is

1 0 PR(1)*Pi(0) one multiplication in the encoder and one in theoder,

1 1 PR(1)xPre(1) resulting in 2 mult/bin. For N=2, there are 3 riplitations

in the encoder and 4 in the decoder, resulting & 3
mult/bin. The multiplications can be performedpiarallel,
and do not increase the critical path of the engirteor

Table 3. Probability table of 2-bin decoder in Fig. 1.

Two cycles with 1-bin engine One cycle with 2-bitgime software implementation, the algorithm can run oreetor-
— - based processor. For hardware implementation,gusin
T c T = parallel operations at a lower frequency and velteefluces
I s bin1< 10 the power consumed by each multiplication. This
R Ng g R counteracts the increase in number of multiplicegidi.e.
I 01 switched capacitance). However, since the number o
E 00 multiplications grows exponentially with N, in ptae N
A B ? would remain around 2 or 3.

Furthermore, the additional comparisons are reduire
since the offset could be located on one of folirgervals
Fig. 2. Comparison of 1-bin and 2-bin (parallel) decode. rather than two. Again, these comparisons can dree d
mostly in parallel at a lower frequency and voltagach
consuming less power than if they ran serially.

1 bin 2" bin Both bins

5.SIMULATION RESULTS

The 2-bins/cycle parallel CABAC was incorporatetbin
the encoder and decoder of the JM 12.0 softwatewas
applied to the following groups of syntax elements:

significant_coeff_flag, |ast_significant_coeff_flag,
coeff_abs_l evel _mi nusl, coeff_sign_flag, nmvd_I 0_O,
mvd_l1_0, mvd_I10_1, nvd_l1_1, ref_idx_I0, ref_idx_l1,
nmb_type, coded_bl ock_pattern, nb_qp_delta,
prev_intra4x4_pred_node_flag, rem.intradx4_pred_node,
prev_intra8x8_pred_node_flag, rem.intra8x8_pred_npde

Experiments were performed using common conditions

specified in [7]. Table 4 lists the BjontegaatBitrate and
APSNR when using 2-bins/cycle parallel CABAC (with a
modifications in Section 4.3) versus the 1-bin/eyCABAC
in H.264/AVC.
Bjontegaard\Bitrate andAPSNR were 22, 27, 32, and 37.

we compare the 2-bins/cycle parallel CABAC with a 1
bin/cycle CABAC that also encodes dummy bins. &abl
lists the Bjontegaard\Bitrate and APSNR excluding the
impact of dummy bins for 2-bins/cycle parallel CABA
versus the 1-bin/cycle CABAC. Furthermore, by remgv
the dummy bins and applying the 2-bins/cycle enginall
syntax elements, the throughput for the average d¢as
Table 5 can be increased to 2x.

The QP values used to calculate the

Sequence ABitrate APSNR
(BD delta) (BD delta)
BigShips 0.67% -0.020
City 0.73% -0.024
Crew 0.80% -0.022
Night 0.80% -0.031
ShuttleStart 0.81% -0.029
Average 0.76% -0.025

Sequence ABitrate APSNR
(BD delta) (BD delta)
BigShips 1.29% -0.039
City 1.27% -0.041
Crew 1.35% -0.037
Night 1.16% -0.044
ShuttleStart 1.46% -0.054
Average 1.30% -0.043

Table 4. Rate-distortion performance of 2-bins/cycle
parallel CABAC versus 1-bin/cycle H.264/AVC CABAC.

The average throughput improvement (i.e. cycle tou
reduction) across the 5 video sequences and diffep®
values is shown in Table 5. The throughput impnoeet is
calculated for a macroblock (MB) with average anorsw
case number of bins. Since the average and wasst 1B
have different bin distributions, and only a subsiesyntax
elements are coded at 2-bin/cycle, they have diffier
throughput improvements.

QP Average Case MHE Worst Case MB
22 1.79x% 1.98x%
27 1.64x% 1.97x%
32 1.49x% 1.98x%
37 1.37x% 1.97x%

Table 5. Throughput improvement of 2-bins/cycle CABAC
vs. 1-bin/cycle CABAC in H.264/AVC.

For the results shown in Table 4 and 5, the CABAGi®e
transitioned between 1-bin/cycle and 2-bin/cycle the
selected group of syntax elements and consequeuathmy

bins were inserted when certain syntax elementse wefg

binarized to an odd number of bins. However, if al
elements were encoded at 2-bin/cycle, the decisiea
would take transitions across these syntax elemigts
account to avoid insertion of dummy bins betweemeints
which would reduceABitrate and increas@aPSNR. To
remove the impact of the dummy bins in our measargm

Table 6. Rate-distortion performance of parallel CABAC
engine excluding the impact of dummy bins.

6. CONCLUSION

A novel CABAC algorithm that can encode and decode
any arbitrary number of bins in parallel with coglin
efficiency comparable to H.264/AVC was presented.
Increasing the throughput of the engine lowersrdwpiired
operating frequency, and enables voltage scalingdoce

rihe expected power consumption of video coding kwtigc

necessary for high performance mobile applications
especially at HD resolutions. The parallel CABAS a
promising technique for future low power video cuyli

7. REFERENCES

[1] “ITU-T Recommendation H.264,” March 2005.

[2] D. Marpe, H. Schwarz, and T. Wiegand, “Context-Base
Adaptive Binary Arithmetic Coding in the H.264 / &/
Video Compression StandardEEE Trans. on Circuits and
Systems for Video Te¢hol.13, no.7, pp.620-636, July 2003.

[3] Texas Instruments, Nokia, Polycom, Samsung AlT dbang,
“Desired features in future video coding standards”
Document T05-SG16-C-0215, June 2007.

[4] J.-H. Lin and K. K. Parhi, “Parallelization of Cext-Based
Adaptive Binary Arithmetic CodersfEEE Trans. on Signal
Processingvol. 54, no. 10, pp. 3702-3711, October 2006.

[5] C.-H. Kim and I.-C. Park, “Parallel Decoding of Gext-

Based Adaptive Binary Arithmetic Codes Based on tMos

Probably Symbol Prediction]EICE — Trans. on Information

and Systemsvol. EQ0-D, no. 2, pp. 609-612, February 2007.

W. Yu and Y. He, “A High Performance CABAC Decoding

Architecture,”IEEE Trans. on Consumer Electronie®l. 51,

no.4, November 2005.

[7] TK Tan, G. Sullivan, and T. Wedi, "Recommended
Simulation Common Conditions for Coding Efficiency
Experiments Revision 1," ITU-T Standardization 8ect
Document VCEG-AEOQ10, January 2007.

