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Mir Ultra -wideband (UWB) Radio

UWB versus Narrowband Possible UWB Applications
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m Advantages of UWB communications include
OHigh Data Rate

OExcellent Multi-path Resolution
OLow Interference

m Integrate UWB radios on battery operated devices
m Need an energy efficient UWB System




U UWB System Architecture

14 Channel Frequency Plan
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U Packet Structure (PHY layer)
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m Goal : Reduce overhead energy (acquisition)

m Majority of acquisition energy spent on computation of
cross-correlation



IMlirf  Cross-Correlation Computation
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m Points can be computed independently



|I|"' Baseband Architecture
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m Cross-correlation requires a fixed
number of operations

m Reduce energy of each operation in
order to reduce baseband energy

m Map operations to architecture that
reduces system energy



Mlii® Energy Efficiency Using Parallelism

Exploit TWO forms of parallelism in Correlator Bank

m Ultra-Low Voltage Operation - Maintain Throughput (L)

O Reduce supply voltage
O Minimize energy of baseband processor

m Reducing Acquisition Time - Parallelized Computation (M)
O Reduce receiver on-time
O Minimize energy of entire receiver (system)



U Baseband Energy Savings

Correlator Architecture y[ _
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m Correlators compute the cross-correlation function
m VVoltage scaling to reduce energy per operation

m Parallelize to maintain throughput of 500 MSPS

m Designed and simulated in a 90-nm process



Energy per operation (normalized)
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At the minimum energy point
of 0.3V = 9X energy reduction

Set clock frequency to 25 MHz
(preamble PRF)

Parallelize by L=20 to maintain
500 MSPS throughput

Need to raise voltage to 0.4 V to
achieve 25 MHz

At 0.4 V, reduce energy per
operation by 5.8X

eakage




U Summary of Methodology

m Select the optimal degree of parallelism that
O minimizes energy consumption
O meets performance constraints

1. Determine VDD, s (at minimum energy point)
2. Determine delay and throughput at VDD, ,cp

3. Divide required throughput by the throughput
at VDD,,cp to obtain the necessary degree of
parallelism (L)



U System Energy Savings

m Trade-off area for time by

mapplng tO para“el Maximum Acquisition Time
architecture ————

m Reducing acquisition time 20l
allows for fewer number of e
Gold Code repetitions in the
preamble

m RF front-end and ADC can 10}
be turned off earlier 51

Time (ps)

m Energy savings across .
the entire system



Mir Acquisition Energy Reduction
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Mir Maximum Ratio Combiner (MRC)
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m Demodulation uses a 5-fingered RAKE receiver
m A hard decision is made at the output MRC to resolve a bit



Parallelized Baseband Architecture

I~ Demodulation
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U Energy -Area Tradeoff

Energy-Area Tradeoff for Digital Baseband Processor
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U Energy -Area Tradeoff

Receiver Energy - Digital Baseband Area Tradeoff
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|I|"' 400-mV Baseband Processor

m STMicroelectronics e
standard-V+ 90-nm CMOS
process

m 281,260 gates

m Includes 620 Correlators &
4 Maximum Ratio
Combiners
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3.3 mm

m Die area; 10.94mm?
O Active area 23%




U Correct Operation at 400 mV
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m Oscilloscope plot shows correct functionality at 400mV
O Note: 1/O has a 1V power supply

m Operating frequency of 25 MHz
m Four bits demodulated in parallel every 40-ns cycle



U Energy Per Bit

m Power Measurements
O Acquisition 7 mW / Demodulation 1.7 mW

Breakdown of Baseband Processor's Energy Per Bit

B Acquisition Energy
B Demodulation Energy

Energy per bit (pJ)
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U Power Gating

power gating |
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m Reduce leakage power using a high V- “sleep”
transistor to gate the leakage current when block is idle

m Breakeven time 137 us



Conclusions

m Reduce energy to receive a UWB packet by
O Scaling to optimum supply voltage
O Mapping algorithm to parallel architecture

m Voltage scaling to ultra-low voltage (1 V = 0.4 V)
O 5.8X reduction in energy per operation of correlators

m Reduced acquisition time
O 14.7X reduction in receiver acquisition energy

m 400-mV 100 Mbps UWB Baseband Processor
0 16.8 pJ/bit for demodulation
O 20 pJ/bit for a 4-kb packet

m Demonstrate high performance at ultra-low voltage

m Can be applied to other high performance
communication and signal processing applications
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