
1704 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 11, NOVEMBER 2009

Multicore Processing and Efficient On-Chip
Caching for H.264 and Future Video Decoders

Daniel F. Finchelstein, Member, IEEE, Vivienne Sze, Student Member, IEEE,
and Anantha P. Chandrakasan, Fellow, IEEE

Abstract—Performance requirements for video decoding will
continue to rise in the future due to the adoption of higher
resolutions and faster frame rates. Multicore processing is an
effective way to handle the resulting increase in computation.
For power-constrained applications such as mobile devices, extra
performance can be traded-off for lower power consumption
via voltage scaling. As memory power is a significant part of
system power, it is also important to reduce unnecessary on-
chip and off-chip memory accesses. This paper proposes several
techniques that enable multiple parallel decoders to process a
single video sequence; the paper also demonstrates several on-
chip caching schemes. First, we describe techniques that can
be applied to the existing H.264 standard, such as multiframe
processing. Second, with an eye toward future video standards,
we propose replacing the traditional raster-scan processing with
an interleaved macroblock ordering; this can increase parallelism
with minimal impact on coding efficiency and latency. The
proposed architectures allow N parallel hardware decoders to
achieve a speedup of up to a factor of N. For example, if
N = 3, the proposed multiple frame and interleaved entropy
slice multicore processing techniques can achieve performance
improvements of 2.64× and 2.91×, respectively. This extra
hardware performance can be used to decode higher definition
videos. Alternatively, it can be traded-off for dynamic power
savings of 60% relative to a single nominal-voltage decoder.
Finally, on-chip caching methods are presented that significantly
reduce off-chip memory bandwidth, leading to a further increase
in performance and energy efficiency. Data-forwarding caches
can reduce off-chip memory reads by 53%, while using a last-
frame cache can eliminate 80% of the off-chip reads. The
proposed techniques were validated and benchmarked using
full-system Verilog hardware simulations based on an existing
decoder; they should also be applicable to most other decoder
architectures. The metrics used to evaluate the ideas in this
paper are performance, power, area, memory efficiency, coding
efficiency, and input latency.

Index Terms—H.264, low-power, multicore, parallelism, video
decoders.
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I. Introduction

THE INCREASING demand for higher definition and
faster frame rate video is making high-performance and

low-power critical in hardware video decoders. Mobile multi-
media devices such as smart phones are energy-constrained, so
reducing their power is critical for extending video playback
times. For wired devices such as set-top boxes, speed is critical
for high-quality video playback. Ideally, a video decoder
would not require a different architecture for these two types
of applications. This would help reduce design time and lower
implementation costs.

Pipelining and parallelism, two well-known hardware ar-
chitecture techniques, can be used to achieve these high-
performance requirements. Pipelining increases computation
concurrency by reducing the datapath between registers. This
allows a circuit to be clocked at a higher frequency, and
thus process data faster. One disadvantage of pipelining is
the increase in pipeline registers and control complexity.
Parallelism increases concurrency by distributing computation
amongst several identical hardware units. The main cost of
parallelism is an increase in chip area and muxing/demuxing
logic to feed all the units and collect their results.

The power of a given video decoder architecture can be
minimized by lowering the supply voltage. First, the decoder’s
clock frequency is set to the lowest value that still guarantees
the current computation workload can be met. Next, the supply
voltage is reduced to the minimal value that still allows the
circuit to operate at the chosen frequency. Voltage scaling
reduces dynamic energy consumption by a quadratic factor.
This comes at a cost of increased circuit delay, as the currents
decrease with supply voltage. Specifically, the circuit suffers
a linear increase in delay above the threshold voltage; as the
supply voltage approaches the sub-threshold region, the circuit
begins to suffer an exponential increase in delay [1]. This
decreased speed can be a challenge for real-time applications
such as video decoding where on average a new frame must
be computed every 33 ms for a frame rate of 30 frames per
second (fps).

Video decoding also requires a significant amount of on-
chip and off-chip memory bandwidth, for both motion com-
pensation (MC) and last-line accessing. Therefore, memory
system optimization can reduce total power in the decoder
system, which includes both the decoder application-specific
integrated circuit (ASIC) and the off-chip frame buffer mem-
ory. One effective way to reduce memory power is the use of
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on-chip caching. This technique trades off an increase in chip
area for a reduction in more power-hungry off-chip accesses.

A. Related Work

State-of-the-art H.264 ASIC video decoders have used mi-
croarchitectural techniques such as pipelining and parallelism
to increase throughput and thus reduce power consumption of
digital logic [2]–[6]. In this paper, parallelism is applied at the
system level by replicating the entire decoder pipeline.

In [2], the performance bottleneck was identified to be the
entropy decoding (ED) unit. This is because context-adaptive
variable-length coding (CAVLC) processes an inherently serial
bitstream and cannot be easily parallelized. This is also seen
in [7], where everything but the ED unit was replicated by
a factor of 8. One way to overcome the ED performance
bottleneck is to run it at a faster frequency, as suggested in [8]
and [9]. However, the ED unit must be run at a higher voltage
than the rest of the system, so it will lower the overall energy
efficiency. Also, even at the maximum frequency allowed by
the underlying transistor technology, the ED unit might not
be able to run fast enough to meet the highest performance
demands.

A system-level approach to increasing decoder throughput
is to break the input stream into slices that can be processed
in parallel by multiple cores, which has been proposed by
[10] and [11]. [10] proposes breaking up each frame into
completely independent slices; this method was described
for MPEG-2 but is also applicable within the H.264 standard
at the cost of lower coding efficiency, as will be shown in
Section II-A. [11] proposes breaking up each frame into
“entropy” slices where only the ED portion is independent;
this method is not H.264 compliant.

State-of-the-art H.264 decoders have also used last-line and
MC caching to reduce power consumption of the memory
subsystem [2]–[6]. Another technique to reduce off-chip frame
buffer (OCFB) bandwidth (BW) is to compress the reference
frames [12]. The idea of [12] is not H.264 compliant and must
be performed in the same way at the encoder and decoder.

B. Main Contributions of This Paper

The main contributions of this paper fall in two categories:
1) multicore parallelism (Sections II and III) and 2) on-chip
memory caching (Section IV).

Multicore parallelism consists of replicating an existing
video decoder (DEC) architecture, as shown in Fig. 1. Each
of the parallel DEC processes different parts of the bitstream,
and together they produce an output video.

First, we describe a way of decoding multiple H.264 frames
simultaneously, while achieving a linear improvement in per-
formance with no loss in coding efficiency. Second, through
coexploration of algorithm and architecture, we develop in-
terleaved entropy slice (IES) processing; this method also
achieves a linear increase in throughput with negligible impact
on coding efficiency, and has lower input latency than the
multiple frame technique.

Third, we show how using either a last-frame cache (LFC)
or data-forwarding cache (DFC) can drastically reduce OCFB

Fig. 1. Parallel video decoder architecture.

read BW. Fourth, we show how IES processing increases data
locality and reduces the BW of a full-last-line cache (FLLC).

Finally, the different techniques are evaluated for speed,
area, power, latency, and coding loss, and the results are
summarized in Section V. The proposed architectures were
implemented using Verilog and the coding loss was simulated
using the H.264 reference software [13]. The underlying DEC
architecture used for all the analysis is based on [2] and [8].

II. Video Decoder Replication for H.264

Previously published H.264 DEC have used parallelism
within the DEC units [for example, deblocking filter (DB)
or MC] to increase system performance. In this section, we
will describe different ways in which two or more DEC
can process a H.264 video in parallel and therefore increase
system performance. The goal of these techniques is to en-
able N DEC to execute concurrently, in order to achieve a
performance improvement of up to N. These techniques are
also cumulative, so they could be used together to expose
even more parallelism. While this section deals only with
H.264-compliant video processing, Section III will describe
other ways to expose the desired parallelism by slightly
modifying the H.264 algorithm. The metrics used to evaluate
the ideas are performance, power, area, memory efficiency,
coding efficiency, and input latency.

A. Slice Parallelism

A scheme that enables high-level DEC parallelism is the
division of a frame into two or more H.264 slices at the video
encoder (ENC). Each slice can then be processed by a separate
DEC core. Parallel slice processing relies on the ability of the
DEC’s ED to parse two or more slices simultaneously, and
also assumes that the ENC divides each frame into enough
slices to exploit parallelism at the DEC.

In the H.264 standard [14], each slice is preceded by a small
32-bit delimiter code, as shown in Fig. 2. If the DEC can
afford to buffer an entire encoded frame of the input stream
and quickly parse for the start code of all slices, then it can
simultaneously read all the slices from this input buffer. This
idea is similar to the parallel MPEG-2 decoder described in
[10].

This scheme trades off increased parallelism for a de-
crease in coding efficiency. We evaluated the impact of slice
parallelism by encoding 150 frames of four different video
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Fig. 2. Start of slices can be found by parsing for headers.

Fig. 3. CAVLC coding loss increases with number of H.264 slices in a 720 p
frame.

sequences and separating each frame into a fixed number of
slices, using the JM reference software [13] with QP = 27. The
result is shown in Fig. 3. Relative to having single-slice frames,
the coding efficiency decreases because the redundancy across
the slice borders is not exploited by the ENC. Furthermore, the
size of the slice header information is constant while the size of
the slice body decreases because it contains fewer macroblocks
(MBs), which are blocks of 16 × 16 pixels. For example, when
dividing a 720 p frame into three slices, the CAVLC coding
method suffers an average 0.41% coding loss, when measured
under common conditions [15].

Besides the loss in coding efficiency, another disadvantage
of the slice partitioning scheme is that the FLLCs need to
be replicated together with each DEC, since they operate on
completely different regions of the frame. This causes the area
overhead of parallelism to be nearly proportional to the degree
of parallelism, since the DEC pipeline is replicated, but not
the memory controller logic. In some DEC implementations
the on-chip cache dominates the active area in [2, 75%], so
replicating the FLLC incurs a large area cost.

The performance improvement of H.264 slice multicore
parallelism is shown in Fig. 16. Ideally, the performance
improvement of slice parallelism with N decoders is at most
N. However, there are two reasons why the performance
does not reach this peak. First, the workload is not evenly
distributed amongst the parallel slices, especially since they
operate on disjoint regions of the frame which could have
different coding characteristics. Second, the increase in total
bits per MB due to loss in coding efficiency (more nonzero co-
efficients, for example) leads to an increase in ED computation
cycles.

Fig. 4. Three parallel video decoders processing three consecutive frames
of the same video.

B. Frame Parallelism

In this section, we show how to process N consecutive
H.264 frames in parallel, without requiring the ENC to per-
form any special operations, such as splitting up frames into
N slices. The simultaneous parsing of several frames relies
on input buffering and searching for delimiters, similar to the
discussion of Section II-A. However, note that this technique
requires buffering N frames, so it will incur a higher input
latency than the buffering of N slices.

Several consecutive frames can be processed in parallel
by N different DEC, as shown in Fig. 4. The main cost of
multiframe processing is the area overhead of parallelism,
which is proportional to the degree of parallelism, just as
in Section II-A. If these frames are all I-frames (spatially
predicted), then they can be processed independently from
each other. However, when these frames are P-frames (tem-
porally predicted), DECi requires data from frame buffer
(FB) location FBi−1, which was produced by DECi−1. If
we synchronize all the parallel DEC, such that DECi lags
sufficiently behind DECi−1, then the data from FBi−1 is
usually valid.

If the motion vector (MV) in DECi requires pixels not yet
decoded by DECi−1, then concurrency suffers and we must
stall DECi. This could happen if the y-component of the MV
is a large positive number. The performance decrease due to
these stalls was simulated to be less than 1% for N = 3,
across 100 frames of a 720 p “Mobcal” video sequence. The
relatively small number of stalls for the simulated videos can
be understood by examining the statistics of their vertical
motion vectors. As shown in Fig. 5(b), the y-motion vectors
for various videos are typically small and have a very tight
spread, which minimizes stalling.

Frame multicore decoding can increase the DEC perfor-
mance by up to a factor of N. The parallel frame processing
architecture was implemented in Verilog using the core of [2]
for each of the DEC. The architecture was then verified for
different video sequences and varying degrees of parallelism.
Fig. 16 shows how the maximum clock period increases for
a given resolution as we process more frames in parallel. For
a given resolution, a larger clock period is made possible by
an increase in performance, since fewer cycles are needed to
decode a given workload. This increase is nearly linear, but is
limited by the workload imbalance across the various sets of
frames running on each of the parallel DEC.
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Fig. 5. Distribution of vertical motion vectors for several conformance
videos showing a tight spread.

III. Decoder Replication for Future Video

Standards

In this section, we propose some changes to the H.264
algorithm which allows two or more DEC to process a video
in parallel and therefore increase system performance. As
in Section II, the goal of these techniques is to enable N

DEC to execute concurrently, in order to achieve performance
improvement of up to N. The multicore ideas in this section
offer several advantages over the techniques in Section II, such
as better workload distribution among the parallel cores, lower
cache area requirements, smaller loss in coding efficiency, and
a much smaller input buffering latency.

A. Diagonal Macroblock Processing

The H.264 coding standard processes the MB of video
frames in raster-scan order. In order to exploit spatial re-
dundancy, each MB is coded differentially with respect to
its already decoded neighbors to the left, top-left, top, and
top-right. The redundancy between neighbors is present in
both pixel values and prediction information (motion vectors,
number of coded coefficients, etc.).

Fig. 6. Processing order is on a 2 to 1 diagonal.

We could instantiate multiple DEC to process the MB on
a 2:1 diagonal as shown in Fig. 6. This is similar to the
processing order described in [7]. The diagonal height D

could be set to anywhere from 1 to H (frame height). The
different diagonals are ordered from left to right. Setting D = 1
corresponds to the typical raster-scan processing order.

If diagonal processing is used, all the MB on a diagonal
can be decoded concurrently since there are no dependencies
between them. If all MB had similar processing workloads,
the scheme described in this section could speed up the DEC
by N (degree of DEC replication). In reality, the workload per
MB does vary, so the performance improvement is lower than
the increase in area. The diagonal height D of each region
of diagonals can be set to N, since no further parallel DEC
hardware is available. Note that the top line of MB in each
region of diagonals is still coded with respect to the MB in
the region of diagonals just above, in order to maintain good
coding efficiency.

A limitation to implementing this scheme is that the coded
MB in H.264 arrive in raster-scan order from the bitstream.
One solution would be to modify the algorithm and reorder
the MB in a 2:1 diagonal order at the ENC. For example, the
MB in each diagonal could be transmitted from top-right to
bottom-left in the bitstream. Another ordering could transmit
MB on even diagonals top-right to bottom-left and MB on odd
diagonals from bottom-left to top-right.

This reordering would require a change in the H.264 stan-
dard, so that both the ENC and DEC now process MB in a
diagonal order. The CAVLC entropy coding efficiency would
not suffer, since each MB can be coded in the same way as
for the raster-scan ordering of H.264. Therefore, the reordered
CAVLC bitstream would contain the same bits within the MB,
but the MB would just be rearranged in a different order.

However, even if diagonal reordering is used, we still cannot
scan ahead to the next MB since the current MB has variable
length and there are no MB delimiters. This critical challenge
is addressed in the next section.

B. Interleaved Entropy Slice (IES) Parallelism

In order to enable DEC parallelism when using the diagonal
scanning order of Section III-A, we propose the following
solution. The bitstream can be split into N different IES; for
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Fig. 7. Interleaved entropy slices (IESs) with diagonal dependencies.

example, when N = 2, IES A and B in Fig. 7. Therefore, each
of N parallel DEC would be assigned to an entire MB line,
and the IES would be interleaved amongst these lines. Just as
slices are separated for H.264, the bitstream could be split into
different IES.

There are several key differences between IES and the
entropy slices of [11]. First, IES allows for context selection
across slice boundaries, which improves coding efficiency
relative to [11]. Second, IES are interleaved to enable better
parallel processing and memory locality. Finally, IES allows
the full decoding path to be parallelized; the decoded syntax
elements can be fed directly to the rest of the decoder which
can begin processing immediately, avoiding the need for
intermediate buffering which is necessary for traditional slice
partitioning.

The processing of IES would be synchronized to ensure that
the 2:1 diagonal order is maintained. As a result, each DEC
must trail the DEC above. However, if one IES has a higher
instantaneous processing workload than the IES above it, the
DEC above can move forward and proceed further ahead, so
that stalling is minimized.

This approach is different than the one used in [7]. In that
paper, the ED processing was done in the usual raster-scan
order and all the syntax elements were buffered for one frame.
The diagonal processing could only start after the entire frame
was processed by ED. In the IES approach, which would
be enabled by a change in the H.264 algorithm, even the
ED processing is done in parallel, which speeds up the ED
operation and does not require buffering any syntax elements.

This technique is similar to the dual macroblock pipeline
of [9]. In that paper, the authors duplicate the MB processing
hardware at the encoder, whereas in this paper we replicate
the DEC at the decoder. Parallel processing at the decoder
is more challenging than at the encoder since the input is a
variable-length bitstream and the MB are transmitted in a fixed
raster-scan order. The encoder has the flexibility to process MB
in any order, whereas interleaved processing at the decoder
requires a change in the H.264 standard.

It is worth considering how the use of IES affects the
entropy coding efficiency. Once again, if the video uses
CAVLC, the bitstream size will only be slightly affected, since
the macroblocks are coded in the same way as the raster-
scan order of H.264. The only coding overhead is the 32 bits
used for the slice header and at most 7 extra bits for byte
alignment between slices. As we see in Fig. 8, this scheme
offers much better coding efficiency than using CAVLC with
H.264 slices, since there is no loss in coding efficiency at the
borders between IES.

Fig. 8. Average CAVLC coding efficiency of IES relative to parallel H.264
slice processing of Section II-A for 150 frames of four different videos:
“Bigships,” “Mobcal,” “Shields,” and “Parkrun.” The coding efficiency curve
for H.264 slices is the average of the curves shown in Fig. 3.

To evaluate the actual performance of a real system, we
implemented the IES parallelism scheme in Verilog and eval-
uated it for several videos and degrees of parallelism. The
performance of IES multicore decoding is shown in Fig. 9
for varying N. Ideally, the IES parallelism technique can
speed up the DEC performance by up to a factor of N. This
was also shown in [7], where an 8-core decoder achieved a
7.5× improvement in throughput. In reality, an exact linear
increase in performance cannot be achieved due to varying
slice workloads (as discussed in Section II-A) and stalls due to
synchronization between the DEC. The increased performance
of multicore IES can be mapped to a larger clock period for a
given workload. This allows lower voltage operation and the
corresponding power savings are shown in Fig. 9. The area
costs associated with multicore IES are also shown in Fig. 9.
Unlike the multicore ideas of Section II, only one last-line
cache is needed independent of the number of cores, as will
be shown in Section IV-D. As a result, the total area costs
of this scheme do not increase linearly with the degree of
parallelism.

Fig. 9 shows that the rate of power reduction decreases as
we add more and more DEC cores, eventually leveling off.
For example, we need 3 cores and 39% more area to save
60% of the power relative to a single-core DEC. However, a
25-core implementation only saves 38% of the power relative
to a 3-core DEC, but uses 4.1× the area. Fig. 16 shows that
IES perform better than regular H.264 slices, and there are
several reasons for that. First, the workload variation is not
as large between interleaved slices since they cover similar
regions of a frame; as N increases, however, the variation
in interleaved slice workloads also gets larger. Second, IES
parallelism does not suffer from a large coding penalty, so the
ED performance does not suffer as a result.

IV. Memory Optimization

The memory subsystem is critical to both the performance
and power of a DEC. A state-of-the-art OCFB dynamic
random access memory (DRAM) such as the one in [16]
can consume as much power as the DEC processing itself, as
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Fig. 9. Performance of IES multicore decoding. The power is normalized
relative to a single decoder running at the nominal supply voltage. The area
increase assumes caches make up 75% of the area of a single DEC and the
memory controller takes 23% of the logic [2].

estimated in [8]. Additionally, off-chip accesses require further
power to charge high-capacitance bondwires and PCB traces.
Therefore, reducing off-chip memory accesses is important for
minimizing system power.

The off-chip write BW of a DEC is bounded on the
low side by the number of pixels output by the decoding
process. However, the off-chip read BW of the MC block is
typically higher than the write BW due to the use of a six-tap
interpolating filter. The following sections propose different
ways to reduce the MC off-chip read BW with the help of
on-chip caches.

A. Existing Memory Optimization Techniques

The work in [8] discusses two main caching techniques for
reducing off-chip BW of a hardware DEC: FLLC and MC
caches.

The top-neighbor dependency requires each MB to refer to
the MB above in the last line. The use of a FLLC allows us
to fetch this data from on-chip SRAMs rather than getting the
previously processed data from a large off-chip memory. As a
result, the off-chip memory BW is reduced by 26%. For 720 p
resolutions, the area cost of this technique is 138 kbits of on-
chip SRAM [8], whereas for 1080 p the FLLC size increase
to 207 kbits.

To further reduce off-chip memory BW, the MC data read
from the previous frame can also be cached on-chip. In [2],
the MC block identifies the horizontal and vertical overlap of
interpolation area between two adjacent 4 × 4 blocks of pixels
with identical MV. This data is cached on-chip in flip-flops,
so as not to be read twice from the OCFB. This technique was
shown to reduce the total off-chip BW by 19%. If the more
general MC cache of [8] is used, a further 33% of OCFB read
BW can be saved with a moderately sized cache (512 Bytes).
A much larger MC cache (32 kBytes for 720 p resolutions)
is needed to increase the read BW savings from 33% to 56%
over the simple MC caching of [2]. The following sections

Fig. 10. Caching an entire frame on chip for MC.

present new caching ideas that can be used independently or
together with existing techniques.

B. Last-Frame Cache (LFC) for Motion Compensation

During MC, most of the pixels are read from the previous
frame, as opposed to being read from even earlier frames. If
we can store the last reference frame in an on-chip LFC, we
can avoid going off-chip for the majority of MC reads. This
caching architecture is described in Fig. 10(a), which shows
how reads from FB−1 are replaced with reads from the LFC.
This scheme requires a WB in order to not overwrite the data
at the current location in the LFC, which is needed for MC.
To understand the need for a WB, let us assume that there is
no WB and the MV for the current block at location (x, y)
is (−10, −10). In this case, the data from the last frame at
location (x−10, y−10) would no longer be found in the LFC,
since it would have already been overwritten by the block at
location (x − 10, y − 10) from the current frame.

One overhead of this LFC scheme is the significant addi-
tional area of the WB and the LFC. There is also a power
overhead, since each decoded pixel is now written to the LFC
(as well as to the OCFB), and written to and read from the
WB, all of this just to avoid reading it back from the OCFB.

For 720 p resolutions, the size of the LFC would be
1.4 MBytes, with an area of 2.7 mm2 if implemented with
high-density embedded DRAM (eDRAM) [16]. The size of the
WB depends on how many misses we are willing to tolerate
in the LFC. Fig. 11 shows how the hit rate of the LFC varies
with the size of the WB, as simulated in Verilog. If there is
no WB, the videos with more movement from left to right or
up to down will have more LFC misses. For example, for the
“Shields” video, the LFC hit rate with no WB is 65% because
the movement is from left to right. A small WB with the size of
1 MB can improve the hit rate up to about 93%. To eliminate
the remaining misses, the entire row of MB above must be
buffered by the WB, which explains the last jump up to 100%
when the WB size is 80 MB. A miss occurs in the LFC when
the block being fetched has a much smaller y-coordinate than
the current block being processed. In the case of this miss, the
MC data was already overwritten by a recently decoded block
which was evicted from the WB. If this happens, the data must
be fetched from FB−1. If the reference frame is not the last
frame, the LFC is also bypassed and the data is fetched from
the OCFB. The work in [17] shows that the previous frame is
chosen 80% of the time as the reference frame, as averaged
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Fig. 11. Hit rate of last-frame cache versus size of writeback cache for
different 720 p videos. For each video, the type of motion is described, in
order to help explain the differences in hit rates.

Fig. 12. Motion compensation (MC) DFC for N = 3.

over 10 different videos of common intermediate format (CIF)
resolution.

C. Motion Compensation Data-Forwarding Caches (DFCs)

If we allow N parallel DEC to operate concurrently on N

consecutive frames, as in Section II-B, we can forward MC
data between them using on-chip DFC, as shown in Fig. 12.
This will avoid most off-chip MC reads for all DEC but DEC0,
greatly reducing off-chip read BW (up to 67% for N = 3) and
power. The OCFB BW only depends on the video frame rate
and resolution, and is independent of the number of DEC used.

In general, DECi and DECi−1 need to be synchronized,
such that DECi lags sufficiently behind DECi−1, similar to
the discussion in Section II-B. Conversely, if DECi−1 gets too
far ahead of DECi, the temporal locality is lost, and the MC
data will be read from the OCFB instead of from DFCi−1,i.
In that case, we can stall DECi−1 in order to maximize the hit
rate of the DFC. These two constraints can be handled with
the help of low and high-watermarks.

In order to evaluate the performance impact and hit rate
of these DFC, we implemented the DFC in Verilog and
placed them between the DEC described in Section II-B.
The performance impact of stalling at these watermarks was
simulated for a “Mobcal” video sequence of 100 frames. The
overall loss in throughput for N = 3 was less than 8%.

The DFC need to store about 32–64 lines of pixels to
minimize the cache miss rate, so their on-chip area can be quite
large for high-resolution, highly parallel DEC. To understand

Fig. 13. Reduction in off-chip reads versus size of MC DFC for N = 3.

the trade-off between the size of the DFC and the hit rate, we
simulated the DFC system for 100 frames of the “Mobcal”
video. The result is shown in Fig. 13. As expected, a really
large cache will have near 100% hit rate, leading to 67%
reduction in off-chip MC reads for N = 3. The hit rate drops
off significantly for DFC sizes of less than 32 lines, since the
vertical MV can easily fall outside this range. For N = 3 and
720 p resolution, the total area of the two 64-line DFC is about
1 mm2, assuming high-density 65 nm SRAMs.

D. Last-Line Caching for Interleaved Entropy Slices (IESs)

In addition to enabling parallel processing, the IES of
Section III-B also allow for better memory efficiency than the
raster-scan processing in H.264. This section shows how the
IES processing order can reduce accesses to the large FLLC
discussed in Section IV-A. For example, when decoding Bi in
Fig. 14, the data from MB Ai−1, Ai−2, Ai−3 can be kept in a
much smaller cache since those MB were recently processed
by DECA and have high-temporal locality.

The caches that pass data vertically between decoders, such
as DECA to DECB in Fig. 14, are implemented as FIFOs. A
deeper FIFO could better handle workload variation between
the IES by allowing DECA to advance several MB ahead of
DECB and thus reduce stall cycles and increase throughput.
The caches that pass data horizontally within each decoder
only need to hold the information for 1 MB, and are unchanged
from the H.264 raster-scan implementation. However, when
we process Ai, the FLLC is still needed to hold the data that
is passed from DECC to DECA, since DECC writes this data
long before DECA can process it. The depth of the FLLC
FIFO should therefore be about as large as the frame width
in order to prevent deadlock. The caching of data for IES
processing is similar to the one used in the encoder of [9].

To evaluate the performance impact of sizing the FIFOs
of Fig. 14, we implemented the IES caches in Verilog and
placed them together with the system of Section III-B. When
simulating intra frames for N = 3, we found that a FIFO depth
of four 4 × 4 edges (one MB edge) only has a 3% performance
penalty, whereas a minimally sized FIFO can reduce system
performance by almost 25%. This trade-off is illustrated in
Fig. 15.

The FLLC FIFO is read by DEC0 and written to by
DECN−1, so if a single-ported memory is used, the accesses
will need to be shared. The total size of the IES inter-slice
FIFOs is independent of the degree of parallelism N, since
the FLLC is not replicated with each DEC. This implies that
the total area overhead of DEC parallelism with diagonal
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Fig. 14. Caches used for IES processing with three DEC.

Fig. 15. Impact of FIFO sizing on parallel IES performance.

processing is not a factor of N, as was the case for the
techniques in Section II. For the DEC of [2], the area of
the FLLC SRAMs was three times larger than the rest of the
DEC logic. As a result, for N = 3, the area increase due to
parallelism would be about 50% and not 200%. This analysis
only includes the DEC of Fig. 1, and does not include the area
of the frame buffer and bitstream memory controller.

If N is the number of parallel IES DEC, the number of
accesses to the large FLLC are reduced to 1/N of the original.
These accesses are replaced with accesses to much smaller
FIFOs that hold the information for about 1 MB. This uses less
energy than accessing a large memory that stores 80 MB for
720 p, or 120 MB for 1080 p. This reduction in FLLC accesses
allows the designer to even eliminate the area-hungry FLLC
and just use the large off-chip memory where the frame buffer
is stored.

It is interesting to note that diagonal processing enabled by
IES can reduce FLLC accesses even when only one DEC is
used (no DEC replication). This would require the single DEC
to alternate between different IES whenever one of the FIFOs
in Fig. 14 stalls.

The improved data locality of IES processing can also bene-
fit the MC cache described in Section IV-A, enabling a higher
hit rate. Specifically, IES enables vertically neighboring MB
to be processed simultaneously. The read areas of these MB
overlap which enables an improved hit rate and consequently
reduce OCFB BW. For example, the hit rate of a 2 kB MC
cache was simulated to be 5% larger than for an equally sized
MC cache of a DEC that uses regular raster-scan MB ordering.

Fig. 16. Three different multicore architectures show nearly linear perfor-
mance gains. The multicore performance of H.264 slices is slightly lower
because of the extra processing required by the CAVLC and also the unbal-
anced slice workload due to uneven image characteristics across the slices.

V. Results

The high-level parallelism in this paper was achieved by
replicating a full decoder of an arbitrary architecture. The dif-
ferent architectures we proposed were implemented, verified,
and benchmarked in Verilog. Fig. 16 shows that all multicore
architectures achieve a near-linear speedup and corresponding
clock frequency reduction for a given resolution. However,
as was shown in Fig. 9, extending the level of multicore
parallelism to much higher than 3 achieves relatively small
power savings at the cost of a much larger area. As a result,
we compare these different multicore architectures for N = 3,
as shown in Table I.

Their relative coding efficiency was quantified by running
several experiments using a modified version of the reference
H.264 software. The results are summarized and compared
in Table I. The table lists the performance achieved when the
decoder is replicated three times, relative to the performance
of a single decoder. A 3-core implementation was found in
Section III-B to be a good trade-off of power savings versus
area. As discussed previously, this performance can be traded-
off for a slower clock and lower voltage, and the equivalent
power savings are also shown in Table I. These dynamic
power savings assume the original single decoder runs at full
voltage and is voltage-scaled when parallelism is enabled.

In addition to video decoder parallelism, several on-chip
caching techniques were introduced that significantly reduce
the off-chip memory bandwidth requirements. The different
caching ideas were implemented, verified, and benchmarked in
Verilog. They are summarized and compared in Table II. The
first two techniques reduce off-chip frame buffer bandwidth
by using large on-chip caches. The third technique takes
advantage of IES processing to provide better data locality
and thus minimize accesses to the FLLC.
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TABLE I

Video Decoder Parallelism (N = 3, 720p) Comparison Done For

a Fixed Workload For Different Techniques Relative to a

Single-Core Decoder at Full Voltage

Parallelism H.264 H.264 Interleaved
Technique Slices Frames Entropy Slices
Paper
Section II-A II-B III-B
Degree of
Parallelism 3 3 3
Relative
Performance 2.51× 2.64× 2.91×
Equivalent Dynamic
Power Savings 58% 59% 60%
CAVLC
Coding Loss 0.41% 0% 0.05%
Relative
Last-Line Size 3.00× 3.00× 1.03×
Relative
Logic Area 2.54× 2.54× 2.54×
Input Buffering
Latency (ms) 22 66 22
H.264
Compliance Yes Yes No

TABLE II

Summary and Comparison of Different DEC Caching

Techniques. Results Shown For 720 p are Relative to a Decoder

With Only a FLLC

LFC with 48-line 1-MB FIFOs
Caching 32-line DFC for IES
Technique WB N=3 N=3
Paper
Section IV-B IV-C IV-D
Cache
Type eDRAM SRAM FIFO Flip-Flops
Cache
Size (kB) 963 123 0.43
Silicon
Area in 65nm (mm2) 2.7 1.0 0.029
OCFB MC
BW Reduction 80% 53% >0%*
FLLC BW
Reduction 0% 0% 67%
Memory Access
Power Savings 60% 44% 65%
H.264
Compliance Yes Yes No

*OCFB BW can be reduced further if IES processing is combined with a MC
cache.

The memory power savings listed in Table II are with
respect to the power of the accesses which the cache helps
to reduce. To calculate the exact energy savings based on
the different cache hit rates, we simulated and estimated the
energies for the different types of memories involved. The
normalized energy per bit for each of the types of memories
are as follows: 1) 1 for a FIFO flip-flop from the synthesis
library; 2) 19 for a large eDRAM [16]; 3) 51 for a large static
random access memory (SRAM) [2]; and 4) 672 for an off-
chip synchronous dynamic random access memory (SDRAM)
[18], and 10 pF/pin.

VI. Conclusion

In order to handle the high-computation load of mod-
ern high-definition hardware decoders, parallelism needs to
be exposed wherever possible. In this paper, we presented
several ways to enable high-level parallelism and provide a
clear performance-area trade-off. If performance, power, area,
memory efficiency, coding efficiency, and input latency are
key concerns for the video decoder designer, we recommend
choosing the proposed IES architecture. In all of these metrics,
IES processing provides comparable or better results relative
to the other techniques, though it requires a slight change in
the video standard. To optimize the memory system, a larger
cache (LFC) can reduce more off-chip bandwidth but requires
the most area; a good power–area compromise is provided by
the DFC of Section IV-C.
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