
PARALLEL CABAC FOR LOW POWER VIDEO CODING

Vivienne Sze Madhukar Budagavi
Anantha P. Chandrakasan Minhua Zhou

Massachusetts Institute of Technology Texas Instruments
Cambridge, MA Dallas, TX

ABSTRACT

With the growing presence of high definition video
content on battery-operated handheld devices such as
camera phones, digital still cameras, digital camcorders, and
personal media players, it is becoming ever more important
that video compression be power efficient. A popular form
of entropy coding called Context-Based Adaptive Binary
Arithmetic Coding (CABAC) provides high coding
efficiency but has limited throughput. This can lead to high
operating frequencies resulting in high power dissipation.
This paper presents a novel parallel CABAC scheme which
enables a throughput increase of N-fold (depending on the
degree parallelism), reducing the frequency requirement and
expected power consumption of the coding engine.
Experiments show that this new scheme (with N=2) can
deliver ~2x throughput improvement at a cost of 0.76%
average increase in bit-rate or equivalently a decrease in
average PSNR of 0.025dB on five 720p resolution video
clips when compared with H.264/AVC.

Index Terms— video coding, arithmetic coding, parallel
processing, CABAC.

1. INTRODUCTION

The use of video is becoming ever more pervasive on

battery-operated handheld devices such as camera phones,
digital still cameras, personal media players, etc. Annual
shipment of such devices already exceeds a hundred million
units and continues to grow. As a result, it is increasingly
important that video compression become power efficient
since the battery life is limited by the size, weight and cost
of the portable devices. Voltage scaling is an effective
technique to reduce power and energy (Equation 1).

Power ∝ Capacitance × (Voltage)2 × Frequency (1)

The tradeoff is that at lower voltages circuits become
slower, and the maximum operating frequency is reduced.
This is an issue for applications such as real-time video
coding where a frame must be processed by a given
deadline. Specifically, the codec must operate at a
frequency that allows it to meet its performance requirement
(based on resolution, frame rate and bit-rate). It is important

that the codec be clocked at a frequency high enough to
meet not just the average workload but the worst case
workload. In the near future, portable video devices are
expected to support high-definition (HD) resolution video
coding, which requires high performance codecs and
consequently high operating frequencies (potentially in the
GHz range). In addition to consuming high power, such
high frequency circuits are difficult to design and
implement. The frequency can be lowered by performing
operations in parallel to maintain the same overall
performance.

This work focuses on the arithmetic coding (AC) engine
found in many compression algorithms due to its high
compression efficiency. For instance, in H.264/AVC [1],
the Context-Based Adaptive Binary Arithmetic Coding
(CABAC) provides a 9-14% improvement over the
Huffman-based Context-Adaptive Variable Length Coding
[2]. Arithmetic coding is used for a wide variety of
applications, and is found in standards such as H.264/AVC,
H.263 and China AVS for video; JPEG-2000 and JPEG-LS
for image; and MPEG-4 SNHC for 3D animation.

While arithmetic coding provides significant
improvement in compression efficiency, its main drawback
is its limited throughput (symbols/cycle). Arithmetic coding
is inherently serial due to strong data dependencies, and
typically only a single symbol is coded at a time.
Consequently, the AC engine is often the bottleneck in the
codec, requiring high frequency (cycles/sec) to achieve the
desired performance (symbols/sec). For HD video coding,
symbols need to be coded at very high rates, which further
increase the frequency requirement. Operating at high
frequencies limits our ability to voltage scale and, as shown
in Equation 1, results in significant power consumption
which is undesirable for battery operated devices.

In this paper, we present a parallelized form of the
CABAC engine that improves throughput and lowers
frequency at both the encoder and decoder without
sacrificing coding efficiency. In single clock domain
designs, lowering the frequency of the CABAC engine
reduces the power of the entire codec, making it an attractive
technique to be used in today’s high performance energy-
constrained environment. As such, this approach addresses
the desired features in future coding standards such as low
power consumption and enhanced parallelism support [3].

2. CONTEXT-BASED ADAPTIVE BINARY
ARITHMETIC CODING (CABAC)

Binary arithmetic coding is based on recursive interval

subdivision. The sizes of the subintervals are determined
by multiplying the current interval by the probability of the
binary symbol (‘bin’). At the encoder, a subinterval is
selected based whether the bin is a least probable symbol
(LPS) or most probable symbol (MPS). At the decoder, the
value of the bin (LPS/MPS) depends on which subinterval
the offset is located. The range of the current interval has a
limited bit-precision, so renormalization is required
whenever the range falls below a certain value to prevent
underflow.

In order to achieve optimal compression efficiency the
correct probabilities must be used to code each bin. All bins
of the same type, with the same probability distribution and
characteristics, are grouped together and use the same model
known as a context. Accordingly, the context of a bin
dictates the probability with which it is coded (Table 1).
Note that context switching can occur at every bin. The
probabilities used for each context must be accurately
modeled; this process of determining the probability of a bin
is called source modeling. Since the bins have non-
stationary distributions, the probabilities are continuously
updated by the context modeler making the engine adaptive.

Bin Probability
0 Prcontext(0)
1 Prcontext(1) = (1-Prcontext(0))

Table 1. Probability table for binary arithmetic coding.

3. THROUGHPUT OF H.264/AVC CABAC

The performance requirement of the arithmetic coding

engine, and thus operating frequency, is dictated by the rate
of the bins that need to be encoded and decoded, and not the
bits of the compressed data. For high definition (Level 3.1
to 4.2) in H.264/AVC, the maximum bin rate, averaged
across a coded picture, ranges from 121 Mbins/s up to 1.12
Gbins/s [1]. Depending on the architecture of the system,
the instantaneous bin rate could be even higher. For real-
time encoding and decoding, the CABAC engine must meet
this performance.

H.264/AVC CABAC [2] is done serially due to inherent
data dependency stemming from the fact that the context can
change for every bin. In many cases the context of the next
bin is not known until the current bin is decoded. This serial
nature limits the throughput. We could reduce the serial
dependence by reducing the amount of context switches.
However, context adaptability is responsible for high coding
efficiency. For instance, we found that if we do not adapt the
context for the first bin of coeff_abs_level_minus1
in H.264/AVC we get a 5% penalty. To account for

possible context switching at every bin, the H.264/AVC
CABAC operates serially, with a 1 bin/cycle throughput,
requiring very high operating frequencies to meet the given
performance requirements stated above.

In the next section, we propose a method that enables us
to process multiple bins per cycle while accounting for
changing contexts to maintain coding efficiency.

4. PARALLEL CABAC

This work proposes a scheme (Fig. 1) that can perform
CABAC on N-bins (symbols) per cycle. At the encoder, the
context modeler keeps track of the probabilities of each bin
type and a probability table is constructed for each group of
bins to be encoded. This table is passed to the encoding
engine along with the bins to generate an encoded bitstream.
At the decoder, based on the previously decoded bins, the
context modeler and decision tree determine the possible
contexts of the next set of bins and generate a probability
table which is passed to the decoding engine. The next two
sections describe the encoder and decoder in detail.

Fig. 1. Block diagram of parallel CABAC (N=2).

4.1. Encoder

At the encoder, since the sequence of bins to be
compressed are known a priori, the contexts to be used for
each bin are also known and multiple (N) bins can be
encoded in parallel. Rather than using the Table 1 to encode
a single bin at time (N=1), if we know the next two bins
belong to context A and B, we can encode N=2 bins at the
same time by constructing Table 2. Effectively, by knowing
which probabilities to use for both bins, the alphabet can be
expanded from two symbols to four.

1st Bin 2nd Bin Probability
0 0 PrA(0)×PrB(0)
0 1 PrA(0)×PrB(1)
1 0 PrA(1)×PrB(0)
1 1 PrA(1)×PrB(1)

Table 2. Probability table of 2-bin encoder in Fig. 1.

4.2. Decoder

The main challenge of parallel CABAC occurs at the
decoder. Typically the context to be used on a bin depends
on the value of the previous bin. Thus, to decode two bins
in parallel, the context for the second bin is unknown until
the first bin has been decoded. Consequently, it is a
significant challenge to decode the second bin at the same
time as the first since it is necessary to know which context
to use in order to correctly decode the compressed data.

Other techniques for parallel decoding either don’t
account for the varying context for each bin [4]; utilize a
predictive scheme to guess the context of the second bin,
which would still have limited throughput in the worst case
[5]; or concatenates two single bin engines and use
pipelining to increase throughput [6]; however there has yet
to be an approach that is fundamentally parallel that can
deterministically decode several (N) bins with different
contexts at the same time.

The algorithm proposed in this work achieves
deterministic decoding that accounts for the different
contexts through the use of conditional probabilities. At any
given time, there are only two possible outcomes for the first
bin (one or zero) and thus there are only two contexts that
could be used for the second bin based on the value of the
first bin; let’s assume they are contexts B and C respectively
(Fig. 2). B and C are determined using a decision tree (Fig.
1). Table 3 can be used to decode two bins simultaneously,
with

 PrB(2nd Bin) = Pr (2nd Bin | 1st Bin = 0)
PrC(2nd Bin) = Pr (2nd Bin | 1st Bin = 1).

1st Bin 2nd Bin Probability

0 0 PrA(0)×PrB(0)
0 1 PrA(0)×PrB(1)
1 0 PrA(1)×PrC(0)
1 1 PrA(1)×PrC(1)

Table 3. Probability table of 2-bin decoder in Fig. 1.

Fig. 2. Comparison of 1-bin and 2-bin (parallel) decode.

4.3. Further Modifications

Several additional modifications were made to the
CABAC engine to facilitate the 2-bins/cycle operation.
First, binary arithmetic coding is implemented using
multipliers rather than the look up tables used in
H.264/AVC. The probability for each bin is quantized to 6-
bits, and the probabilities are multiplied by 2-bits of the
range. Second, renormalization occurs only every two bins,
which requires the size of the range to be increased from 9-
bit to 14-bits in order to prevent underflow errors.

Finally, in the cases where the number of bins is odd, a
dummy bin is inserted. For better coding efficiency, the
dummy bin is coded with a fixed skewed probability of
0.015625, which is the smallest value based on the 6-bit
quantization of the probabilities. This N-bins/cycle
approach can be applied to all bins or it can be selectively
applied to certain bins that dominate the workload of the
engine. Dummy bins allow certain syntax elements to be
coded at 2-bins/cycle and other elements at 1-bin/cycle. For
instance, if syntax element A is to be coded at 2-bin/cycle
followed by syntax element B at 1-bins/cycle, and element A
is comprised of an odd number of bins, a dummy bin is
inserted before transitioning to element B .

4.4. Complexity Impact

Note that the total number of contexts remains the same
regardless of the degree of parallelism. Contexts can be
cached to enable concurrent updates of multiple contexts.

The parallel CABAC can be extended to N bins
potentially giving an Nx increase in throughput, and
reducing the required frequency by 1/N. The additional cost
is an increase in the number of multiplications per bin and
increased complexity in the decision tree. For N=1, there is
one multiplication in the encoder and one in the decoder,
resulting in 2 mult/bin. For N=2, there are 3 multiplications
in the encoder and 4 in the decoder, resulting in 3.5
mult/bin. The multiplications can be performed in parallel,
and do not increase the critical path of the engine. For
software implementation, the algorithm can run on a vector-
based processor. For hardware implementation, using
parallel operations at a lower frequency and voltage reduces
the power consumed by each multiplication. This
counteracts the increase in number of multiplications (i.e.
switched capacitance). However, since the number of
multiplications grows exponentially with N, in practice N
would remain around 2 or 3.

Furthermore, the additional comparisons are required
since the offset could be located on one of four subintervals
rather than two. Again, these comparisons can be done
mostly in parallel at a lower frequency and voltage, each
consuming less power than if they ran serially.

A

1

0

B C

0
1st bin

C

B

1

0

1

0

1

00

01

10

11

Two cycles with 1-bin engine One cycle with 2-bin engine

1st bin 2nd bin Both bins

R R

5. SIMULATION RESULTS

The 2-bins/cycle parallel CABAC was incorporated into
the encoder and decoder of the JM 12.0 software. It was
applied to the following groups of syntax elements:

significant_coeff_flag, last_significant_coeff_flag,
coeff_abs_level_minus1, coeff_sign_flag, mvd_l0_0,
mvd_l1_0, mvd_l0_1, mvd_l1_1, ref_idx_l0, ref_idx_l1,
mb_type, coded_block_pattern, mb_qp_delta,
prev_intra4x4_pred_mode_flag, rem_intra4x4_pred_mode,
prev_intra8x8_pred_mode_flag, rem_intra8x8_pred_mode

Experiments were performed using common conditions
specified in [7]. Table 4 lists the Bjontegaard ∆Bitrate and
∆PSNR when using 2-bins/cycle parallel CABAC (with all
modifications in Section 4.3) versus the 1-bin/cycle CABAC
in H.264/AVC. The QP values used to calculate the
Bjontegaard ∆Bitrate and ∆PSNR were 22, 27, 32, and 37.

Sequence
∆Bitrate

(BD delta)
∆PSNR

(BD delta)
BigShips 1.29% -0.039

City 1.27% -0.041
Crew 1.35% -0.037
Night 1.16% -0.044

ShuttleStart 1.46% -0.054
Average 1.30% -0.043

Table 4. Rate-distortion performance of 2-bins/cycle
parallel CABAC versus 1-bin/cycle H.264/AVC CABAC.

The average throughput improvement (i.e. cycle count
reduction) across the 5 video sequences and different QP
values is shown in Table 5. The throughput improvement is
calculated for a macroblock (MB) with average and worst
case number of bins. Since the average and worst case MB
have different bin distributions, and only a subset of syntax
elements are coded at 2-bin/cycle, they have different
throughput improvements.

QP Average Case MB Worst Case MB
22 1.79× 1.98×
27 1.64× 1.97×
32 1.49× 1.98×
37 1.37× 1.97×

Table 5. Throughput improvement of 2-bins/cycle CABAC
vs. 1-bin/cycle CABAC in H.264/AVC.

For the results shown in Table 4 and 5, the CABAC engine
transitioned between 1-bin/cycle and 2-bin/cycle for the
selected group of syntax elements and consequently dummy
bins were inserted when certain syntax elements were
binarized to an odd number of bins. However, if all
elements were encoded at 2-bin/cycle, the decision tree
would take transitions across these syntax elements into
account to avoid insertion of dummy bins between elements
which would reduce ∆Bitrate and increase ∆PSNR. To
remove the impact of the dummy bins in our measurement,

we compare the 2-bins/cycle parallel CABAC with a 1-
bin/cycle CABAC that also encodes dummy bins. Table 6
lists the Bjontegaard ∆Bitrate and ∆PSNR excluding the
impact of dummy bins for 2-bins/cycle parallel CABAC
versus the 1-bin/cycle CABAC. Furthermore, by removing
the dummy bins and applying the 2-bins/cycle engine to all
syntax elements, the throughput for the average case in
Table 5 can be increased to 2x.

Sequence
∆Bitrate

(BD delta)
∆PSNR

(BD delta)
BigShips 0.67% -0.020

City 0.73% -0.024
Crew 0.80% -0.022
Night 0.80% -0.031

ShuttleStart 0.81% -0.029
Average 0.76% -0.025

Table 6. Rate-distortion performance of parallel CABAC
engine excluding the impact of dummy bins.

6. CONCLUSION

A novel CABAC algorithm that can encode and decode

any arbitrary number of bins in parallel with coding
efficiency comparable to H.264/AVC was presented.
Increasing the throughput of the engine lowers the required
operating frequency, and enables voltage scaling to reduce
the expected power consumption of video coding which is
necessary for high performance mobile applications
especially at HD resolutions. The parallel CABAC is a
promising technique for future low power video coding.

7. REFERENCES

[1] “ITU-T Recommendation H.264,” March 2005.
[2] D. Marpe, H. Schwarz, and T. Wiegand, “Context-Based

Adaptive Binary Arithmetic Coding in the H.264 / AVC
Video Compression Standard,” IEEE Trans. on Circuits and
Systems for Video Tech., vol.13, no.7, pp.620-636, July 2003.

[3] Texas Instruments, Nokia, Polycom, Samsung AIT, Tandberg,
“Desired features in future video coding standards”,
Document T05-SG16-C-0215, June 2007.

[4] J.-H. Lin and K. K. Parhi, “Parallelization of Context-Based
Adaptive Binary Arithmetic Coders,” IEEE Trans. on Signal
Processing, vol. 54, no. 10, pp. 3702-3711, October 2006.

[5] C.-H. Kim and I.-C. Park, “Parallel Decoding of Context-
Based Adaptive Binary Arithmetic Codes Based on Most
Probably Symbol Prediction,” IEICE – Trans. on Information
and Systems, vol. E90-D, no. 2, pp. 609-612, February 2007.

[6] W. Yu and Y. He, “A High Performance CABAC Decoding
Architecture,” IEEE Trans. on Consumer Electronics, vol. 51,
no.4, November 2005.

[7] TK Tan, G. Sullivan, and T. Wedi, "Recommended
Simulation Common Conditions for Coding Efficiency
Experiments Revision 1," ITU–T Standardization Sector,
Document VCEG-AE010, January 2007.

