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ABSTRACT 
 

With the growing presence of high definition video 
content on battery-operated handheld devices such as 
camera phones, digital still cameras, digital camcorders, and 
personal media players, it is becoming ever more important 
that video compression be power efficient. A popular form 
of entropy coding called Context-Based Adaptive Binary 
Arithmetic Coding (CABAC) provides high coding 
efficiency but has limited throughput.  This can lead to high 
operating frequencies resulting in high power dissipation.  
This paper presents a novel parallel CABAC scheme which 
enables a throughput increase of N-fold (depending on the 
degree parallelism), reducing the frequency requirement and 
expected power consumption of the coding engine.  
Experiments show that this new scheme (with N=2) can 
deliver ~2x throughput improvement at a cost of 0.76% 
average increase in bit-rate or equivalently a decrease in 
average PSNR of 0.025dB on five 720p resolution video 
clips when compared with H.264/AVC. 
 
Index Terms— video coding, arithmetic coding, parallel 
processing, CABAC. 
 

1. INTRODUCTION 
 
The use of video is becoming ever more pervasive on 

battery-operated handheld devices such as camera phones, 
digital still cameras, personal media players, etc.  Annual 
shipment of such devices already exceeds a hundred million 
units and continues to grow.  As a result, it is increasingly 
important that video compression become power efficient 
since the battery life is limited by the size, weight and cost 
of the portable devices.  Voltage scaling is an effective 
technique to reduce power and energy (Equation 1).   

Power  ∝  Capacitance × (Voltage)2 × Frequency     (1) 

The tradeoff is that at lower voltages circuits become 
slower, and the maximum operating frequency is reduced.    
This is an issue for applications such as real-time video 
coding where a frame must be processed by a given 
deadline.  Specifically, the codec must operate at a 
frequency that allows it to meet its performance requirement 
(based on resolution, frame rate and bit-rate).  It is important 

that the codec be clocked at a frequency high enough to 
meet not just the average workload but the worst case 
workload.  In the near future, portable video devices are 
expected to support high-definition (HD) resolution video 
coding, which requires high performance codecs and 
consequently high operating frequencies (potentially in the 
GHz range).  In addition to consuming high power, such 
high frequency circuits are difficult to design and 
implement.  The frequency can be lowered by performing 
operations in parallel to maintain the same overall 
performance. 

This work focuses on the arithmetic coding (AC) engine 
found in many compression algorithms due to its high 
compression efficiency.  For instance, in H.264/AVC [1], 
the Context-Based Adaptive Binary Arithmetic Coding 
(CABAC) provides a 9-14% improvement over the 
Huffman-based Context-Adaptive Variable Length Coding 
[2].  Arithmetic coding is used for a wide variety of 
applications, and is found in standards such as H.264/AVC, 
H.263 and China AVS for video; JPEG-2000 and JPEG-LS 
for image; and MPEG-4 SNHC  for 3D animation. 

While arithmetic coding provides significant 
improvement in compression efficiency, its main drawback 
is its limited throughput (symbols/cycle).  Arithmetic coding 
is inherently serial due to strong data dependencies, and 
typically only a single symbol is coded at a time.  
Consequently, the AC engine is often the bottleneck in the 
codec, requiring high frequency (cycles/sec) to achieve the 
desired performance (symbols/sec). For HD video coding, 
symbols need to be coded at very high rates, which further 
increase the frequency requirement.  Operating at high 
frequencies limits our ability to voltage scale and, as shown 
in Equation 1, results in significant power consumption 
which is undesirable for battery operated devices.   

In this paper, we present a parallelized form of the 
CABAC engine that improves throughput and lowers 
frequency at both the encoder and decoder without 
sacrificing coding efficiency.  In single clock domain 
designs, lowering the frequency of the CABAC engine 
reduces the power of the entire codec, making it an attractive 
technique to be used in today’s high performance energy-
constrained environment. As such, this approach addresses 
the desired features in future coding standards such as low 
power consumption and enhanced parallelism support [3].   



2. CONTEXT-BASED ADAPTIVE BINARY 
ARITHMETIC CODING (CABAC) 

 
Binary arithmetic coding is based on recursive interval 

subdivision.   The sizes of the subintervals are determined 
by multiplying the current interval by the probability of the 
binary symbol (‘bin’).  At the encoder, a subinterval is 
selected based whether the bin is a least probable symbol 
(LPS) or most probable symbol (MPS).  At the decoder, the 
value of the bin (LPS/MPS) depends on which subinterval 
the offset is located. The range of the current interval has a 
limited bit-precision, so renormalization is required 
whenever the range falls below a certain value to prevent 
underflow. 

In order to achieve optimal compression efficiency the 
correct probabilities must be used to code each bin.  All bins 
of the same type, with the same probability distribution and 
characteristics, are grouped together and use the same model 
known as a context.  Accordingly, the context of a bin 
dictates the probability with which it is coded (Table 1).  
Note that context switching can occur at every bin.  The 
probabilities used for each context must be accurately 
modeled; this process of determining the probability of a bin 
is called source modeling.  Since the bins have non-
stationary distributions, the probabilities are continuously 
updated by the context modeler making the engine adaptive.  

  
Bin Probability 
0 Prcontext(0) 
1 Prcontext(1) = (1-Prcontext(0)) 

Table 1. Probability table for binary arithmetic coding. 

 
3. THROUGHPUT OF H.264/AVC CABAC 

 
The performance requirement of the arithmetic coding 

engine, and thus operating frequency, is dictated by the rate 
of the bins that need to be encoded and decoded, and not the 
bits of the compressed data.  For high definition (Level 3.1 
to 4.2) in H.264/AVC, the maximum bin rate, averaged 
across a coded picture, ranges from 121 Mbins/s up to 1.12 
Gbins/s [1].  Depending on the architecture of the system, 
the instantaneous bin rate could be even higher.   For real-
time encoding and decoding, the CABAC engine must meet 
this performance. 

H.264/AVC CABAC [2] is done serially due to inherent 
data dependency stemming from the fact that the context can 
change for every bin.  In many cases the context of the next 
bin is not known until the current bin is decoded.  This serial 
nature limits the throughput.  We could reduce the serial 
dependence by reducing the amount of context switches.  
However, context adaptability is responsible for high coding 
efficiency. For instance, we found that if we do not adapt the 
context for the first bin of coeff_abs_level_minus1 
in H.264/AVC we get a 5% penalty.  To account for 

possible context switching at every bin, the H.264/AVC 
CABAC operates serially, with a 1 bin/cycle throughput, 
requiring very high operating frequencies to meet the given 
performance requirements stated above. 

In the next section, we propose a method that enables us 
to process multiple bins per cycle while accounting for 
changing contexts to maintain coding efficiency. 

 
4. PARALLEL CABAC 

 
This work proposes a scheme (Fig. 1) that can perform 
CABAC on N-bins (symbols) per cycle. At the encoder, the 
context modeler keeps track of the probabilities of each bin 
type and a probability table is constructed for each group of 
bins to be encoded.  This table is passed to the encoding 
engine along with the bins to generate an encoded bitstream.  
At the decoder, based on the previously decoded bins, the 
context modeler and decision tree determine the possible 
contexts of the next set of bins and generate a probability 
table which is passed to the decoding engine.  The next two 
sections describe the encoder and decoder in detail. 
 

 
Fig. 1. Block diagram of parallel CABAC (N=2). 

4.1. Encoder 
 

At the encoder, since the sequence of bins to be 
compressed are known a priori, the contexts to be used for 
each bin are also known and multiple (N) bins can be 
encoded in parallel.  Rather than using the Table 1 to encode 
a single bin at time (N=1), if we know the next two bins 
belong to context A and B, we can encode N=2 bins at the 
same time by constructing Table 2.  Effectively, by knowing 
which probabilities to use for both bins, the alphabet can be 
expanded from two symbols to four. 
 

1st Bin 2nd Bin Probability 
0 0 PrA(0)×PrB(0) 
0 1 PrA(0)×PrB(1) 
1 0 PrA(1)×PrB(0) 
1 1 PrA(1)×PrB(1) 

Table 2. Probability table of 2-bin encoder in Fig. 1. 



4.2. Decoder 
 

The main challenge of parallel CABAC occurs at the 
decoder.  Typically the context to be used on a bin depends 
on the value of the previous bin.  Thus, to decode two bins 
in parallel, the context for the second bin is unknown until 
the first bin has been decoded. Consequently, it is a 
significant challenge to decode the second bin at the same 
time as the first since it is necessary to know which context 
to use in order to correctly decode the compressed data.   

Other techniques for parallel decoding either don’t 
account for the varying context for each bin [4]; utilize a 
predictive scheme to guess the context of the second bin, 
which would still have limited throughput in the worst case 
[5]; or concatenates two single bin engines and use 
pipelining to increase throughput [6]; however there has yet 
to be an approach that is fundamentally parallel that can 
deterministically decode several (N) bins with different 
contexts at the same time. 

The algorithm proposed in this work achieves 
deterministic decoding that accounts for the different 
contexts through the use of conditional probabilities.  At any 
given time, there are only two possible outcomes for the first 
bin (one or zero) and thus there are only two contexts that 
could be used for the second bin based on the value of the 
first bin;  let’s assume they are contexts B and C respectively 
(Fig. 2).  B and C are determined using a decision tree (Fig. 
1).  Table 3 can be used to decode two bins simultaneously, 
with  

   PrB(2nd Bin) = Pr (2nd Bin | 1st Bin = 0)  
PrC(2nd Bin) = Pr (2nd Bin | 1st Bin = 1). 

 
1st Bin 2nd Bin Probability 

0 0 PrA(0)×PrB(0) 
0 1 PrA(0)×PrB(1) 
1 0 PrA(1)×PrC(0) 
1 1 PrA(1)×PrC(1) 

Table 3. Probability table of 2-bin decoder in Fig. 1. 

 

 
Fig. 2. Comparison of 1-bin and 2-bin (parallel) decode. 

 
 

4.3. Further Modifications 
 

Several additional modifications were made to the 
CABAC engine to facilitate the 2-bins/cycle operation.   
First, binary arithmetic coding is implemented using 
multipliers rather than the look up tables used in 
H.264/AVC.  The probability for each bin is quantized to 6-
bits, and the probabilities are multiplied by 2-bits of the 
range.  Second, renormalization occurs only every two bins, 
which requires the size of the range to be increased from 9-
bit to 14-bits in order to prevent underflow errors. 

Finally, in the cases where the number of bins is odd, a 
dummy bin is inserted.  For better coding efficiency, the 
dummy bin is coded with a fixed skewed probability of 
0.015625, which is the smallest value based on the 6-bit 
quantization of the probabilities.  This N-bins/cycle 
approach can be applied to all bins or it can be selectively 
applied to certain bins that dominate the workload of the 
engine.  Dummy bins allow certain syntax elements to be 
coded at 2-bins/cycle and other elements at 1-bin/cycle.  For 
instance, if syntax element A is to be coded at 2-bin/cycle 
followed by syntax element B at 1-bins/cycle, and element A 
is comprised of an odd number of bins,  a dummy bin is 
inserted before transitioning to element B . 
 

4.4. Complexity Impact 
 

Note that the total number of contexts remains the same 
regardless of the degree of parallelism.  Contexts can be 
cached to enable concurrent updates of multiple contexts.   

The parallel CABAC can be extended to N bins 
potentially giving an Nx increase in throughput, and 
reducing the required frequency by 1/N.  The additional cost 
is an increase in the number of multiplications per bin and 
increased complexity in the decision tree.  For N=1, there is 
one multiplication in the encoder and one in the decoder, 
resulting in 2 mult/bin.  For N=2, there are 3 multiplications 
in the encoder and 4 in the decoder, resulting in 3.5 
mult/bin.  The multiplications can be performed in parallel, 
and do not increase the critical path of the engine.  For 
software implementation, the algorithm can run on a vector-
based processor.  For hardware implementation, using 
parallel operations at a lower frequency and voltage reduces 
the power consumed by each multiplication.  This 
counteracts the increase in number of multiplications (i.e. 
switched capacitance).  However, since the number of 
multiplications grows exponentially with N, in practice N 
would remain around 2 or 3.   

Furthermore, the additional comparisons are required 
since the offset could be located on one of four subintervals 
rather than two.  Again, these comparisons can be done 
mostly in parallel at a lower frequency and voltage, each 
consuming less power than if they ran serially.   
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5. SIMULATION RESULTS 
 

The 2-bins/cycle parallel CABAC was incorporated into 
the encoder and decoder of the JM 12.0 software.  It was 
applied to the following groups of syntax elements:  
 
significant_coeff_flag, last_significant_coeff_flag, 
coeff_abs_level_minus1, coeff_sign_flag, mvd_l0_0, 
mvd_l1_0, mvd_l0_1, mvd_l1_1, ref_idx_l0, ref_idx_l1, 
mb_type, coded_block_pattern, mb_qp_delta, 
prev_intra4x4_pred_mode_flag, rem_intra4x4_pred_mode, 
prev_intra8x8_pred_mode_flag, rem_intra8x8_pred_mode 
 

Experiments were performed using common conditions 
specified in [7].  Table 4 lists the Bjontegaard ∆Bitrate and 
∆PSNR when using 2-bins/cycle parallel CABAC (with all 
modifications in Section 4.3) versus the 1-bin/cycle CABAC 
in H.264/AVC.   The QP values used to calculate the 
Bjontegaard ∆Bitrate and ∆PSNR were 22, 27, 32, and 37.  

  

Sequence 
∆Bitrate 

(BD delta) 
∆PSNR 

(BD delta) 
BigShips 1.29% -0.039 

City 1.27% -0.041 
Crew 1.35% -0.037 
Night 1.16% -0.044 

ShuttleStart 1.46% -0.054 
Average 1.30% -0.043 

Table 4. Rate-distortion performance of 2-bins/cycle 
parallel CABAC versus 1-bin/cycle H.264/AVC CABAC. 

The average throughput improvement (i.e. cycle count 
reduction) across the 5 video sequences and different QP 
values is shown in Table 5.  The throughput improvement is 
calculated for a macroblock (MB) with average and worst 
case number of bins.  Since the average and worst case MB 
have different bin distributions, and only a subset of syntax 
elements are coded at 2-bin/cycle, they have different 
throughput improvements. 
 

QP Average Case MB Worst Case MB 
22 1.79× 1.98× 
27 1.64× 1.97× 
32 1.49× 1.98× 
37 1.37× 1.97× 

Table 5. Throughput improvement of 2-bins/cycle CABAC 
vs. 1-bin/cycle CABAC in H.264/AVC. 

For the results shown in Table 4 and 5, the CABAC engine 
transitioned between 1-bin/cycle and 2-bin/cycle for the 
selected group of syntax elements and consequently dummy 
bins were inserted when certain syntax elements were 
binarized to an odd number of bins.  However, if all 
elements were encoded at 2-bin/cycle, the decision tree 
would take transitions across these syntax elements into 
account to avoid insertion of dummy bins between elements 
which would reduce ∆Bitrate and increase ∆PSNR.  To 
remove the impact of the dummy bins in our measurement, 

we compare the 2-bins/cycle parallel CABAC with a 1-
bin/cycle CABAC that also encodes dummy bins.  Table 6 
lists the Bjontegaard ∆Bitrate and ∆PSNR excluding the 
impact of dummy bins for 2-bins/cycle parallel CABAC 
versus the 1-bin/cycle CABAC. Furthermore, by removing 
the dummy bins and applying the 2-bins/cycle engine to all 
syntax elements, the throughput for the average case in 
Table 5 can be increased to 2x.  
 

Sequence 
∆Bitrate 

(BD delta) 
∆PSNR 

(BD delta) 
BigShips 0.67% -0.020 

City 0.73% -0.024 
Crew 0.80% -0.022 
Night 0.80% -0.031 

ShuttleStart 0.81% -0.029 
Average 0.76% -0.025 

Table 6. Rate-distortion performance of parallel CABAC 
engine excluding the impact of dummy bins. 

 
6. CONCLUSION 

 
A novel CABAC algorithm that can encode and decode 

any arbitrary number of bins in parallel with coding 
efficiency comparable to H.264/AVC was presented.  
Increasing the throughput of the engine lowers the required 
operating frequency, and enables voltage scaling to reduce 
the expected power consumption of video coding which is 
necessary for high performance mobile applications 
especially at HD resolutions.  The parallel CABAC is a 
promising technique for future low power video coding. 
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