
LoopTree: Enabling Exploration of Fused-layer
Dataflow Accelerators

Michael Gilbert
MIT

Cambridge, US
gilbertm@mit.edu

Yannan Nellie Wu
MIT

Cambridge, US
nelliewu@mit.edu

Angshuman Parashar
NVIDIA

Westford, US
aparashar@nvidia.com

Vivienne Sze
MIT

Cambridge, US
sze@mit.edu

Joel S. Emer
MIT, NVIDIA

Cambridge, US
jsemer@mit.edu

Abstract—Many accelerators today process deep neural net-
works layer by layer. As a consequence of this processing style,
every intermediate feature map incurs expensive off-chip trans-
fers. Layer fusion eliminates off-chip transfers of intermediate
results, leading to better latency and energy efficiency.

Prior works have explored only subsets of the fused-layer
design space, looking only at a particular choice of tiling,
scheduling, and buffering strategy. Their architectural models are
also tailored for their proposed dataflow. The lack of a unified,
systematic representation of designs and a versatile evaluation
method has prevented thorough exploration of the design space.

To enable systematic exploration of this design space, we
present LoopTree, a framework for describing and evaluating any
design in our expanded fused-layer dataflow design space. With
a case study, we explore new designs to show that exploring our
larger design space uncovers more efficient designs, especially for
recent workloads with diverse layer types. Our design achieves
2.5× speedup and 2× lower energy compared to an optimized
layer-by-layer design. Compared to a state-of-the-art fused-layer
design, we match latency and energy while using 25% less on-
chip buffer space.

Index Terms—analytical modeling, layer fusion, accelerators

I. INTRODUCTION

Deep neural networks are composed of multiple layers.
Many accelerators process DNN workloads layer by layer [1]–
[4], where all operations for a layer are scheduled before the
operations for the next layer (see Fig. 1(a)). The intermediate
feature map, produced by the first layer and consumed by the
next, is often too large to fit on-chip, so it is streamed off-
chip during the processing of the first layer and back on-chip
during the processing of the next.

Layer fusion eliminates off-chip transfers of intermediate
results between the fused layers, saving energy and reducing
latency. To reduce on-chip buffer size, fused-layer dataflows
tile the intermediate data and interleave the scheduling [5]–
[7] of producer and consumer operations (compare Fig.1(a),
(b), and (c)). To exploit reuse, a dataflow buffers values on-
chip. We call the choice of data to buffer and how long to
keep them the buffering strategy. One key aspect of fused-
layer dataflows is the choice to drop a computed activation (a
value in the feature map) from the buffer, saving buffer space,
and recompute when needed [7] (compare Fig.1(c) and (d)).
The tiling, scheduling, and buffering strategy of a particular
design create a fused-layer dataflow.

Fig. 1: Layer-by-layer dataflow (a) and fused-layer dataflows
(b), (c), (d) with various tiling, scheduling, and buffering
strategies. Orange, red, green: first, second, third layers. Dark
to light shades: buffered, recomputed, newly computed.

The fused-layer dataflow design space is rich but has eluded
thorough exploration because of the lack of a systematic
representation of designs and a versatile method to evaluate
designs. Prior works have explored only subsets of the fused-
layer dataflow design space, constraining their tiling, schedul-
ing, and buffering strategy to their proposed dataflow [5]–[9].
Similarly, their models can only evaluate a design following
their dataflow.

To enable systematic exploration of this design space, we
present LoopTree, a framework for systematically describing
and evaluating latency, energy consumption, buffer capacity,
and bandwidth usage of any design in this expanded design
space. The expanded design space contains designs with lower
latency and energy consumption. The extra degrees of freedom



especially benefit modern workloads with diverse layer types.
In a case study, we explore new regions of this design space
to find better designs for the MobileNet bottleneck block [10]
which has pointwise and depthwise convolution layers. Our
design achieves 2.5× speedup and 2× lower energy compared
to an optimized layer-by-layer design. Comparing to a state-of-
the-art fused-layer design, we match latency and energy while
using 25% less on-chip buffer space.

II. CHALLENGES IN FUSED-LAYER DATAFLOW DESIGN

We discuss the fused-layer dataflow design space, the trade-
offs involved, challenges in expanding the design space, and
the insights that lead to LoopTree’s solution to the challenges.

The first two axes in the design space is tiling and schedul-
ing of operations. The choice of tiling and scheduling affects
the number of layers you can fuse. Tiling across the channel
dimension, you can only fuse two layers before having to
store an entire feature map on-chip (feature map 3 in Fig.
1(b)). Tiling across rows and columns (see Fig. 1(c)) allows
more layers to be fused. Tiling also constraints your intra-
layer dataflow. Tiling across channels limits parallelism across
channels. Lastly, tiling and scheduling may be applicable to
multiple kinds of layers. For example, channel-wise tiling
applies naturally to fully-connected layer, while tiling rows
and colums is specific to convolutional layers.

The buffering strategy of a dataflow refers to which parts
of the feature maps get buffered and for how long, which
determines the size of on-chip buffer. A tiling and scheduling
choice may lead to one obvious buffering strategy (Fig. 1(b)
buffers one channel at a time), or multiple choices in buffering
strategies which may or may not involve recomputation (Fig.
1(c) buffers rows and Fig. 1(d) buffers tiles with recomputa-
tion).

The choice of tiling, scheduling, and buffering strategies
interact with each other and with the intra-layer dataflow
choice. All these effects need to be considered when designing
a fused-layer dataflow. Prior works limit the complexity of
their modeling by choosing a particular combination of tiling,
scheduling, and buffering strategies. This allows them to create
a tailored architectural model for their proposed dataflow. To
explore the larger space, we create a more versatile framework
capable of capturing the interaction of these design choices for
any design in our expanded design space for any workload.
We create a specification language which makes it intuitive
for the user to specify a set of fused-layer design choices.
The framework will analyze the constraints on the intra-layer
dataflow imposed by the fused-layer design. Finally, given the
intra-layer dataflow, LoopTree can evaluate the latency, energy,
buffer capacity, and bandwidth usage of the system.

III. EXPERIMENTAL RESULTS

We implemented LoopTree and validated the accuracy of
the model. To show the benefit of expanding the design space,
we explore the design space to find better designs for the
MobileNetv2 [10] bottleneck block.

Fig. 2: Dependency pattern in a bottleneck block. The point-
wise layers do not have a sliding window effect.

Metric Layer-by-layer Fused-layer Norm.
Latency (kcycles) 263 115 0.4
DRAM accesses (MB) 2.1 0.6 0.3
DRAM bandw. req. (B/cycle) 8.4 5.5 0.6
Total buffer (KB) 29 11 0.4
Energy (uJ) 195 93 0.5

TABLE I: Fig. 1(e) compared to layer-by-layer design. Total
buffer includes intermediate value buffer for the fused-layer
design. The rightmost column shows normalized results.

A. Validation

We model a set of architectures to validate against published
results. We chose [7], [5], and [8] which represent designs
with various tiling, scheduling, and reuse/recompute choices.
For direct comparison against the published results, we used
AlexNet [11] and VGGNet [12] as workloads. LoopTree
achieves 99.4% average accuracy.

B. Case Study

The expanded design space benefits workloads with diverse
layer types. In this case study, we explore fused-layer designs
for the MobileNetv2 [10] bottleneck block.

The bottleneck block is composed of a pointwise layer,
a depthwise layer, and another pointwise layer (see Fig. 2).
We want to fuse the entire block, so we will not explore the
dataflow in Fig. 1(b). The fused-layer dataflow in Fig. 1(c)
(from [7]) is modified for the bottleneck block. The original
intra-layer dataflow would not work out of the box because
it was designed for vanilla convolutions (channel and window
size greater than 1). Using LoopTree, it is easy to transfer the
fused-layer design and modify the intra-layer dataflow to work
with the bottleneck block.

Because LoopTree allows using different buffering strate-
gies for each layer, we can optimize further by better matching
the different data dependency patterns in the layers. Because
the pointwise layer does not have a sliding window effect,
we can use tile buffering for the input to the last pointwise
layer and row buffering for the depthwise layer. Switching to
tile buffering saves 25% of on-chip intermediate feature map
buffer space. When compared to an optimized layer-by-layer
design, we achieve 2× lower latency, 3× lower energy, and
2× lower off-chip bandwidth (see Tab. I).

IV. CONCLUSION

Using a flexible and intuitive specification language along
with a sophisticated model, LoopTree allows the user to
express and evaluate energy, performance, buffer capacity, and
bandwidth usage of fused-layer dataflow accelerator designs.



REFERENCES

[1] Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne,
“Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Con-
volutional Neural Networks,” in IEEE International Solid-State Circuits
Conference, ISSCC 2016, Digest of Technical Papers, 2016, pp. 262–
263.

[2] H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling
flexible dataflow mapping over dnn accelerators via reconfigurable
interconnects,” SIGPLAN Not., vol. 53, no. 2, p. 461–475, mar 2018.
[Online]. Available: https://doi.org/10.1145/3296957.3173176

[3] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and
O. Temam, “Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” SIGARCH Comput. Archit. News,
vol. 42, no. 1, p. 269–284, feb 2014. [Online]. Available: https:
//doi.org/10.1145/2654822.2541967

[4] G. Zhou, J. Zhou, and H. Lin, “Research on nvidia deep learning
accelerator,” in 2018 12th IEEE International Conference on Anti-
counterfeiting, Security, and Identification (ASID), 2018, pp. 192–195.

[5] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
in 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), 2016, pp. 14–26.

[6] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis, “Tangram:
Optimized coarse-grained dataflow for scalable nn accelerators,”
in Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 807–820. [Online]. Available:
https://doi.org/10.1145/3297858.3304014

[7] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer cnn
accelerators,” in 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2016, pp. 1–12.

[8] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-
based accelerator for deep learning,” in 2017 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), 2017, pp.
541–552.

[9] L. Waeijen, S. Sioutas, M. Peemen, M. Lindwer, and H. Corporaal,
“Convfusion: A model for layer fusion in convolutional neural net-
works,” IEEE Access, vol. 9, pp. 168 245–168 267, 2021.

[10] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018, pp.
4510–4520.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, Eds., vol. 25. Curran Associates, Inc.,
2012. [Online]. Available: https://proceedings.neurips.cc/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[12] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations, 2015.

https://doi.org/10.1145/3296957.3173176
https://doi.org/10.1145/2654822.2541967
https://doi.org/10.1145/2654822.2541967
https://doi.org/10.1145/3297858.3304014
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

	Introduction
	Challenges in Fused-layer Dataflow Design
	Experimental Results
	Validation
	Case Study

	Conclusion
	References

