
A HIGH THROUGHPUT CABAC ALGORITHM USING SYNTAX ELEMENT PARTITIONING

Vivienne Sze, Anantha P. Chandrakasan

Massachusetts Institute of Technology

ABSTRACT

Enabling parallel processing is becoming increasingly nec-
essary for video decoding as performance requirements con-
tinue to rise due to growing resolution and frame rate de-
mands. It is important to address known bottlenecks in
the video decoder such as entropy decoding, specifically
the highly serial Context-based Adaptive Binary Arithmetic
Coding (CABAC) algorithm. Concurrency must be enabled
with minimal cost to coding efficiency, power, area and delay.
This work proposes a new CABAC algorithm for the next
generation standard in which binary symbols are grouped by
syntax elements and assigned to different partitions whichcan
be decoded in parallel. Furthermore, since the distribution of
binary symbols changes with quantization, an adaptive binary
symbol allocation scheme is proposed to maximize through-
put. Application of this next generation CABAC algorithm on
five 720p sequences shows a throughput increase of up to 3x
can be achieved with negligible impact on coding efficiency
(0.06% to 0.37%), which is a 2 to 4x reduction in coding
penalty compared with H.264/AVC and entropy slices. Area
cost is also reduced by 2x. This increased throughput can be
traded-off for low power consumption in mobile applications.

Index Terms— Arithmetic Coding, Parallel Processing

1. INTRODUCTION

Arithmetic coding is a form of entropy coding found in many
compression algorithms that has high coding efficiency since
it can map symbols to non-integer length codewords. The
coding efficiency depends strongly on the use of accurate
probabilities. Accordingly, in H.264/AVC, context-adaptive
coding is used such that different contexts (probability mod-
els) are applied for different syntax elements. Furthermore,
since the probabilities are non-stationary, the contexts are
also constantly updated. The adaptive context increases the
serial dependencies in the entropy decoding. In H.264/AVC
CABAC, the contexts are assigned on a binary symbol (’bin’)
basis which leads to data dependencies at the bin level and
consequently requires bin level serial processing; this causes

Funding for this research was provided by Texas Instruments and an
NSERC fellowship. The authors would like to thank Madhukar Budagavi
for valuable feedback and discussions. The authors are withthe Microsys-
tems Technology Laboratories, Massachusetts Institute of Technology, Cam-
bridge, MA 02139 USA (e-mail: sze@mtl.mit.edu; anantha@mtl.mit.edu)

a severe bottleneck particularly for high performance applica-
tions. Since the next generation standard is looking to support
very high resolutions and frame rates (e.g. 4kx2k, 120 fps),
there is a critical need for increased concurrency in CABAC
to achieve higher throughput.

Video is becoming increasingly prevalent on handheld
battery operated devices. Voltage scaling reduces energy con-
sumption by a quadratic factor at the cost of slower circuits.
Parallelism can be used to lower the clock rate and compen-
sate for the speed reduction. This approach has shown to
be extremely effective in reducing the power consumption
of video decoding [1]. Higher throughput allows for greater
voltage scaling and consequently energy savings. Increas-
ing concurrency in CABAC can enable significant power
reduction for video codecs used in mobile applications.

2. THROUGHPUT REQUIREMENTS

It is important to understand the throughput requirements for
real-timing decoding applications such as video conferenc-
ing. To achieve real-time low-delay decoding, the processing
deadline is dictated by the time required to decode each frame
to achieve a certain frames per second (fps) performance. The
throughput of CABAC is dictated by the bin-rate rather than
bit-rate. Table 1 shows the peak bin-rate requirements for
a frame to be decoded instantaneously based on the specifi-
cations of the H.264/AVC standard [2]. They are calculated
by multiplying the maximum number of bins per frame by
the frame rate for the largest frame size. For Level 5.1, the
peak bin-rate is in the Gbins/s; without concurrency, decod-
ing 1 bin/cycle requires multi-GHz frequencies, which leads
to high power consumption and is difficult to achieve even in
an ASIC. Existing H.264/AVC CABAC hardware implemen-
tations such as [3] only go up to 149 MHz; the maximum fre-
quency is limited by the critical path, and thus parallelismis
necessary to meet next generation performance requirements.

Table 1: Peak bin-rate requirements for real-time decoding of
worst case frame at various high definition levels.

Level
Max Max Bins Max Peak

Frame Rate per picture Bit Rate Bin Rate
fps Mbins Mbits/sec Mbins/sec

4.0 30 9.2 25 275
5.1 26.7 17.6 300 2107



3. EXISTING PARALLEL APPROACHES

There are several methods of either reducing the peak through-
put requirement or increasing the throughput of CABAC;
however, they come at the cost of decreased coding effi-
ciency, increased power consumption and/or increased delay.

3.1. Frame Level Workload Averaging

Averaging the workload of several frames (i.e. on the order
of the rate control buffer size, 30+) can decrease the peak
bin-rate requirements to be within the range of the average
maximum bit-rate. However, buffering results in increased
delay and storage costs. For low-delay applications such as
video conferencing, an additional delay of several frames may
not be tolerated.

3.2. Bin Level Parallel Processing

Due to the strong data dependencies from bin to bin, spec-
ulative computation is required for parallelism at the bin
level. This approach has been proposed in papers for both
H.264/AVC compliant [3, 4] and non-compliant [5, 6] high
throughput CABAC solutions. Speculation requires addi-
tional computations which may increase power consumption.
Furthermore, the critical path increases with each additional
bin, since all computations cannot be done entirely in parallel
(e.g. each bin needs to wait for ’codIRangeLPS’ from the
previous bin). This reduces the overall throughput improve-
ment that can be achieved. The reported bin-rates for these
approaches are in the low hundreds of Mbins/s. Additional
parallelism is needed to reach the Gbins/s required for 4kx2k.

3.3. Frame and/or Slice Level Parallel Processing

Parallelism can be applied at the slice level since CABAC pa-
rameters such as range, offset and context states are reset ev-
ery slice. Each frame has a minimum of one slice, so at the
very least parallelism can be achieved across several frames.
However, frame level parallelism leads to increased latency
and needs additional buffering, as inter-frame predictionpre-
vents several frames from being fully decoded in parallel.

The storage and delay costs can be reduced if there are
several slices per frame. However, increasing the number of
slices per frame reduces the coding efficiency since it limits
the number of macroblocks that can be used for prediction,
reduces the training period for the probability estimation, and
increases the number of slice headers and start code prefixes.
Fig. 1 shows how the coding efficiency penalty increases with
more H.264/AVC slices per frame.

3.4. Entropy Slices

Entropy slices have been proposed for the next generation
standard in [7]. They are similar to H.264/AVC slices in that
macroblocks are allocated to different slices. While entropy
slices do not share info for entropy (de)coding (which en-
ables parallel processing), motion vector reconstructionand

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0 20 40 60

Number of Slices per Frame

C
o

d
in

g
 E

ff
ic

ie
n

c
y

 P
e

n
a

lt
y

H.264/AVC Slice

Start Code and 

Header

Reduced

Training Reduced 

Prediction

Reduced

Prediction

Entropy Slice

H.264/AVC Slices

Entropy Slices

 Reduced 

Prediction

 Reduced Training 

Start Code Prefix 

and Header

Fig. 1: Coding efficiency penalty vs. slices per frame. Se-
quence ’BigShips’ (QP=27) under common conditions [8].

intra prediction are allowed across entropy slices, resulting
in better coding efficiency than H.264/AVC slices (Fig. 1).
However, entropy slices still suffer coding efficiency penalty
versus H.264/AVC with single slice per frame. A significant
portion of the coding penalty can be attributed to the reduc-
tion in context training (Fig. 1).

One of the features that gives CABAC its high coding
efficiency is that the contexts are adaptive. While encod-
ing/decoding, the contexts undergo training to achieve an ac-
curate estimate of the syntax element probabilities. A bet-
ter estimate of the probabilities results in better coding ef-
ficiency. A drawback of breaking up a picture into several
entropy slices is that there are fewer macroblocks, and con-
sequently fewer syntax elements, per slice. Since the entropy
engine is reset every entropy slice, the context undergoes less
training and can results in a poorer estimate of the probabili-
ties.

4. SYNTAX ELEMENT PARTITIONING

This work propose a different method distributing the bins
across parallel entropy engines. To avoid reducing the train-
ing, rather than processing various macroblocks/slices in
parallel, syntax elements are processed in parallel. In other
words, rather than grouping bins by macroblock and placing
them in different entropy slices, bins are grouped based on
syntax element and placed in different partitions which are
then processed in parallel (Fig. 2). As a result, each parti-
tion contains all the bins of a given syntax element, and the
context can then undergo the maximum amount of training
(i.e. across all occurrences of the element in the frame) to
achieve the best possible estimate and eliminate the coding
efficiency penalty from reduced training. Table 2 shows the
five different groups of syntax elements. The syntax elements
were assigned to groups based on the bin distribution for a
balanced workload. Each group of elements can be assigned



MB0

macroblock

H.264/AVC Slice

MBINFO

Slice header

Start code

different

syntax element 

groups

LEGEND

MB1 MB2

COEFF

SIGMAP

Workload 

Syntax 

Element 

Partitioning

PRED

CBP

Fig. 2: Concurrency with syntax element partitioning.

MBINFO

PRED

CBP SIGMAP COEFF

Intra Prediction or 

Motion Compensation

Number of 

Coefficients
Size of Coded 

BlockSize of Blocks

Transform Size

Fig. 3: Dependencies between groups.

to a different partition. A start code prefix for demarcationis
required at the beginning of each partition.

This syntax element partitioning scheme is similar to
slice data partitioning in the extended profile of H.264/AVC.
However, slice data partitioning in H.264/AVC is limited to
Context-based Adaptive Variable Length Coding (CAVLC)
and is done primarily for error resilience purposes. Syntax
element partitioning for CABAC can also benefit in terms
of error resilience, however, it is done primarily to increase
throughput and the partitions are assigned accordingly.

Dependencies between each group are shown in Fig. 3.
For instance, the MBINFO group for a given macroblock
(MB0) must be decoded before the PRED group for the same
macroblock (MB0). However, the MBINFO group of the
next macroblock (MB1) can be decoded in parallel with the
PRED group of MB0. Thus, the processing of each partition
must be synchronized. Synchronization can be done using
data driven FIFOs between engines, similar to the ones used
in [1] between processing units.

4.1. Coding Efficiency and Throughput

The syntax element partitioning approach was evaluated us-
ing JM12.0 software under common conditions [8]. The
coding efficiency and throughput were compared against
H.264/AVC slices and entropy slices (Table 3). To account for
any workload imbalance, the partition with the largest num-
ber of bins per frame was used to compute the throughput. An
average throughput speedup of∼2.7x can be achieved with
negligible impact (0.06% to 0.37%) on coding efficiency. To
achieve similar effective throughput requires at least three
H.264/AVC or entropy slices per frame which have coding
penalty of 0.87% to 1.71% and 0.25% to 0.69% respectively.
Thus, syntax element partitioning provides 2 to 4x reduction
in coding penalty relative to these other approaches.

Table 2: Syntax Element Groups.

Group Syntax Element

MBINFO
mb skip flag, mbtype, submb type,

mb field decodedflag, endof slice flag

PRED

prev intra4x4predmodeflag,
rem intra4x4predmode,

prev intra8x8predmodeflag,
rem intra8x8predmode,
intra chromapredmode,

ref idx l0, ref idx l1, mvd l0, mvd l1

CBP
transformsize8x8 flag

codedblock pattern, codedblock flag
SIGMAP significantcoeff flag, lastsignificantcoeff flag
COEFF coeff abslevel minus1, coeffsign flag

Table 3: Comparison of various parallel processing tech-
niques. The coding efficiency was computed by evaluat-
ing the Bjontegaard∆Bitrate against H.264/AVC with single
slice per frame. Throughput was computed relative to serial
1 bin/cycle decoding. Results are averaged across BigShips,
City, Crew, Night, and Shuttle.

H.264/AVC Entropy Syntax Element
Slices Slices Partitioning

Area Cost 3x 3x 1.5x
Prediction BD- speed BD- speed BD- speed
Structure rate up rate up rate up

Ionly 0.87 2.43 0.25 2.43 0.06 2.60
IPPP 1.44 2.42 0.55 2.44 0.32 2.72
IBBP 1.71 2.46 0.69 2.47 0.37 2.76

4.2. Area Cost

Implementations for parallel H.264/AVC slices and entropy
slices processing require that the entire CABAC be replicated
which can lead to significant area cost. An important bene-
fit to syntax element parallelism is that the area cost is quite
low since the finite state machine used for context selection,
and the context memory do not need to be replicated. Only
the arithmetic coding engine needs to be replicated, which ac-
counts for a small percentage of the total area. To achieve the
throughput in Table 3, H.264/AVC slices and entropy slices
require a 3x replication of the CABAC area, whereas syntax
element partitioning has only a 50% area increase.

4.3. Adaptive Bin Allocation for Varying Quantization

In the previous analysis, each syntax element group was as-
signed to a different partition. Certain syntax element groups
can be allocated to the same partition, such that only three
partitions are used instead of five. This reduces the overhead
of the start code prefix and the number of arithmetic engines
(i.e. area). The overall throughput depends on how well the
number of bins per partition are balanced. The distributionof
the bins per syntax element group changes depending on the
quantization (QP) as shown in Fig. 4. To maximize through-
put for varying QP, the allocation of groups to each partition
should be adaptive.



CBP
22%

PRED
32%

MBINFO
33%

SIGMAP
8%

COEFF
5%

(a) QP=37

COEFF
23%

SIGMAP
50%

MBINFO
5%

PRED
11%

CBP

11%

(b) QP=22

Fig. 4: Average bin distribution per frame.

Table 4: Group allocation to partitions.

Mode MBINFO PRED CBP SIGMAP COEFF
High QP 0 0 0 1 2
Low QP 0 1 2 2 2

A threshold QP is used to distinguish the two QP modes
of bin allocation. Table 4 shows which partition (0,1,2) each
group is allocated to for a given QP mode. Adaptive QP is
only necessary for P frames. In I frames, SIGMAP and CO-
EFF tend to dominate regardless of QP, and thus the high QP
mode is always used. The QP threshold can be different for
each sequence and transmitted in the sequence parameter set.
It can be selected by the encoder either using a two-pass ap-
proach or based on the number of non-zero coefficients.

Fig. 5 shows the throughput impact of adaptive syntax
element partitioning over serial H.264/AVC CABAC. The
throughput is greatly increased with adaptive QP. For most of
the sequences, the QP threshold should be set somewhere be-
tween 27 and 32. However, for ’ShuttleStart’, the QP thresh-
old should be between 22 and 27.

4.4. Achieving Additional Parallelism

To reach Gbins/s, syntax element partitioning can be com-
bined with the other approaches presented in Section 3 to
achieve additional throughput at lower cost. For instance,a
6x throughput increase can be achieved by combining syntax
element partitioning with 4 entropy slices, which results in
better coding efficiency and lower area costs than just using
8 entropy slices or 8 H.264/AVC slices as shown in Fig. 6.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

22 27 32 37

Quantization Parameter (QP)

T
h

ro
u

g
h

p
u

t 
In

c
re

a
s

e

Fig. 5: High QP (blue); Low QP (red). Sequences (left to
right): BigShips, City, Crew, Night, ShuttleStart.

0%

2%

4%

6%

8%

10%

12%

14%

16%

0 5 10 15 20 25 30

Throughput Increase

C
o

d
in

g
 E

ff
ic

ie
n

c
y

 P
e

n
a

lt
y

(1)

(2)

(3)

Fig. 6: Coding efficiency vs. throughput for (1) H.264/AVC
slices, (2) entropy slices and (3) entropy slices with syntax
element partitioning. Sequence ’BigShips’ (QP=27) [8].

The slice and/or partition that has the most number of bins
in a frame dictates the number of cycles required to decode
that frame. Thus, the throughput improvement in Fig. 6 is de-
termined by comparing the total number of bins in the frame
with the slice and/or partition that has the most number of
bins in that frame.

5. CONCLUSION

This work presents a new CABAC algorithm for the next gen-
eration standard that has increased concurrency by processing
the bins of different syntax elements in parallel. A throughput
increase of up to 3x can be achieved without sacrificing cod-
ing efficiency, power, or delay. The area overhead is minimal
since the context memory does not have to be replicated. This
approach can be combined with other approaches such as en-
tropy slices for further throughput increase for an improved
trade-off between coding efficiency and throughput/power.

6. REFERENCES

[1] D. Finchelstein,et al., “A Low-Power 0.7-V H.264 720p Video De-
coder,” inIEEE Asian Solid State Circuits Conf., November 2008.

[2] “Recommendation ITU-T H.264: Advanced Video Coding for Generic
Audiovisual Services,” ITU-T, Tech. Rep., 2003.

[3] W. Yu et al., “A High Performance CABAC Decoding Architecture,”
IEEE Trans. on Consumer Electronics, vol. 51, no. 4, pp. 1352–1359,
November 2005.

[4] C.-H. Kim et al., “Parallel Decoding of Context-Based Adaptive Binary
Arithmetic Codes Based on Most Probably Symbol Prediction,”IEICE
Trans. on Information and Systems, vol. E90-D, no. 2, pp. 609–612,
February 2007.

[5] J.-H. Lin et al., “Parallelization of Context-Based Adaptive Binary
Arithmetic Coders,”IEEE Trans. on Signal Processing, vol. 54, no. 10,
pp. 3702–3711, October 2006.

[6] V. Sze,et al., “Parallel CABAC for Low Power Video Coding,” inIEEE
International Conf. on Image Processing, October 2008.

[7] J. Zhaoet al., “C0405: Entropy slices for parallel entropy decoding,”
ITU-T SG16/Q6, April 2008.

[8] T. Tan, et al., “VCEG-AE010: Recommended Simulation Common
Conditions for Coding Efficiency Experiments Rev. 1,” ITU-T SG16/Q6,
January 2007.


