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� UWB Specifications and System Architecture

� Baseband Algorithm and Architecture

� Parallelism for Energy Efficiency
�Mapping of Algorithm ���� Minimize System Energy
�Circuit Optimization ���� Minimize Baseband Energy

� Challenges for Highly Parallelized Designs

� Conclusions



UltraUltra--wideband (UWB) Radiowideband (UWB) Radio
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� Advantages of UWB communications include
�High Data Rate
�Excellent Multipath Resolution
�Low Interference

� Integrate UWB radios on battery operated devices

� Need an energy efficient UWB System
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UWB System ArchitectureUWB System Architecture
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Packet StructurePacket Structure

� Goal : Reduce overhead energy (PREAMBLE)



Baseband AlgorithmBaseband Algorithm

� Acquisition Phase
� Detect packet
� Estimate delay
� Synchronize

� Channel Estimation
� Measure multipath in 

wireless channel

� Payload Detection
� Wait for inverted 

replication

� Demodulation
� Adjust for multipath
� Resolve bit
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Baseband ArchitectureBaseband Architecture
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� Majority of preamble energy spent 
on computation of cross-correlation

� Fixed number of operations 

� Map operations to architecture that 
reduces system energy

� Reduce energy of each operation



Energy Efficiency Using ParallelismEnergy Efficiency Using Parallelism

Exploit TWO forms of parallelism in Correlator Bank

� Mapping of Algorithm: Parallelized Computation (M)
�Reduce acquisition time
�Minimize System Energy (Energy per packet)

� Circuit Optimization: Maintain Throughput (L)
�Reduce supply voltage 
�Minimize Baseband Energy (Energy per operation)



System Energy Savings (Mapping)System Energy Savings (Mapping)

� Trade-off area for time by 
mapping to parallel architecture 

� Reducing acquisition time 
allows for fewer number of Gold 
Code repetitions in the preamble 

� RF front-end and ADC can be 
turned off earlier

� Energy savings across 
the entire system
���� Reduce energy per packet



Preamble Energy ReductionPreamble Energy Reduction
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Reduce RF front-end 
and ADC energy!

14X overall
reduction



Energy Reduction vs. Payload SizeEnergy Reduction vs. Payload Size

Payload Energy 
DominatesPreamble Energy 
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Total Packet Energy ReductionTotal Packet Energy Reduction
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Baseband Energy Savings (Circuit Optimization)Baseband Energy Savings (Circuit Optimization)

� Correlators compute the cross-correlation function 

� Fixed number of operations required 

� Voltage scale to reduce energy per operation

� Parallelize to maintain throughput of 500 MSPS 

� Designed and simulated in a 90-nm process (STMicroelectronics)

Correlator Architecture

z-1



Selection of Optimum Supply VoltageSelection of Optimum Supply Voltage
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Minimum Energy PointMinimum Energy Point
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CorrelatorCorrelator Energy per OperationEnergy per Operation
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Baseband Energy SavingsBaseband Energy Savings

� At the minimum energy point of 0.3 V 

���� reduce energy per operation by 9X

� Set clock frequency to 25 MHz (preamble PRF)

� Parallelize by L=20 to maintain 500 MSPS throughput

� Need to raise voltage to 0.4 V to achieve 25 MHz

� At 0.4 V, reduce energy per operation by 5.8X

Minimum energy when baseband 
operates in sub-threshold



Parallelized Baseband ArchitectureParallelized Baseband Architecture

Correlator Bank
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Challenges with High ParallelismChallenges with High Parallelism

� Major concerns for highly parallelized designs
�Increased Leakage Current
�Increased Interconnect Capacitance

� Use power gating to reduce leakage current

� Use clock gating and careful layout to reduce
switching interconnect capacitance



Power GatingPower Gating

� Larger number of 
transistors result in 
larger leakage currents

� Reduce leakage power 
by using a transistor to 
gate the leakage 
current when block is 
idle



ConclusionsConclusions

� Reduce energy to receive a UWB packet by
�Mapping algorithm to parallel architecture 
�Scaling to optimum supply voltage

� Reduced acquisition time 
�14X reduction in preamble energy 
�43% energy reduction for a 500 byte packet

� Voltage scaling to sub-threshold (1 V ���� 0.4 V)
� 5.8X reduction in energy per operation of correlators

� This analysis can be applied to other high 
performance communication applications


