
RAELLA: Reforming the Arithmetic for Efficient, Low-Resolution,
and Low-Loss Analog PIM: No Retraining Required!
Tanner Andrulis

Massachusetts Institute of Technology
Cambridge, Massachusetts, USA

andrulis@mit.edu

Joel S. Emer
Massachusetts Institute of

Technology, Nvidia
Cambridge, Massachusetts, USA

jsemer@mit.edu

Vivienne Sze
Massachusetts Institute of Technology

Cambridge, Massachusetts, USA
sze@mit.edu

ABSTRACT
Processing-In-Memory (PIM) accelerators have the potential to ef-
ficiently run Deep Neural Network (DNN) inference by reducing
costly data movement and by using resistive RAM (ReRAM) for
efficient analog compute. Unfortunately, overall PIM accelerator ef-
ficiency is limited by energy-intensive analog-to-digital converters
(ADCs). Furthermore, existing accelerators that reduce ADC cost
do so by changing DNN weights or by using low-resolution ADCs
that reduce output fidelity. These strategies harm DNN accuracy
and/or require costly DNN retraining to compensate.

To address these issues, we propose the RAELLA architecture.
RAELLA adapts the architecture to each DNN; it lowers the resolu-
tion of computed analog values by encoding weights to produce
near-zero analog values, adaptively slicing weights for each DNN
layer, and dynamically slicing inputs through speculation and re-
covery. Low-resolution analog values allow RAELLA to both use
efficient low-resolution ADCs and maintain accuracy without re-
training, all while computing with fewer ADC converts.

Compared to other low-accuracy-loss PIM accelerators, RAELLA
increases energy efficiency by up to 4.9× and throughput by up to
3.3×. Compared to PIM accelerators that cause accuracy loss and
retrain DNNs to recover, RAELLA achieves similar efficiency and
throughput without expensive DNN retraining.

CCS CONCEPTS
• Computer systems organization→ Analog computers; Neu-
ral networks; • Hardware→ Emerging architectures.

KEYWORDS
processing in memory, compute in memory, analog, neural net-
works, accelerator, architecture, slicing, ADC, ReRAM

ACM Reference Format:
Tanner Andrulis, Joel S. Emer, and Vivienne Sze. 2023. RAELLA: Reforming
the Arithmetic for Efficient, Low-Resolution, and Low-Loss Analog PIM: No
Retraining Required!. In Proceedings of the 50th Annual International Sympo-
sium on Computer Architecture (ISCA ’23), June 17–21, 2023, Orlando, FL, USA.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3579371.3589062

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISCA ’23, June 17–21, 2023, Orlando, FL, USA.
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0095-8/23/06.
https://doi.org/10.1145/3579371.3589062

1 INTRODUCTION
Processing-In-Memory (PIM) is a promising solution to the high
compute and energy cost of Deep Neural Network (DNN) inference.
By computing in memory [34], PIM accelerators avoid expensive
off-chip movement of the DNN weights [59]. Furthermore, PIM ac-
celerators often utilize Resistive-RAM (ReRAM) devices and ReRAM
crossbars [5, 54, 56] for dense and efficient analog compute [34].

Unfortunately, while ReRAM crossbars can compute efficiently
and with high density, overall PIM accelerator energy is often dom-
inated by the analog-to-digital converters (ADCs) that read com-
puted analog values from crossbars. Due to ADC overhead, some
PIM accelerators [47, 54] do not significantly improve energy over
non-PIM accelerators [4] despite the opportunities in PIM.

Some prior works attempt to reduce this ADC overhead by re-
ducing the resolution of the ADC, which exponentially decreases
ADC energy [65]. Architectures often partition, or slice, the bits in
DNN inputs and weights into multiple lower-resolution slices and
compute with different slices in multiple steps [54]. Although sliced
arithmetic can use lower-resolution ADCs, ADCs must process the
results of each slice, so these strategies replace each high-resolution
ADC convert with multiple low-resolution ADC converts, and there-
fore ADCs still dominate overall energy.

Other PIM accelerators reduce ADC energy, but do so at the ex-
pense of DNN accuracy. Some designs prune DNNs [8, 26, 48, 75, 80]
to reduce DNNweight count, so we call these designsWeight-Count-
Limited. They reduce the computation count and ADC converts
required, but also introduce accuracy loss. Alternatively, other de-
signs use efficient lower-resolutionADCs to process high-resolution
analog values from crossbars [5, 7, 24]. We call these designs Sum-
Fidelity-Limited as the resolution difference reduces output fidelity
and introduces error. These architectures requantize DNNs to toler-
ate ADC resolution limitations, which again causes accuracy loss.

To reduce this accuracy loss, both Weight-Count-Limited and
Sum-Fidelity-Limited architectures retrain DNNs. This is a problem;
DNN training has a very high computational cost [43], can require
cumbersome hyperparameter tuning to achieve high accuracy [19],
and may be impossible if the training data is private [50, 62]. Fur-
thermore, cutting-edge DNNs often require particular training
schemes [6], which may not be compatible with the retraining
scheme required by an architecture.

To avoid accuracy loss without imposing retraining, we look
at fidelity limitations. We define fidelity as the ability of the ADC
to represent the full resolution of computed analog values. Ar-
chitectures lose fidelity and generate errors when the computed
analog value resolution is higher than the ADC resolution. Each

Models of RAELLA are available at https://github.com/mit-emze/raella

https://doi.org/10.1145/3579371.3589062
https://doi.org/10.1145/3579371.3589062

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Tanner Andrulis, Joel S. Emer, and Vivienne Sze

DNN produces many distributions of analog values, and prior Sum-
Fidelity-Limited approaches modify DNNs to reshape these analog
value distributions to fit a resolution-limited ADC range. In con-
trast, we observe that we can reshape analog value distributions
with an adaptable architecture, rather than changing the DNN.

Using this key insight, we propose the RAELLA architecture to
enable efficient PIM inference without retraining. RAELLAmodifies
arithmetic and slicing, shaping computed value distributions to
produce low-resolution analog results. This allows RAELLA to use
efficient low-resolution ADCs while maintaining high fidelity and
low DNN accuracy loss. The main contributions of RAELLA are:

• Center+Offset encoding to accumulate more values in the
analog domain while keeping small, low-resolution sums.
Specifically, RAELLA shifts DNN weights to equalize the
average magnitude of the positive and negative weight slices
in each crossbar column. As analog-domain calculations are
accumulated, positive and negative results negate to produce
near-zero sums that can be converted with high fidelity.

• Adaptive Slicing of DNN weights at compilation time to
balance density, efficiency, and fidelity. Storing more bits
in each ReRAM device is denser and more efficient but cre-
ates higher-resolution analog values. For each DNN layer,
RAELLA adapts the number of ReRAM devices per weight
and the number of bits in each ReRAM device. This enables
RAELLA to use the densest and most efficient strategies pos-
sible while keeping computed analog values low-resolution.

• Dynamic Slicing of DNN input activations at runtime for
both efficient and high-fidelity computation. RAELLA spec-
ulates with an efficient strategy that processes with more
bits in each input slice. RAELLA detects and recovers from
incorrect results using a less efficient, higher-fidelity strat-
egy that processes inputs with more slices using fewer bits
each. This allows RAELLA to further reduce the number of
ADC conversions without reducing fidelity.

Compared to other low-accuracy-loss PIM accelerators [54],
RAELLA can both lower ADC resolution and run DNNs with up to
14× fewer ADC conversions without sacrificing fidelity.

We evaluate RAELLA on seven representative DNNs against
three state-of-the-art PIM accelerators. Compared to other low-
accuracy-loss PIM accelerators, RAELLA improves energy effi-
ciency by up to 4.9× (geomean 3.9×) and throughput by up to
3.3× (geomean 2.0×). Compared toWeight-Count-Limited and Sum-
Fidelity-Limited accelerators that require DNN retraining to recover
accuracy, RAELLA provides similar efficiency and throughput while
avoiding expensive DNN retraining.

2 BACKGROUND AND MOTIVATION
We first give a brief overview of DNN inference, Processing-In-
Memory (PIM), and slicing to lower the resolution of analog
operands. We then explore how ADCs limit PIM, how to reduce
ADC energy, and the limitations of prior approaches.

2.1 Deep Neural Network (DNN) Inference
Modern DNNs are dominated by matrix-vector operations in con-
volutional and fully connected layers [59]. For inference, 8-bit (8b)

Figure 1: Basic PIM crossbar. 1 2 × 2MVM. Each operand is a
single slice. 2 Energy breakdown of an ISAAC-based design.

per-channel quantized DNNs with 8b inputs/weights and 16b par-
tial sums (psums) are widely available and can achieve high accu-
racy [22, 25, 37, 51, 82]. RAELLA supports this type of quantization.

DNNs may have billions of multiply-accumulate operations
(MACs) over millions of weights [16]. This makes PIM an attractive
choice for DNN inference acceleration. PIM can operate directly
in weight memory to reduce data movement [5] and use Resistive-
RAM (ReRAM) for dense and efficient analog compute.

2.2 ReRAM Properties
The functional unit of PIM systems is the ReRAM crossbar. ReRAM
crossbars accelerate DNN layers by computing dense in-memory
matrix-vector multiplications. Furthermore, ReRAMs are small and
offer high storage density [45]. This density allows ReRAM-based
systems to store and run on-chip pipelines that compute DNN lay-
ers sequentially [54, 56] without costly accesses to off-chip mem-
ory [59]. A disadvantage of ReRAM is high write energy [34]. Write
cost is amortized in inference as ReRAM is nonvolatile, so written
weights can be reused for many inferences [54].

Fig. 1 shows a basic 2 × 2 matrix-vector multiplication executed
on a 2 × 2 ReRAM crossbar. A matrix of weights𝑊 is programmed
in the ReRAMs. Elements of the input vector 𝐼 are fed to digital-
to-analog converters (DACs), which convert the inputs to analog
values. Each ReRAM device multiplies the input on the row with
its programmed weight. Products are accumulated in each column
to produce analog column sums, which are converted by an analog-
to-digital converter (ADC) to produce the digital result 𝑆 .

ReRAMs have been shown to be programmable with up to 5b [1]
and 512×512 crossbars have been shown to compute up to 8b col-
umn sums [17] under analog noise limitations. These resolution
limits necessitate slicing to compute higher-resolution DNN layers.

2.3 Arithmetic with Slices
To run 8b DNN inference using lower-resolution devices, PIM ar-
chitectures partition, or slice, input and weight bits into input slices
and weight slices. A slice is a subset of bits from an operand, and
multiplying two slices yields a sliced product.

There are two types of slicing. Temporal slicing processes slices
in separate cycles (e.g., bit-serial being the extreme with one bit
per slice) and spatial slicing processes slices in separate ReRAMs
across parallel crossbar columns. In most PIM accelerators that
slice, temporal slicing is used for inputs and spatial slicing is used
for weights. We refer to a vector of weights and their slices as a

RAELLA: Reforming the Arithmetic for Efficient, Low-Resolution, and Low-Loss Analog PIM: No Retraining Required! ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

Dot Product: 2b input 𝑖ℎ𝑖𝑙 · 2b weight𝑤ℎ𝑤𝑙

Sliced Input ✓ ✓
Sliced Weight ✓ ✓

Cycle Column
1 1 𝑖ℎ𝑖𝑙 ·𝑤ℎ𝑤𝑙 𝑖ℎ ·𝑤ℎ𝑤𝑙 𝑖ℎ𝑖𝑙 ·𝑤ℎ 𝑖ℎ ·𝑤ℎ1 2 - - 𝑖ℎ𝑖𝑙 ·𝑤𝑙 𝑖ℎ ·𝑤𝑙2 1 - 𝑖𝑙 ·𝑤ℎ𝑤𝑙 - 𝑖𝑙 ·𝑤ℎ2 2 - - - 𝑖𝑙 ·𝑤𝑙

Bits/MAC 4 2 2 1
Converts/MAC 1 2 2 4
Table 1: How Slicing Works & Tradeoffs. A 2b input/weight
aremultiplied and eachmay be sliced into two 1b slices. High
and low order bits are 𝑖ℎ,𝑤ℎ and 𝑖𝑙 ,𝑤𝑙 . Each column/cycle com-
putes the sliced product shown. More slices reduce bits/slice
and bits/MAC, permitting a cheaper, lower-resolution ADC.
However, cycles, columns, and ADC converts are needed to
process each slice. More slices increase ADC Converts/MAC.

weight filter if they are mapped to the same set of columns in one
crossbar and they contribute to one dot product for a DNN layer.

Table 1 shows an example of sliced arithmetic. Each weight slice
is mapped spatially to one crossbar column, while each input slice
is processed temporally in one cycle. For each column and cycle,
an ADC converts the column sum. The result is shifted and added
digitally, allowing PIM architectures to calculate full 16b psums
despite low-resolution analog limitations [14, 54].

Table 1 shows tradeoffs relating to slicing. Many costs in-
crease with more slices: each additional input slice increments
𝐶𝑦𝑐𝑙𝑒𝑠/𝐼𝑛𝑝𝑢𝑡 while each additional weight slice increments
𝐶𝑜𝑙𝑢𝑚𝑛𝑠/𝑊𝑒𝑖𝑔ℎ𝑡 . 𝐴𝐷𝐶 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑠 scales with the product of in-
put and weight slice counts. The benefit of more slices is that we
can use fewer bits per slice, thus reducing MAC resolution and
required ADC resolution. We can also decrease 𝐴𝐷𝐶 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑠 by
using larger crossbars that accumulate more analog values across
more rows, but this also increases the required ADC resolution.

2.4 ADCs Limit PIM Accelerators
Fig. 1 shows the power breakdown of an 8b PIM architecture based
on the foundational ISAAC [54]. PIM crossbars are dense and ef-
ficient, but are limited by ADC costs. Crossbars can compute 8b
MACs with < 100fJ, but overall energy is dominated by ADCs.
Crossbars are dense, but architectures can spend 5 [24] to 50 [54]
times more area on ADC than crossbars. Crossbars can compute
with high parallelism, scaling to 1024 rows [32], but the area and
energy of ADCs scale exponentially with resolution [65]. Prior
work has been limited to as few as 16 activated rows [75] to reduce
column sums and ADC resolution requirements.

As ReRAM is dense and low power, RAELLA trades off more
ReRAM for lower-resolution ADCs. Furthermore, by reducing
resolution, we use more crossbar rows/columns with less ADC
area/energy scaling. This higher parallelism yields higher through-
put and efficiency for the full RAELLA accelerator.

2.5 Reducing ADC Cost
To run efficient PIM inference, we must reduce ADC area and
energy. To do so, we present the Titanium Law of ADC energy.12

1Inspired by the Iron Law [68] and titanium-based ReRAM devices [13].
2While ADC energy is the focus here, a similar analysis can be performed for area by
substituting Converts/MAC with #ADCs/Throughput.

Table 2 shows the Titanium Law equation for ADC energy and
breaks down its factors. ADC energy is the product of four terms:

• Energy/Convert is determined by ADC efficiency and scales
exponentially with ADC resolution [65].3

• Converts/MAC is determined by the number of crossbar rows,
input slices, and weight slices.

• MACs/DNN is determined by the DNN workload.
• 1/Utilization corresponds to how many crossbar rows are
used by the DNN. A utilization of one means all rows used.

Given these factors, Table 2 shows how to reduce ADC energy
by changing hardware attributes. First, notice the tradeoff gener-
ated by Energy/Convert and Converts/MAC in the first/second rows
of the table. Although it may seem that slicing and resizing the
crossbar can directly reduce ADC energy, this approach has lim-
ited benefits. This is because, to reduce Converts/MAC, we must
either (1) increase the crossbar rows and compute more sliced prod-
ucts per ADC convert, (2) increase bits per weight slice, which
reduces the number of columns needed to store each weight and
reduces the number of ADC converts needed to process each col-
umn, or (3) increase bits per input slice, which reduces the number
of cycles required and ADC converts to process column sums over
all cycles. The limitation, however, is that in all cases we will ac-
cumulate larger and higher-resolution column sums. To preserve
fidelity, a higher-resolution ADC is needed, which increases En-
ergy/Convert and negates our benefits. The converse is true for
reducing Energy/Convert; preserving high fidelity requires increas-
ing Converts/MAC.

The final column of Table 2 shows the consequences of reducing
each of the Titanium Law terms. Of the six consequences, three
are ineffective for reducing ADC energy. Converts/MAC and En-
ergy/Convert trade off with each other. 1/Utilization cannot be re-
duced below one.

Architectures that reduce the ADC energy choose options that
end in the consequence Accuracy Loss or Retraining. Fig. 2
shows how these architectures change DNN operands and lose
accuracy. Weight-Count-Limited architectures, in the W○-marked
cells of Table 2, prune/reshape DNN weights to lower MACs/DNN.
Unfortunately, changing weights causes DNN accuracy loss unless
the DNN is retrained. On the other hand, Sum-Fidelity-Limited
architectures, in the S○-marked cells, use more rows, more bits
per input/weight slice, and low-resolution ADCs to reduce both
Converts/MAC and MACs/DNN. But because they generate large,
high-resolution column sums and use low-resolution ADCs, they
lose column sum fidelity. This creates errors in outputs and causes
accuracy loss unless the DNN is requantized and retrained.

Counterintuitively, 8b ADCs are not always sufficient for 8b-
quantized DNNs in Sum-Fidelity-Limited architectures. Psums are
16b after MACs of 8b inputs and weights, and high-accuracy linear
quantization strategies need the full 16b psum range [51, 69, 82],
so we would like all 16b to have high fidelity. Sum-Fidelity-Limited
architectures may generate > 8𝑏 column sums and capture them
with an 8b ADC. When the ADCs of these architectures lose bits
from column sums, they lose bits from the overall psum. This limits

3Energy/Convert can also be reduced with clever new ADC designs, but there is an
efficiency limit [35] due to analog noise. This requires innovations on both the ADC
and architecture sides.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Tanner Andrulis, Joel S. Emer, and Vivienne Sze

The Titanium Law: 𝐴𝐷𝐶𝐸𝑛𝑒𝑟𝑔𝑦
𝐷𝑁𝑁

=
𝐸𝑛𝑒𝑟𝑔𝑦

𝐶𝑜𝑛𝑣𝑒𝑟𝑡
× 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑠

𝑀𝐴𝐶
× 𝑀𝐴𝐶𝑠

𝐷𝑁𝑁
× 1

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Term
Hardware
Attribute How to Reduce Tradeoff Consequence

Energy/Convert ADC
Resolution

Reduce ADC
Resolution

Fewer Crossbar Rows or Bits/Slice High Converts/MAC
S○ Fidelity Loss, Psum Errors S○Accuracy Loss or Retraining

Converts/MAC Crossbar
Rows

Increase Crossbar
Rows or Bits/Slice

High-Resolution ADC High Energy/Convert
S○ Fidelity Loss, Psum Errors S○Accuracy Loss or Retraining

MACs/DNN # Weights Prune/Reshape Weights W○ Eliminated/Changed Weights W○Accuracy Loss or Retraining
1/Utilization Mapping Improve Mapping Flexibility Cost, Utilization ≤ 1 Limited Benefits

Table 2: The Titanium Law of ADC energy and how to reduce ADC energy components. Of the possible consequences, three
are ineffective, and three cause accuracy loss or require DNN retraining. Sum-Fidelity-Limited architectures choose S○ marked
cells and Weight-Count-Limited architectures choose W○ marked cells.

Architecture High-Cost
ADC

Limits
Weight
Count

Fidelity
Loss

Needs DNN
Retraining

ISAAC [54] Yes - - No
AtomLayer [47] Yes - - No
FORMS [80] No Yes - Yes
SRE [75] No Yes - Yes
ASBP [48] No Yes - Yes
TIMELY [24] No - High Yes
PRIME [5] No - High Yes
RAELLA No - Low No

Table 3: Comparison to prior works. Previous approaches pay
high ADC costs or use strategies that cause DNN accuracy
loss, requiring retraining to recover.

Figure 2: Loss-causing architectures alongside RAELLA. Al-
though they decrease Converts/MAC, Sum-Fidelity-Limited
architectures lose fidelity at the ADCs and force hardware-
restricted quantization. Weight-Count-Limited architectures
limit DNN weights. RAELLA’s arithmetic and slicing strate-
gies maintain high fidelity with low Converts/MAC.

high-accuracy quantization strategies to using only the subset of
bits that the hardware calculated, rather than the full 16b. This
hardware-enforced limitation can cause accuracy loss.

2.6 Motivation
Prior works combat accuracy loss by retraining DNNs. FORMS [80],
a Weight-Count-Limited architecture, achieves a 2.0× MACs/DNN
reduction on ResNet18 by pruning and retraining. TIMELY [24],
a Sum-Fidelity-Limited architecture, achieves up to a 512× Con-
verts/MAC reduction over [54] by using large crossbars and many
bits per input/weight slice. However, TIMELY also loses 16b of fi-
delity from each column sum and recovers accuracy with DNN

requantization and retraining. Table 3 shows a gap in recent PIM
works: some PIM architectures are inefficient and do not reduce
high ADC costs, while others that reduce ADC costs cause DNN
accuracy loss and retrain to compensate.

Retraining DNNs can be a challenge due to high computational
cost [43], cumbersome hyperparameter tuning [19], and the poten-
tial lack of access to training datasets [50, 62]. Additionally, highly
efficient DNNs such as highly-reduced-precision models [6, 9, 12]
often depend on their own training/quantization procedures. If an
architecture requires different training/quantization procedures,
it may be difficult or impossible to run these cutting-edge DNNs.
The motivation behind RAELLA is to deliver efficient inference and
avoid accuracy loss without retraining or modifying DNNs.

3 RAELLA: LOW RESOLUTION, HIGH
FIDELITY

To be efficient, we would like to reduce ADC resolution. But if
column sum resolution is greater than ADC resolution, we lose
fidelity and DNN accuracy. We identify three architectural tradeoffs
that create high-resolution column sums:

• More sliced products per ADC convert −→ fewer ADC con-
verts, higher-resolution column sums.

• More bits per weight slice −→ fewer weight columns, fewer
ADC converts, higher-resolution column sums.

• More bits per input slice −→ fewer input cycles, fewer ADC
converts, higher-resolution column sums.

Here, we give an overview of RAELLA’s strategies targeting
these three tradeoffs. We start with a baseline that uses a 512 × 512
crossbar and 4b input/weight slices. Shown in Fig. 3, this setup will
produce a very wide distribution of column sums that range from
zero to tens of thousands. It requires 17b to represent these column
sums. RAELLA’s strategies tighten the column sum distribution
until it can be represented with a signed 7b range of [−64, 64).

To capture this 7b range without losing fidelity, we set RAELLA’s
ADC to always capture the seven least-significant bits (LSBs) of
column sums. That is, if a single crossbar row is on and produces a
sliced product of one, the ADCwill read the column sum and output
the value one. This small step size preserves full fidelity for in-
range column sums.4 The drawback is that a small step size means
4This strategy contrasts with the approach of many Sum-Fidelity-Limited architectures,
which drop LSBs from computations [5, 7, 24] While dropping LSBs permits a lower
saturation chance, it also necessarily loses fidelity in every psum.

RAELLA: Reforming the Arithmetic for Efficient, Low-Resolution, and Low-Loss Analog PIM: No Retraining Required! ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

Figure 3: Column sum distribution with each of RAELLA’s
strategies while running ResNet18 on ImageNet. RAELLA
reduces column sum resolution from 17b to 7b and reduces
ADC saturation rate from 98% to 0.1%.

a small range; the ADC saturates and loses fidelity if the column
sum is outside [−64, 64). With 4b input/weight slices, even a single
crossbar row can produce sliced products up to (24 − 1)2 = 225,
which would be saturated at 63. RAELLA must avoid saturation
while summing 512 rows at once.

By reshaping the column sum distribution, RAELLA’s strate-
gies reduce the probability of saturation to near-zero. This is
how RAELLA achieves high fidelity with a low-resolution ADC:
RAELLA’s ADC only loses fidelity if column sums are large, and the
following strategies make column sums small. For each strategy,
we report the ADC saturation rate running ResNet18 on ImageNet.

3.1 Center+Offset Weights
3.1.1 Problem. Standard ReRAM crossbars compute unsigned
sliced products. If each sliced product is ≥ 0, then accumulating
many sliced products will generate large-valued, high-resolution
column sums.

3.1.2 Solution. We shift weights by a center value such that ap-
proximately half of the weights are above the center and half are
below. As a result, when we slice weights and compute with them
in a crossbar, approximately 50/50% of the sliced products come
from positive/negative weights. We then sum the signed sliced
products in-crossbar. Positive and negative sliced products negate,
yielding small-valued column sums even as many sliced products
are accumulated. To maximize the beneficial negation that occurs,
Center+Offset chooses centers that balance the magnitude of posi-
tive/negative slices in each crossbar column.

3.1.3 Tradeoff. RAELLA trades off higher crossbar area to imple-
ment signed arithmetic in-crossbar. Crossbars are dense, so the
area tradeoff is worthwhile to reduce ADC cost. RAELLA also uses
additional storage and low-cost digital circuitry to store and process
center values.

3.1.4 Result. With Center+Offset weights, the column sum dis-
tribution labeled 1○ in Fig. 3 is signed and centered around zero.
Column sum resolution is ≤ 7b 59.2% of the time.

3.2 Adaptive Weight Slicing
3.2.1 Problem. More bits per weight slice increase the values
stored in weight slices, raising column sum values and resolutions.

3.2.2 Solution. Shown in Fig. 7, RAELLA adaptively slices weights
at compilation time. We can reduce the average values stored in
weight slices and reduce column sum resolution by using fewer

bits in each weight slice. However, additional weight slices increase
the storage footprint and number of ADC converts by increasing
the number of columns, so we would like to minimize the number
of slices used. During compilation, we measure errors caused by
fidelity loss. We choose the number of bits in each weight slice to
control errors and minimize the number of slices used. RAELLA
can use a different number of bits for each slice, but all weights in
a layer use the same slicing.
3.2.3 Tradeoff. RAELLA trades off storage density, ADC converts,
and compilation-time preprocessing. ReRAMs and ADC converts
needed increase with number of weight slices. RAELLA uses a
simple preprocessing strategy and reuses DNN weights for many
inferences to minimize preprocessing costs.
3.2.4 Result. With Adaptive Weight Slicing, the column sums la-
beled 2○ in Fig. 3 are more tightly distributed. Column sum resolu-
tion is ≤ 7b 82.1% of the time.

3.3 Dynamic Input Slicing
3.3.1 Problem. More bits per input slice increase the values of
input slices, raising column sum values and resolutions.
3.3.2 Solution. Shown in Fig. 9, RAELLA dynamically slices the
inputs at runtime. RAELLA can use fewer bits per input slice to
reduce column sums. However, this requires more cycles and more
ADC converts. RAELLA uses a dynamic strategy by speculating
with an efficient approach of more bits per input slice. RAELLA
recovers from large-column-sum saturation errors by using fewer
bits per input slice. This approach achieves high efficiency from
speculation and high fidelity from recovery.
3.3.3 Tradeoff. RAELLA trades off throughput and crossbar
energy. While typically speculation is used to increase speed,
RAELLA’s speculation trades off speed to gain efficiency. Extra
cycles are needed to run both speculation and recovery. Addition-
ally, RAELLA’s crossbars consume energy for both speculation
and recovery. As crossbars are high-throughput and efficient, it is
worth the cost to reduce the ADC overhead.
3.3.4 Result. With Dynamic Input Slicing, speculation and recov-
ery column sum distributions labeled 3○ in Fig. 3 are further tight-
ened. In speculation and recovery cycles, column sum resolution is
≤ 7b 98.0% and 99.9% of the time, respectively.

3.4 Accepting Fidelity Loss
3.4.1 Problem. With all of RAELLA’s optimizations, the column
sum resolution can still be greater than ADC resolution. We use
a 7b ADC and produce >7b column sums 0.1% of the time. These
cause the ADC output to saturate at its min/max of -64/63 and
propagate incorrect values to the psum.
3.4.2 Solution. DNNs are inherently noise-tolerant [21, 46] so a
low error rate is acceptable. Table 4 shows that RAELLA’s fidelity
errors cause low loss for a variety of DNNs.

RAELLA uses a 512-row crossbar and a 7b ADC. Even with
minimal 1b input and 1b weight slices, column sum resolution may
be 9b, so it is impossible to guarantee perfect fidelity. With minimal
weight slice sizing, RAELLA reduces ADC-related fidelity errors
to a rate on the order of one error in ten million psums, or one
incorrect psum per ResNet50 [16] inference.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Tanner Andrulis, Joel S. Emer, and Vivienne Sze

Figure 4: Center+Offset weights. Standard dot products create
high-resolution values which are difficult to represent in ana-
log. Center+Offset digitally subtracts a center from weights,
computing with near-zero-average offsets in-crossbar.

4 IMPLEMENTING RAELLA’S STRATEGIES
4.1 Implementing Center+Offset Weights
Shown in Fig. 4, we represent DNN weights as a center value plus
or minus a small offset. We select centers to make positive and neg-
ative weight slices approximately the same magnitude for each col-
umn. RAELLA computes signed analog arithmetic, and sliced prod-
ucts from the magnitude-balanced positive/negative weight slices
negate to produce near-zero column sums. This allows RAELLA to
keep small column sums while accumulating sliced products from
many crossbar rows. Meanwhile, RAELLA efficiently processes
high-resolution centers in the digital domain.

We first discuss why Center+Offset is important for balancing
positive/negative weight slices, then show how RAELLA computes
arithmetic with Center+Offset encoding and describe how we cal-
culate optimal center values. Finally, we show the hardware for
computing dot products with Center+Offset encoded weights.

4.1.1 Why Balance Slices. While DNN weight distributions are
commonly cited as zero-mean [14, 73], a zero mean for all weight
values over a DNN does not necessarily mean any given weight
filter is zero-mean, nor that column sums are zero-mean. For that,
we need each individual crossbar column to have weight slices with
a zero mean. This is often not the case, as individual weight filters
and columns of slices randomly converge to different distributions.5

A growing body of works are exploring differential encoding,
which, like Center+Offset, computes signed analog arithmetic [3,
14, 28, 32, 67, 73, 81]. Differential encoding uses positive slices to
represent positive weights and negative slices to represent neg-
ative weights; it can benefit from Center+Offset to balance posi-
tive/negative weight slices and reduce column sum resolution.

Center+Offset can be especially beneficial for filters where
weight slice distributions have noticeable nonzero averages. This
can occur in filters where there is a greater number of negative
than positive weights, such as the filter shown in Fig. 5. Differ-
ential encodings represent these mostly-negative weights with
mostly-negative slices, yielding a negative average for the slices
in each column. After dot products with hundreds of slices, even
slight negative averages can accumulate to create large negative
column sums. This effect can significantly increase ADC saturation
and cause DNN accuracy loss, as shown in Table 4. By balancing
positive/negative slices, Center+Offset reduces per-column biases
and protects from accuracy loss.

5When we say “filter” we mean a set of weights from one dot product that fit in
one crossbar. An output channel of a DNN layer (or “filter” in the traditional sense)
may be partitioned over multiple crossbars if its weights do not fit in a crossbar.
The important aspect is that each crossbar column produces a unique column sum
distribution, regardless of the characteristics of the overall DNN. To account for this,
Center+Offset attempts to balance positive/negative weight slices in each column.

4.1.2 Center+Offset Arithmetic. Given a weight 𝑤 and center 𝜙 ,
we calculate positive offset𝑤+ =𝑚𝑎𝑥 (𝑤 − 𝜙, 0) and negative offset
𝑤− =𝑚𝑎𝑥 (𝜙 −𝑤, 0). For weights above the center, 𝑤+ is the dif-
ference between the weight and the center while𝑤− is zero. The
converse is true for weights below the center. Given weight filter𝑊
programmed as positive/negative offset vectors𝑊+,𝑊− , RAELLA
computes a dot product with input vector 𝐼 as:

𝑊 · 𝐼 =
(
𝜙

∑︁
𝐼

)
+ (𝑊+ −𝑊−)𝐼 (1)

RAELLA computes Eq. 1 at runtime, with 𝜙
∑
𝐼 computed digi-

tally and (𝑊+ −𝑊−)𝐼 in analog.
4.1.3 Calculating Optimal Centers. We calculate centers/offsets
with one-time preprocessing before programming RAELLA. We
calculate a center for each weight filter independently, as weight
distributions and optimal centers vary for different weight filters.

We define an optimization problem to solve for the center value
𝜙 . First, we define a slice 𝑆 as a sequence of inclusive bit indices
[ℎ . . . 𝑙] from the most to least significant index ℎ to 𝑙 (e.g., slice
[7 . . . 4] contains the four most significant bits). Then, we define
a slicing function 𝐷 (ℎ, 𝑙, 𝑥) that crops signed number 𝑥 to contain
the bits from indices ℎ to 𝑙 (shifted so bit 𝑙 is the least significant
position), preserving the sign. Given a weight filter𝑊 and slices
𝑆𝑖∈{1,2,...,𝑁 } = [ℎ𝑖 . . . 𝑙𝑖], we solve for the center 𝜙 of𝑊 as follows:

argmin
𝜙∈{1,2,...,255}

𝑁∑︁
𝑖=1

2𝑙𝑖
(∑︁
𝑤∈𝑊

𝐷 (ℎ𝑖 , 𝑙𝑖 ,𝑤 − 𝜙)
)4

, (2)

where 𝑁 is the total number of slices, and 𝑤 is a weight in𝑊 .
Eq. (2) balances positive/negative values in each column of weight
slices, assigning higher costs for columns with larger nonzero sums.
The inner sum (∑𝑤∈𝑊 𝐷 (ℎ𝑖 , 𝑙𝑖 ,𝑤 − 𝜙))4 calculates the cost for a
single column, equal to the sum of weight slices in the column
raised to the power of four. Four is chosen empirically; we find that
too low a power does not sufficiently penalize large sums, while
too high a power overvalues the largest-sum column and fails to
consider all columns. The outer sum

∑𝑁
𝑖=1 2

𝑙𝑖 (...) weights cost by
bit position (e.g., the most significant bit in an 8b number has a
magnitude of 27 and the cost of a 1b slice containing only this bit
would also be scaled by 27) and sums costs for all columns. Costs
are weighted by bit position as saturations in higher-order slices
have a greater impact on the psum.

We calculate centers for each weight filter (i.e., a single dot prod-
uct) in the crossbar independently. A coarser granularity, such as a
single center for a full crossbar (i.e., 100+ different filters), would not
be as effective, as different DNN filters can have different weight
distributions and require different centers.

RAELLA’s per-filter centers have the drawback that each center
balances multiple columns for one filter, and therefore may not
be optimal for any one column. Ideally, per-column centers would
be able to precisely zero the average weight slice value for each
column. However, this approach is limited by integer precision
centers. Consider the case where a column of slices has an average
value of 0.4. We could shift all weight slices in the column by −1,
but this would worsen the average by shifting it to −0.6. Instead, we
shift full-precision weight values before slicing, which can reshape
(rather than shift) the value distribution for each individual slice.

RAELLA: Reforming the Arithmetic for Efficient, Low-Resolution, and Low-Loss Analog PIM: No Retraining Required! ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

Figure 5: Differential vs. Center+Offset Encoding. Distributions for an InceptionV3 [61] filter with negative-average weight
slices is shown for illustrative purposes. 8b weights / inputs are sliced into four 2b / eight 1b slices. 1 Most of the weights in a
filter are negative. 2 Differential encoding represents negative weights with negative slices, yielding mostly-negative slices
for the filter. Center+Offset balances positive/negative slices. 3 Dot products with mostly-negative slices yield large negative
column sums that cause ADC saturation. Center+Offset reduces column sums. 4 Each DNN filter needs a different center.

Figure 6: 2T2R devices compute signed arithmetic in-crossbar.
Red shows the magnitude and direction of the current flow.
Grayed-out devices are off (set to the high-resistance state).

This distribution reshaping can make smaller adjustments to the
average weight slice value in each column.
4.1.4 Center+Offset In Hardware. Computing psums with Eq. (1)
requires two terms. The first term, the input sum 𝜙

∑
𝐼 , is calcu-

lated digitally. Crossbar columns share input vectors, so the sum
calculation is amortized across columns.

The second term is the vector-vector multiplication with offsets.
(𝑊+ −𝑊−)𝐼 is calculated in analog by the crossbar. RAELLA uses
2T2R devices, shown in Fig. 6, to realize analog subtraction in-
crossbar.6 2T2R, with two ReRAMs (2R) per weight accessed via
two access transistors (2T), have been explored as a method to
represent signed weights [3, 27, 28, 67, 74]. One ReRAM device
is connected to a positive source and the other a negative source,
letting 2T2Rs add to or subtract from column sums. For each weight,
we program positive/negative offsets𝑤+/𝑤− into the two ReRAMs.
As one offset is zero for any given weight, one ReRAM device is
used in each pair. Added ReRAMs and access transistors increase
RAELLA’s crossbar size, but crossbars are small, and the increase
in system area is only ∼ 10%.

4.2 Implementing Adaptive Weight Slicing
Adaptive Weight Slicing minimizes the weight slices used for each
DNN layer. It uses as many bits as possible in each slice without ex-
cess fidelity loss. Fig. 7 shows various slicings available to RAELLA.
More bits per slice means fewer slices per weight, denser storage,
and fewer ADC converts, but more bits also increase the values
stored in each weight slice and raise the chance of high-resolution
column sums. RAELLA can use a different number of bits for each
slice, but all weights in a layer use the same slicing.

The bit density, or probability that a given bit is 1, affects the
values in weight slices. Fig. 8 shows per-bit densities for DNN inputs
and weights in a typical DNN layer. Input values generally follow

6Analog subtraction can also be done with circuits [20] 1T2R [81], and SRAMs [40, 78].

Figure 7: (Top) Weight Slice Crossbar Footprints. (Bottom)
DNN Per-Layer Weight Slicings. Increasing slice count low-
ers column sums and saturation chance, but increases Con-
verts/MAC. Most layers use three slices per weight.

Figure 8: (Left) DNN input/weight value distributionswithout
slicing and (Right) per-bit densities. The second-to-last layer
of ResNet50 is shown, representing a typical DNN layer. Bell-
curve-distributed weights can be split about a center into two
similar distributions with sparse high-order bits. Unsigned
inputs have naturally-sparse high-order bits.

right-skewed distributions, yielding sparse high-order bits. Weight
values generally follow rough bell curves. When represented with
Center+Offset encoding, this also yields sparse high-order bits. Due
to sparsity in the high-order weight bits, in most layers, 4b weight
slices can store the highest-order 4b of weights with low values and
low column sums. Low-order weight bits are denser and usually
require a lower 2b per weight slice. Fig. 7 shows the per-layer
slicings of DNNs. Most layers use the 4b-2b-2b setup with three
weight slices: one weight slice for the highest-order four bits and
two weight slices storing two low-order bits each.

4.2.1 Error Budgets. We could choose weight slices to minimize
saturation, but this is too conservative. DNNs can tolerate some

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Tanner Andrulis, Joel S. Emer, and Vivienne Sze

error, so we would like to allow a small amount of saturation. Un-
fortunately, it is difficult to predict how slicing impacts saturation
and how saturation affects error in DNN layer outputs. Too-large
column sums cause saturation, and column sums are affected by
input/weight distributions, input/weight slice distributions, corre-
lations between distributions, the number of weights per filter, and
random variance. Furthermore, 16b psums are digitally quantized
into 8b outputs [82], which may magnify or shrink the error.

To capture all these factors, we take an empirical approach. We
define the error budget as the average magnitude error allowed for
nonzero outputs of a layer after outputs are fully computed and
quantized to 8b. Only nonzero outputs are countedwhen calculating
average magnitude error to give a more consistent calculation for
layers with varying output sparsity.7

To calculate error, we use ten inputs chosen randomly from the
validation set. It suffices to use so few inputs because changing
slicings may change the error by an order of magnitude or more,
and these differences are easily detected.8 The order-of-magnitude
differences stem from the shape of the column sum distribution
(Fig. 3). The distribution tails shrink exponentially, so changes in
the distribution width (i.e., due to slicings) have an exponential
effect on the saturation rate.

The error budget is set to 0.09 in our tests, corresponding to one
in eleven 8b outputs being off by one on average. After quantization,
the errors created by ADC saturation are generally small and cause
a low accuracy loss, shown in Table 4.
4.2.2 Choosing Weight Slices. Weight slices are calculated with
the preprocessing procedure shown in Algorithm 1. Preprocess-
ing occurs once when compiling a DNN for RAELLA, taking 10-
1000ms per layer on an Nvidia RTX 2060 GPU. After preprocessing,
sliced+encoded weights are programmed to crossbars for use with
any number of inferences.

For an M-bit weight and up to N bits per ReRAM, we define a
slicing as a tuple of integers 1 ≤ 𝑠0 ..𝑠 𝑗 ≤ 𝑁 such that

∑
𝑠𝑖 = 𝑀 . For

8b weights, ≤ 4b per ReRAM, slicings include (4b,4b), (2b,1b,1b,4b),
and (1b,2b,2b,3b). There are 108 slicings in total.

To find the best slicing for a DNN layer, we iterate through all
108 slicings. For each, we Center+Offset encode weights following
Section 4.1, simulate the crossbar with ten test inputs, and record
error. We choose the slicing that uses the fewest slices and has
below-budget error. For slicings with the same number of weight
slices, the lower-error slicing is chosen.

We use 1b input slices when comparing weight slicings. We al-
ways use the most conservative 1b per weight slice for the last
layer. The last layer has an outsized effect on DNN accuracy [6]
and a less efficient last-layer slicing has little effect on overall en-
ergy/throughput as intermediate layers dominate DNNs (Fig. 7).
4.2.3 AdaptiveWeight Slicing in Hardware. Given 4b ReRAMs, each
can be programmed with 24 − 1 analog levels. To program 3b or 2b
slices, we use the lowest 23 − 1 or 22 − 1 levels. Given a 3b weight
slice XXX, this corresponds to programming a device with 0XXX.
This is only a restriction of the available range and therefore does
7This is important when ReLU is folded into quantization. If ReLU zeros an output, it
will likely zero any error associated with that output as well. If ReLU zeros many out-
puts, then average error is lowered while error per nonzero output remains consistent.
8In fact, this algorithm usually picks the same slicings when testing just one input. If
we test with Gaussian noise as input, then slicings match for > 90% of layers.

Algorithm1: Preprocessing Weight Slicing and Centers
1 Func SliceEncodeWeights(layer, testInputs, errorBudget)

/* DNN layer preprocessing. Requires a layer (shape,
quantization, weights), test inputs (activations
from ten images/tokens in this paper), and a
scalar error budget (0.09 in this paper). */

slicing = FindBestSlicing(layer, testInputs, errorBudget)
2 centers = FindOptimalCenters(layer, slicing)
3 return slicing, centers
4

5 Func FindBestSlicing(layer, testInputs, errorBudget)
/* Implementation of Adaptive Weight Slicing from

Sec. 4.2. 10-1000ms per layer. */

6 expectedOutputs = layer.Run(testInputs)
7 possibleSlicings = GetAllPossibleSlicings()

8 bestSlicing = possibleSlicings[0]
9 bestNSlices = CountSlices(bestSlicing)

10 bestError =∞
11 for 𝑠𝑙𝑖𝑐𝑖𝑛𝑔 ∈ 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑆𝑙𝑖𝑐𝑖𝑛𝑔𝑠 do
12 centers = FindOptimalCenters(layer, slicing)
13 outputs = layer.SimulateCrossbar(testInputs, slicing,

centers)
14 errors = |expectedOutputs - outputs|
15 meanError = Mean(errors[expectedOutputs != 0])
16 nSlices = CountSlices(slicing)
17 betterSlicing = nSlices < bestNSlices ||

(nSlices==bestNSlices && meanError < bestError)
18 if meanError < errorBudget && betterSlicing then
19 bestSlicing = slicing
20 bestNSlices = nSlices
21 bestError = meanError
22 return bestSlicing
23

24 Func FindOptimalCenters(layer, slicing)
/* Solve Center+Offset Eq. (2). <1ms per layer.

Returns a center for each weight filter. */

25 centers = SolveOptimizationProblem(layer, slicing)
26 return centers

not require a change to ReRAMs. Crossbars already need shift+add
circuits to add column sums across weight and input slices; adaptive
slicing requires only changing the shift+add pattern.

The main overhead depends on the number of weight slices.
Each additional weight slice increases required ReRAMs and ADC
converts. RAELLA can use between two weight slices (4b/slice,
most efficient) and eight weight slices (1b/slice, least efficient). Most
layers use three weight slices.

4.3 Implementing Dynamic Input Slicing
Dynamic Input Slicing balances high-efficiency more-bit input
slices and high-fidelity fewer-bit input slices. We would like to
minimize the input slices and thus ADC converts, while also avoid-
ing fidelity loss due to high-resolution column sums. Unlike with
weights, the input slicing can be changed at runtime. This allows us
to speculate with an efficient, aggressive slicing and recover with
a conservative slicing. In speculation, RAELLA uses three input
slices, which has high efficiency but a higher chance of creating

RAELLA: Reforming the Arithmetic for Efficient, Low-Resolution, and Low-Loss Analog PIM: No Retraining Required! ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

Figure 9: Speculative Computation. Speculative cycles use 2–4
bits per input slice, with fewer ADC converts per input but
a higher saturation chance. Recovery cycles use 1-bit input
slices andADCs only process columns that failed speculation.

large, high-resolution column sums. In recovery, RAELLA uses the
most conservative eight 1b input slices.

The procedure for speculation and recovery is shown in Fig. 9.
First, a 4b high-order slice is speculatively fed to the crossbar, and
column sums are converted by ADCs. If a column sum is too large,
it will saturate at the ADC bounds of [−64, 64). If an ADC output
equals either of these bounds, an error is detected and marked as
a speculation failure. Next, after all columns are processed, the 4b
input slice is resliced into 1b slices and processed again over four
recovery cycles. To save energy in recovery, ADCs are power-gated
for columns that speculated successfully. In the rare event that an
ADC saturates in recovery, we accept fidelity loss and propagate
the saturated value. After the four recovery slices are processed, the
process repeats for the following speculation and recovery cycles.

4.3.1 Dynamic Input Slicing In Hardware. Given a 4b DAC, analog
input slices can take one of 24 − 1 analog levels. For an N-bit input
slice, we can use the lowest 2𝑁 −1 levels. Given a 3b input slice XXX,
this corresponds to converting 0XXX. As this is only a restriction of
the available range, it does not require changing the DAC hardware.

To track successful/failed speculations, RAELLA stores specula-
tion success flags in a buffer for each crossbar. In recovery, ADCs
only convert column sums that failed speculation.

The entire ReRAM crossbar is one unit, so all columns speculate
and recover together. As it is highly likely that at least one col-
umn will fail speculation, crossbars always run recovery. Therefore,
RAELLA’s speculation saves energy at the cost of speed (unlike the
common use of speculation for speed, e.g., CPU branch prediction).

Speculation also increases crossbar energy, as all columns and
ReRAMs run both speculation and recovery cycles. Recovery cycles
consume less energy than speculation cycles, as ReRAM devices use
less energy with smaller input values [29] and ADCs only process
a small fraction of columns in recovery cycles.

4.3.2 Dynamic Input Slicing System Effects. RAELLA can run with-
out speculation, processing eight recovery slices alone. With this
approach, each column would require eight ADC converts for all
eight input slices. With speculation, three ADC converts are needed
instead to process three 2-4b speculative input slices. Across our
baselines, speculation fails approximately 2% of the time, requiring
2-4 recovery converts depending on which speculative slice failed.
Overall, speculation succeeds ∼ 98% of the time and reduces ADC
converts by ∼ 60% over a recovery-only approach. An average of
three speculative converts + 0.3 recovery converts are required to
process each column.

Figure 10: The RAELLA Architecture. (1) The base unit is a
crossbar. (2) Four crossbars make up an IMA. (3) Eight IMAs
make up a tile. Components are colored blue for input stor-
age/processing, green for weights, and red for outputs.

While RAELLA saves ADC converts with speculation, it trades
off throughput and crossbar energy. RAELLA’s crossbars require
eleven cycles to run all three speculation + eight recovery slices.
Alternatively, a no-speculation approach could run only the eight
recovery slices, increasing throughput but also increasing the num-
ber of ADC converts required.

5 RAELLA ARCHITECTURE AND PIPELINE
The high-level RAELLA architecture is shown in Fig. 10. RAELLA’s
organization mostly follows that of ISAAC [54]. We describe the
RAELLA architecture from the bottom up, show RAELLA’s dataflow,
then describe how RAELLA reduces analog nonidealities.

5.1 Crossbar
Crossbars consist of 512× 512 2T2Rs. Each crossbar is programmed
with weights from one DNN layer, and each weight filter uses 2-8
crossbar columns based on the DNN layer slicing (Section 4.1).

To process inputs, we use 4b pulse-train DACs for their simple
hardware [32] and superior linearity [55]. Pulse-train DACs encode
an N-bit input slice with a number of pulses up to 2𝑁 − 1. The
DAC consists of a simple row driver to apply input pulses, a 1b
flip-flop to store the current input bit, and an AND gate acting as
an enable signal [32]. To output a 4b value, the most significant bit
is first loaded into the flip-flop and a global clock generates eight
1ns pulses. The DAC outputs the AND’ed value of the clock and its
stored value, equal to eight pulses if the bit is on and zero otherwise.
Subsequent bits are loaded sequentially and run for four, two, and
one pulse(s), respectively.

DACs activate the 2T2R access transistors and each 2T2R device
computes a sliced product that it adds or subtracts from the column
sum. Column sums appear as a current on a column, which is
buffered and scaled by a current buffer [24] before being captured
as capacitor voltages and held by sample+hold circuits [38].

Next, four 7b ADCs [23] convert the 512 column sums in
100ns [54]. 7b signed ADC results are summed by shift+add circuits
and accumulated in 16b psum buffers [82].

With the most-dense slicing of two slices per weight, one cross-
bar may produce up to 256 psums, which are stored in a 256-entry
psum buffer. Each entry stores a 16b psum + 8b success flags, for a
768B psum buffer total capacity.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Tanner Andrulis, Joel S. Emer, and Vivienne Sze

In speculation/recovery cycles, inputs are streamed to crossbars
once for each cycle. In speculation, ADCs process all columns. If
an ADC saturates, the psum is not updated and the success flag is
marked. In recovery, all success flags are checked. ADCs process
and write results only for columns that failed speculation.

The crossbar cycle is pipelined in two stages [54]. In the first
stage, the DACs supply input pulses, the crossbar computes analog
column sums, and the results are latched in sample+hold circuits.
4b pulse train DACs with 1ns/1ns on/off pulse width take 30ns to
send up to 15 input pulses. Crossbars settle and produce column
sums in less than a nanosecond [17]. In the second stage, ADCs
convert sample+hold results in 100ns [54]. The overall crossbar
cycle time is 100ns from the slower-stage ADC processing.

RAELLA utilizes input bit sparsity to reduce column sum val-
ues and crossbar energy, benefiting from the high bit sparsity of
unsigned inputs (Fig. 8). If inputs are signed, RAELLA processes
positive/negative inputs in two separate cycles to generate sparsity.

5.2 In-Situ Multiply Accumulate
Four crossbars are organized into an In-Situ Multiply Accumu-
late (IMA) with an input buffer [54]. An input network sends in-
put vectors to crossbars, and if all inputs are shared between two
crossbars, the input vector is multicast. To exploit temporal input
reuse [47, 59], the input buffer stores reused inputs between cross-
bar cycles. The four crossbars can process up to 4 × 512 = 2048
inputs across all rows, so the buffer is sized 2kB.

To support Center+Offset weights, each IMA includes a weight
center buffer and digital addition circuitry to calculate input sums.
A running sum is kept for each crossbar. To exploit input reuse [47],
we add inputs to the sum when they are first used in crossbar
columns and subtract when they are last used. If different crossbar
columns use different subsets of the inputs, RAELLA adds/subtracts
inputs in a streaming fashion while processing columns.

5.3 Tile
Eight IMAs are organized into a tile. Each tile includes a 64kB
eDRAM buffer [54] storing 8b inputs/outputs, digital maxpool
units, and quantization circuits. RAELLA digitally computes 8b
per-channel quantization [82], allocating 32b per output channel
to store a FP16 quantization scale and bias [82], or 32kB per tile.

5.4 Accelerator & Programming
Like ISAAC [54], every four tiles share a router enabling on-chip
communication. When a tile completes a set of outputs, it sends
data to the next tile via its router. If a layer has more weights than
a tile can store, its weights are split across multiple tiles.

Like other PIM accelerators [24, 47, 54, 80], RAELLA is pro-
grammed once for many inferences to mitigate high ReRAM write
energy [45]. When compiling a configuration for RAELLA, we use
lightweight preprocessing for Center+Offset and Adaptive Weight
Slicing, as discussed in Section 4.2.2.

5.5 DNN Dataflow
Each DNN layer is mapped to one crossbar if it fits. Otherwise, it will
spill over to more crossbars, IMAs, and tiles. RAELLA’s interlayer
dataflow follows ISAAC’s [54] to minimize eDRAM footprint and
inter-tile communication requirements. Fig. 11 shows RAELLA’s

Figure 11: Dataflow. One row of outputs for a layer are com-
puted at a time. Tiles receive/send inputs/outputs once.

dataflow. DNN layers are run in a pipeline across parallel tiles.
Tiles generate one row of a layer’s output tensor at a time, reusing
previously-used input rows and fetching only new input rows. As
a tile produces rows of the output tensor from top to bottom, in-
put rows are consumed from the previous tile in the same order.
Communication and data reuse patterns are coordinated by pat-
tern generators and fixed at program time. Below the tile level,
Timeloop [41] is used to find optimal data reuse patterns.

RAELLA replicates weights to increase throughput following
previous work [24, 54, 56]. If there is space, weights are replicated
in-crossbar to compute multiple convolution steps using a partial
Toeplitz expansion [11, 24]. Weights can be further replicated across
crossbars, IMAs, or tiles. Replication follows a greedy scheme: while
there are tiles left, the lowest-throughput layer is replicated.

5.6 RAELLA Reduces Analog Nonidealities
PIM crossbars can suffer from nonidealities such as IR drop and
sneak current. RAELLA reduces these relative to ISAAC.

High current traversing long crossbar columns causes IR drop,
which can cause accuracy loss [7, 75]. Positive/negative 2T2R de-
vices consume current from their neighbors, reducing IR drop [28,
81]. Furthermore, RAELLA’s ADC saturates at 64, or fewer than five
ReRAMs in the highest-conductance state. Therefore, RAELLA’s
columns must only tolerate current from five ReRAMs, compared
to an ISAAC-like design that sums current for 128 ReRAMs.

Sneak current, or leakage through off ReRAMs, can cause accu-
racy loss [7]. Sneak current is zero in 2T2R crossbars as the leakages
from positive and negative ReRAMs negate [81].

6 EVALUATION
RAELLA is compared to accelerators ISAAC [54], FORMS-8 [80],
and TIMELY [24]. ISAAC does not require DNN retraining. FORMS
is Weight-Count-Limited and TIMELY is Sum-Fidelity-Limited, so
both retrain to recover DNN accuracy.

First, we show the efficiency and throughput gain of RAELLA
in a non-retraining setting by comparing RAELLA’s energy and
throughput with those of ISAAC. We show that RAELLA achieves
high throughput and efficiency without changing the DNN models.

Next, we show competitiveness with DNN-retraining architec-
tures by comparing RAELLA to FORMS and TIMELY. We show that
RAELLA matches the efficiency/performance of these architectures
without needing to retrain.

RAELLA: Reforming the Arithmetic for Efficient, Low-Resolution, and Low-Loss Analog PIM: No Retraining Required! ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

Then, we show RAELLA’s low accuracy loss and compare
to FORMS and TIMELY. We also show the accuracy benefits of
RAELLA’s Center+Offset encoding.

6.1 Methodology
Models of RAELLA, ISAAC, and FORMS are created using Accel-
ergy/Timeloop [41, 71, 72] in the 32nm technology node. The ar-
chitectures are modified to support 8b DNNs as described in Sec-
tion 6.1.2. Under a 600𝑚𝑚2 area budget, RAELLA fits 743 tiles while
ISAAC and FORMS fit 1024 tiles each. Results for TIMELY are from
the original paper [24]. To compare to TIMELY, we scale RAELLA
to TIMELY’s 65nm tech node and use TIMELY’s analog components
(TDC, IAdder, Charging+Comparator) and ReRAM devices [13] in
RAELLA. RAELLA’s error budget is set to 0.09 in all tests.

6.1.1 Component Models. SRAMs are modeled in CACTI [18].
Models of networks, routers, and eDRAM buffers are from
ISAAC [54]. eDRAM refresh is not an issue as tiles consume data
faster than a refresh period [63]. RAELLA uses the ADC [23] from
ISAAC scaled to 7b following [52]. DAC, input driver, and crossbar
area/energy are generated using a modified NeuroSim [2, 44]. 2T2R
area is pessimistically estimated as the sum area of two ReRAMs
and two min-sized transistors, ignoring potential stacking between
chip layers [27, 66]. DACs use a flip-flop and an AND gate for each
row to generate pulse trains [32], where each pulse is 1ns and each
4b input slice can comprise up to 15 pulses. ReRAM parameters
are taken from TIMELY [5, 24], using a 0.2V read voltage and
1kΩ/20kΩ on/off resistance [13, 17]. Current buffers that capture
analog column sums are taken from TIMELY [24]. Outputs are
quantized with a multiply/truncate and activation functions are
fused into quantization [82]. Maxpool units and sampling capaci-
tors consume negligibly little energy/area [24, 54]. One crossbar
cycle is 100ns, and crossbars produce a set of psums every 11 cycles
(three speculation input slices + eight recovery input slices) unless
bottlenecked by the interlayer dataflow. Latency is doubled for
signed inputs as positive/negative inputs are processed in separate
cycles. With speculation disabled, crossbars require eight cycles
and 800ns to produce a set of psums.

6.1.2 Models of ISAAC and FORMS. ISAAC [54] and FORMS [80]
models are validated against the results presented in their papers
with < 10% energy and throughput error. After validating, wemodel
ISAAC and FORMS using the same components used in RAELLA for
a fair apples-to-apples comparison. In particular, the DAC/crossbars
are modeled using a modified NeuroSim [2, 44] which captures
the data-dependent energy consumption of analog components.
We modify both architectures and add quantization hardware to
run 8b DNNs. After scaling to 8b, our ISAAC baseline has ∼ 4×
higher efficiency and throughput than the original ISAAC while
our FORMS baseline has ∼ 2× higher efficiency and throughput
than the original FORMS. For FORMS, we use the highest reported
pruning ratio. For a fair comparison, we modify ISAAC to support
the partial-Toeplitz mappings [11, 24] that RAELLA supports, which
increased the throughput of ISAAC by an additional 1−1.9×. These
mappings were not beneficial to FORMS.

6.2 DNN Models and Test Sets
We test on seven representative DNNs. Six are CNNs from the
PyTorch [42] Torchvision [31] quantized library: GoogLeNet [60],
InceptionV3 [61], Resnet18 [16], ResNet50 [16], ShuffleNetV2 [30],
and MobileNetV2 [53]. ShuffleNetV2 and MobileNetV2 are compact
with small filters, while the others are large models. We report
accuracy for the ImageNet [10] validation set.

Additionally, we test a Transformer [64] BERT-Large [70] on
the Stanford Question Answering Dataset [49] to show RAELLA’s
effectiveness on cutting-edge Transformers. For BERT-Large, we
accelerate the feedforward layers. Other works explore accelerating
Transformer attention [39, 58, 77]. BERT-Large shows RAELLA’s
performance with a non-ReLU activation and signed inputs.

6.3 Efficiency And Throughput: No Retraining
RAELLA is evaluated and compared to ISAAC running off-the-shelf
models of all DNNs. Fig. 12 shows efficiency and throughput results.
RAELLA improves energy efficiency 2.9 to 4.9× (geomean 3.9×).
Efficiency gains come mainly from ADC energy reduction. RAELLA
uses a 7b ADC, while ISAAC uses an 8bADC. Furthermore, RAELLA
uses larger crossbars, more bits per input slice/weight slice, and
speculation to reduce ADC converts by 5 to 15×.

RAELLA’s throughput benefits come from large 512×512 (versus
ISAAC’s 128 × 128) and denser 2-4 bits per weight slice (versus
ISAAC’s 2b per weight slice). Larger and denser weight storage
and computation give RAELLA a throughput benefit of 0.7 to 3.3×
(geomean 2.0×).

Without speculation, RAELLA runs recovery slices only, reduc-
ing relative efficiency benefits to 2.8× geomean due to higher ADC
energy. Relative throughput increases to 2.7× geomean as crossbars
do not run the three speculation slices, and psums are computed in
eight crossbar cycles instead of eleven.

RAELLA is more effective with unsigned inputs and larger DNNs.
Positive/negative inputs (e.g., those in BERT) are processed in sep-
arate cycles, reducing throughput gains, and small filters in Shuf-
fleNet and MobileNet poorly utilize the large crossbars of RAELLA.

6.4 Comparison with Retraining Architectures
RAELLA is compared to TIMELY and FORMS-8. We show geomean
ResNet18/ResNet50 results since we have data for these DNNs on
all baselines. RAELLA runs off-the-shelf models, while FORMS [80]
runs pruned-retrained versions and TIMELY [24] runs requantized-
retrained versions.

Fig. 13 compares RAELLA’s efficiency/throughput to FORMS and
TIMELY. RAELLA is able to match the throughput of FORMS and
exceed the efficiency of both FORMS and TIMELY. In the TIMELY
comparison, we find that 65nm RAELLA is more efficient without
speculation. This is because 65nm-RAELLA uses TIMELY’s analog
components, including TIMELY’s highly efficient ADC. Speculation
is useful when ADC costs dominate, but the tradeoffs may not be
worthwhile if the ADC is not a major contributor to overall energy.

6.5 Accuracy Comparison
We compare RAELLA with three baselines. RAELLA Center+Offset
is the standard RAELLA, configured with a 0.09 error budget.
To showcase the benefits of Center+Offset, we compare it with

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Tanner Andrulis, Joel S. Emer, and Vivienne Sze

Figure 12: Efficiency and throughput normalized to the ISAAC architecture. Both architectures run DNNs without retraining.
RAELLA with/without speculation increases efficiency 3.9 × /2.8× and throughput by 2.0 × /2.7× geomean.

Figure 13: Comparison with FORMS and TIMELY. FORMS
and TIMELY run retrained DNNs. RAELLA offers competi-
tive/superior throughput/efficiency without retraining.

RAELLA
Center+Offset

RAELLA
Zero+Offset

FORMS
[80]

TIMELY
[24]

Retrained No No Yes Yes
Accuracy Drop %. Negative is accuracy gain.
ResNet18 0.06 0.16 0.62 ≤ 0.1
ResNet50 -0.08 0.30 0.70 ≤ 0.1
MobileNetV2 0.03 10.17 - -
ShuffleNetV2 0.14 16.36 - -
GoogLeNet -0.02 1.53 - -
InceptionV3 -0.03 3.72 - -
BERT-Large 0.12 0.46 - -

Table 4: Accuracy Comparison. BERT-Large compares F1
loss, while others compare Imagenet Top-5 loss. Zero+Offset
causes high accuracy loss; Center+Offset is essential to pre-
serve accuracy. FORMS and TIMELY retrain, while RAELLA
maintains low accuracy loss without retraining.

RAELLA Zero+Offset, which implements a common-practice differ-
ential encoding (described in Section 4.1) by setting centers to zero.
We use the same slicings for RAELLA Center+Offset and RAELLA
Zero+Offset to match efficiency/throughput. Additionally, we show
the reported accuracy of FORMS and TIMELY after retraining.

Table 4 shows the accuracy results. RAELLA with Center+Offest
encoding causes little to no accuracy loss. Zero+Offset (differen-
tial encoding) causes substantial accuracy degradation due to high
ADC saturation rates, as described in Section 4.1. Zero+Offset accu-
racy drop varies greatly across DNNs due to varying filter weight
distributions. TIMELY and FORMS recover from accuracy loss by
retraining DNNs.

7 ABLATION STUDIES
To isolate the effects of each of RAELLA’s strategies, we begin with
an ISAAC architecture and apply strategies sequentially. In the
energy ablation, we test the efficiency benefits of each of RAELLA’s
strategies. In the accuracy ablation, we test RAELLA’s strategies
against increasing analog noise. All test setups maintain high fi-
delity. The four test setups are the following:

Figure 14: Energy Ablation. Each of RAELLA’s strategies in-
creases PIM architecture efficiency. Batch size is varied across
DNNs to keep overall energy in the same range.

• ISAAC: an 8b ISAAC. 128 × 128 crossbars, unsigned arith-
metic. Four 2b weight slices, eight 1b input slices. 8b ADC.

• Center+Offset: previous setup, plus crossbar size increased
to 512 × 512 2T2R with Center+Offset arithmetic. ADC reso-
lution is reduced to 7b.

• Center+Offset, Adaptive Weight Slicing: previous setup, plus
weight slicings are chosen per-layer following Section 4.2.2.
Most layers use three weight slices in a 4b-2b-2b pattern.

• RAELLA: previous setup, plus Dynamic Input Slicing and
speculation enabled. RAELLA’s registers/networks are added.
RAELLA runs a 2-4 bit speculation input slice followed by
2-4 one-bit recovery input slices. In recovery cycles, ADCs
do not convert columns where speculation succeeded.

7.1 Energy Ablation
Fig. 14 shows the following results:

• ISAAC: ADCs dominate overall energy. Converts/MAC is
0.25. Per-component energy breakdown varies depending
on DNN input/weight values, crossbar utilization, and digital
data movement requirements.

• Center+Offset: enables a 4× scale-up in crossbar rows/columns
and reduces ADC resolution. Center+Offset bit sparsity low-
ers crossbar energy. Large crossbars decrease data movement
energy and reduce Converts/MAC from 0.25 to 0.063. Digital
center processing, which requires one input addition and one
multiply/subtract per several hundred MACs, contributes
negligible energy.

• AdaptiveWeight Slicing: reduces ADC energy ∼ 25% as most
layers use three weight slices instead of four. Converts/MAC
is reduced to 0.047.

RAELLA: Reforming the Arithmetic for Efficient, Low-Resolution, and Low-Loss Analog PIM: No Retraining Required! ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

Figure 15: Accuracy drop at increasing analog noise. Center+Offset and Adaptive Weight Slicing increase noise tolerance.
Dynamic Input Slicing maintains accuracy despite speculation failures; recovery prevents accuracy loss.

• Speculation: reduces ADC energy by 60%. Increases cross-
bar/DAC energy due to speculation cycles. Increases the in-
put buffer energy due to 2× fetches. Usually decreases output
buffer energy due to fewer psum writebacks. Converts/MAC
is 0.018.

7.2 Accuracy and In-Crossbar Noise Ablation
Using the same four ablation setups, we evaluate DNN accuracy
running on RAELLA with varying levels of noise. All PIM architec-
tures suffer from analog variation and noise, but RAELLA tolerates
noise with lower accuracy loss.

We model variation and noise as a Gaussian distribution that we
add to column sums [17]. Given positive/negative sliced product
sums 𝑁+ and 𝑁− , we model the column sum asN(𝜇, 𝜎2). For noise
level 𝐸, we set the mean 𝜇 to the ideal column sum (𝑁+ − 𝑁−) and
the standard deviation 𝜎 = 𝐸

√
𝑁+ + 𝑁− . After calculating a column

sum, it is sent to an ADC and will be saturated at [−64, 64) if out
of range. Noise is additive across positive/negative sliced products.
We test with up to 12% error, or 𝜎 ≈ 4 for 512 2𝑏 × 2𝑏 MACs.

We make two changes to ISAAC to improve noise tolerance for
a fair comparison. ISAAC’s encoding strategy relies on an analog
circuit that sums crossbar inputs [54]. This component has been
shown to degrade accuracy under noise [73], so we replace it with a
digital equivalent. For BERT accuracy, we give ISAAC two cycles to
process positive/negative inputs, matching RAELLA. This provides
additional noise resistance. Fig. 15 shows the following:

• ISAAC: all DNNs suffer high accuracy loss for noise > 4%.
ISAAC uses unsigned weights, which have dense high-order
bits (Fig. 8). Dense bits generate larger, higher-noise values,
and noise in high-order slices creates large errors in results.

• Center+Offset: this is critical. Offset encoding provides noise
resistance [73], and Center+Offset increases bit sparsity and
decreases noise. Intuitively, digital center processing moves
much of the computation out of the noisy analog domain.

• Adaptive Weight Slicing: accuracy is further improved.
RAELLA’s empirical slicing strategy is noise-aware, allow-
ing RAELLA to adapt slicing to varying levels of noise. As
noise increases, Adaptive Weight Slicing uses fewer bits per
weight slice to reduce error, with five weight slices for most
layers at the highest tested noise.

• RAELLA: with speculation, RAELLA maintains accuracy
similar to that of a no-speculation approach. The recovery
step prevents accuracy drop due to failed speculations.

We find that RAELLA can maintain DNN accuracy at higher
noise levels, while on ISAAC, all DNNs suffer sharp accuracy loss

at lower noise levels. Compact DNNs suffer higher accuracy degra-
dation from errors compared to larger DNNs [76]. BERT uniquely
benefits from the sparsity generated by two-cycle positive/negative
inputs. This, along with BERT’s large size, allows BERT to maintain
better accuracy at high noise levels.

RAELLA can adapt to varying noise; adaptive weight slicing au-
tomatically trades off storage density and efficiency for correctness
by using fewer bits per slice in higher-noise scenarios. This lets
RAELLA maintain accuracy without retraining while extracting as
much efficiency as possible under noise constraints.

8 RELATEDWORK
Xiao et al. [73] provide an in-depth and insightful exploration of
DNN accuracy versus fidelity, differential encoding, and PIM design
space decisions. We urge the reader to read this work for a deeper
understanding of the tradeoffs explored in RAELLA.

Multiple works push the bounds of low ADC resolution.
TinyADC [79] retrains while pruning DNN weight bits, achieving
impressive reductions in column sum resolution. BRAHMS [57]
tailors ADC quantization steps for each layer to maximize DNN
accuracy under fidelity loss. Guo et al. [15] exploit naturally-low
column sums to reduce ADC resolution and scale the number of
crossbar rows used based on a column sum prediction. McDanel
et al. [33] explore low-resolution ADC quantization and DNN
error tolerance. RAELLA achieves much greater ADC resolution
reductions than these works (2b-3b vs. 10b).

Newton [36] improves ISAAC by varying ADC resolution, using
heterogeneous tiles, and using transformations that reduce compu-
tation. These are orthogonal to RAELLA; it would be interesting to
see how an accelerator may combine both.

9 CONCLUSION
RAELLA shows that PIM accelerators can reduce high ADC costs
without retraining or modifying DNNs. By encoding for low-
resolution analog outputs and changing slicing patterns, RAELLA
can reshape the distributions of computed analog values. RAELLA
uses this ability to keep computed analog values low-resolution and
high-fidelity while extracting as much efficiency and throughput as
possible from each DNN layer. We hope that, by expanding the set
of retraining-free strategies available to PIM designers, RAELLA
will inspire future hardware strategies, permit novel co-design
opportunities, and broaden the scope in which PIM can be used.

10 ACKNOWLEDGEMENTS
This work was funded in part by Ericsson, the MIT AI Hardware
Program, and MIT Quest.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Tanner Andrulis, Joel S. Emer, and Vivienne Sze

REFERENCES
[1] Fabien Alibart, Ligang Gao, Brian D Hoskins, and Dmitri B Strukov. 2012. High

precision tuning of state for memristive devices by adaptable variation-tolerant
algorithm. Nanotechnology 23, 7 (jan 2012), 075201. https://doi.org/10.1088/0957-
4484/23/7/075201

[2] Pai-Yu Chen, Xiaochen Peng, and Shimeng Yu. 2017. NeuroSim+: An integrated
device-to-algorithm framework for benchmarking synaptic devices and array
architectures. In 2017 IEEE International Electron Devices Meeting (IEDM). 6.1.1–
6.1.4. https://doi.org/10.1109/IEDM.2017.8268337

[3] Yuzong Chen, Lu Lu, Bongjin Kim, and Tony Tae-Hyoung Kim. 2020. Recon-
figurable 2T2R ReRAM Architecture for Versatile Data Storage and Computing
In-Memory. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 28,
12 (2020), 2636–2649. https://doi.org/10.1109/TVLSI.2020.3028848

[4] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2014. DaDianNao: A
Machine-Learning Supercomputer. In 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture. 609–622. https://doi.org/10.1109/MICRO.2014.
58

[5] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu
Wang, and Yuan Xie. 2016. PRIME: A Novel Processing-in-Memory Architec-
ture for Neural Network Computation in ReRAM-Based Main Memory. In 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA).
27–39. https://doi.org/10.1109/ISCA.2016.13

[6] Jungwook Choi, Swagath Venkataramani, Vijayalakshmi (Viji) Srinivasan, Kailash
Gopalakrishnan, Zhuo Wang, and Pierce Chuang. 2019. Accurate and Efficient 2-
bit Quantized Neural Networks. In Proceedings of Machine Learning and Systems,
A. Talwalkar, V. Smith, andM. Zaharia (Eds.), Vol. 1. 348–359. https://proceedings.
mlsys.org/paper/2019/file/006f52e9102a8d3be2fe5614f42ba989-Paper.pdf

[7] Teyuh Chou, Wei Tang, Jacob Botimer, and Zhengya Zhang. 2019. CASCADE:
Connecting RRAMs to Extend Analog Dataflow In An End-To-End In-Memory
Processing Paradigm. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (Columbus, OH, USA) (MICRO ’52). Association
for Computing Machinery, New York, NY, USA, 114–125. https://doi.org/10.
1145/3352460.3358328

[8] Chaoqun Chu, Yanzhi Wang, Yilong Zhao, Xiaolong Ma, Shaokai Ye, Yunyan
Hong, Xiaoyao Liang, Yinhe Han, and Li Jiang. 2020. PIM-Prune: Fine-Grain
DCNN Pruning for Crossbar-Based Process-In-Memory Architecture. In 2020
57th ACM/IEEE Design Automation Conference (DAC). 1–6. https://doi.org/10.
1109/DAC18072.2020.9218523

[9] Philip Colangelo, Nasibeh Nasiri, Eriko Nurvitadhi, Asit Mishra, Martin Margala,
and Kevin Nealis. 2018. Exploration of Low Numeric Precision Deep Learning
Inference Using Intel® FPGAs. In 2018 IEEE 26th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). 73–80. https:
//doi.org/10.1109/FCCM.2018.00020

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition. 248–255. https://doi.org/10.1109/CVPR.
2009.5206848

[11] Lei Deng, Ling Liang, GuanruiWang, Liang Chang, Xing Hu, XinMa, Liu Liu, Jing
Pei, Guoqi Li, and Yuan Xie. 2020. SemiMap: A Semi-Folded ConvolutionMapping
for Speed-Overhead Balance on Crossbars. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 39, 1 (2020), 117–130. https:
//doi.org/10.1109/TCAD.2018.2883959

[12] Andrea Fasoli, Chia-Yu Chen, Mauricio Serrano, Xiao Sun, Naigang Wang,
Swagath Venkataramani, George Saon, Xiaodong Cui, Brian Kingsbury, Wei
Zhang, Zoltán Tüske, and Kailash Gopalakrishnan. 2021. 4-Bit Quantization of
LSTM-Based Speech Recognition Models. In Proc. Interspeech 2021. 2586–2590.
https://doi.org/10.21437/Interspeech.2021-1962

[13] Ligang Gao, Fabien Alibart, and Dmitri B. Strukov. 2013. A High Resolution
Nonvolatile Analog Memory Ionic Devices.

[14] Sujan K. Gonugondla, Charbel Sakr, Hassan Dbouk, and Naresh R. Shanbhag. 2020.
Fundamental Limits on the Precision of In-Memory Architectures. In Proceedings
of the 39th International Conference on Computer-Aided Design (Virtual Event,
USA) (ICCAD ’20). Association for Computing Machinery, New York, NY, USA,
Article 128, 9 pages. https://doi.org/10.1145/3400302.3416344

[15] Mengyu Guo, Zihan Zhang, Jianfei Jiang, Qin Wang, and Naifeng Jing. 2022.
Boosting ReRAM-based DNN by Row Activation Oversubscription. In 2022 27th
Asia and South Pacific Design Automation Conference (ASP-DAC). 604–609. https:
//doi.org/10.1109/ASP-DAC52403.2022.9712520

[16] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning
for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2016), 770–778.

[17] Miao Hu, John Paul Strachan, Zhiyong Li, Emmanuelle M. Grafals, Noraica
Davila, Catherine Graves, Sity Lam, Ning Ge, Jianhua Joshua Yang, and R. Stanley
Williams. 2016. Dot-product engine for neuromorphic computing: Program-
ming 1T1M crossbar to accelerate matrix-vector multiplication. In 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6. https://doi.org/10.

1145/2897937.2898010
[18] Norman P. Jouppi, Andrew B. Kahng, Naveen Muralimanohar, and Vaishnav

Srinivas. 2015. CACTI-IO: CACTI With OFF-Chip Power-Area-Timing Models.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 23, 7 (2015),
1254–1267. https://doi.org/10.1109/TVLSI.2014.2334635

[19] Tinu Theckel Joy, Santu Rana, Sunil Gupta, and Svetha Venkatesh. 2016. Hy-
perparameter tuning for big data using Bayesian optimisation. In 2016 23rd
International Conference on Pattern Recognition (ICPR). 2574–2579. https:
//doi.org/10.1109/ICPR.2016.7900023

[20] Sangyeob Kim, Sangjin Kim, Soyeon Um, Soyeon Kim, Kwantae Kim, and Hoi-Jun
Yoo. 2022. Neuro-CIM: A 310.4 TOPS/W Neuromorphic Computing-in-Memory
Processor with Low WL/BL activity and Digital-Analog Mixed-mode Neuron
Firing. In 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology
and Circuits). 38–39. https://doi.org/10.1109/VLSITechnologyandCir46769.2022.
9830276

[21] Michael Klachko, Mohammad Reza Mahmoodi, and Dmitri Strukov. 2019. Im-
proving Noise Tolerance of Mixed-Signal Neural Networks. In 2019 International
Joint Conference on Neural Networks (IJCNN). 1–8. https://doi.org/10.1109/IJCNN.
2019.8851966

[22] Raghuraman Krishnamoorthi. 2018. Quantizing deep convolutional networks for
efficient inference: A whitepaper. CoRR abs/1806.08342 (2018). arXiv:1806.08342
http://arxiv.org/abs/1806.08342

[23] Lukas Kull, Thomas Toifl, Martin Schmatz, Pier Andrea Francese, Christian
Menolfi, Matthias Braendli, Marcel Kossel, Thomas Morf, Toke Meyer Andersen,
and Yusuf Leblebici. 2013. A 3.1mW 8b 1.2GS/s single-channel asynchronous SAR
ADC with alternate comparators for enhanced speed in 32nm digital SOI CMOS.
In 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.
468–469. https://doi.org/10.1109/ISSCC.2013.6487818

[24] Weitao Li, Pengfei Xu, Yang Zhao, Haitong Li, Yuan Xie, and Yingyan Lin. 2020.
TIMELY: Pushing Data Movements and Interfaces in PIM Accelerators towards
Local and in Time Domain. In Proceedings of the ACM/IEEE 47th Annual Inter-
national Symposium on Computer Architecture (Virtual Event) (ISCA ’20). IEEE
Press, 832–845. https://doi.org/10.1109/ISCA45697.2020.00073

[25] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. 2021.
Pruning and quantization for deep neural network acceleration: A survey. Neu-
rocomputing 461 (2021), 370–403. https://doi.org/10.1016/j.neucom.2021.07.045

[26] Jilan Lin, Zhenhua Zhu, Yu Wang, and Yuan Xie. 2019. Learning the Sparsity
for ReRAM: Mapping and Pruning Sparse Neural Network for ReRAM Based
Accelerator. In Proceedings of the 24th Asia and South Pacific Design Automation
Conference (Tokyo, Japan) (ASPDAC ’19). Association for Computing Machinery,
New York, NY, USA, 639–644. https://doi.org/10.1145/3287624.3287715

[27] Eike Linn, Roland Rosezin, Carsten Kügeler, and Rainer Waser. 2010. Comple-
mentary resistive switches for passive nanocrossbar memories. Nature Materials
9, 5 (01 May 2010), 403–406. https://doi.org/10.1038/nmat2748

[28] Qi Liu, Bin Gao, Peng Yao, Dong Wu, Junren Chen, Yachuan Pang, Wenqiang
Zhang, Yan Liao, Cheng-Xin Xue, Wei-Hao Chen, Jianshi Tang, Yu Wang, Meng-
Fan Chang, He Qian, and Huaqiang Wu. 2020. 33.2 A Fully Integrated Analog
ReRAM Based 78.4TOPS/W Compute-In-Memory Chip with Fully Parallel MAC
Computing. In 2020 IEEE International Solid- State Circuits Conference - (ISSCC).
500–502. https://doi.org/10.1109/ISSCC19947.2020.9062953

[29] Anni Lu, Xiaochen Peng, Wantong Li, Hongwu Jiang, and Shimeng Yu. 2021.
NeuroSim Validation with 40nm RRAM Compute-in-Memory Macro. In 2021
IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems
(AICAS). 1–4. https://doi.org/10.1109/AICAS51828.2021.9458501

[30] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. 2018. ShuffleNet
V2: Practical Guidelines for Efficient CNN Architecture Design. In Proceedings of
the European Conference on Computer Vision (ECCV).

[31] Sébastien Marcel and Yann Rodriguez. 2010. Torchvision the Machine-Vision
Package of Torch. In Proceedings of the 18th ACM International Conference on
Multimedia (Firenze, Italy) (MM ’10). Association for Computing Machinery, New
York, NY, USA, 1485–1488. https://doi.org/10.1145/1873951.1874254

[32] Matthew J. Marinella, Sapan Agarwal, Alexander Hsia, Isaac Richter, Robin Jacobs-
Gedrim, John Niroula, Steven J. Plimpton, Engin Ipek, and Conrad D. James. 2018.
Multiscale Co-Design Analysis of Energy, Latency, Area, and Accuracy of a
ReRAM Analog Neural Training Accelerator. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems 8, 1 (2018), 86–101. https://doi.org/10.
1109/JETCAS.2018.2796379

[33] Bradley McDanel, Sai Qian Zhang, and H. T. Kung. 2021. Saturation RRAM
Leveraging Bit-Level Sparsity Resulting from Term Quantization. In 2021 IEEE
International Symposium on Circuits and Systems (ISCAS). 1–5. https://doi.org/
10.1109/ISCAS51556.2021.9401293

[34] Sparsh Mittal. 2019. A Survey of ReRAM-Based Architectures for Processing-In-
Memory and Neural Networks. Machine Learning and Knowledge Extraction 1, 1
(2019), 75–114. https://doi.org/10.3390/make1010005

[35] Boris Murmann. 2013. Energy limits in A/D converters. In 2013 IEEE Faible
Tension Faible Consommation. 1–4. https://doi.org/10.1109/FTFC.2013.6577781

[36] Anirban Nag, Rajeev Balasubramonian, Vivek Srikumar, Ross Walker, Ali Shafiee,
John Paul Strachan, and Naveen Muralimanohar. 2018. Newton: Gravitating

https://doi.org/10.1088/0957-4484/23/7/075201
https://doi.org/10.1088/0957-4484/23/7/075201
https://doi.org/10.1109/IEDM.2017.8268337
https://doi.org/10.1109/TVLSI.2020.3028848
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/ISCA.2016.13
https://proceedings.mlsys.org/paper/2019/file/006f52e9102a8d3be2fe5614f42ba989-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/006f52e9102a8d3be2fe5614f42ba989-Paper.pdf
https://doi.org/10.1145/3352460.3358328
https://doi.org/10.1145/3352460.3358328
https://doi.org/10.1109/DAC18072.2020.9218523
https://doi.org/10.1109/DAC18072.2020.9218523
https://doi.org/10.1109/FCCM.2018.00020
https://doi.org/10.1109/FCCM.2018.00020
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/TCAD.2018.2883959
https://doi.org/10.1109/TCAD.2018.2883959
https://doi.org/10.21437/Interspeech.2021-1962
https://doi.org/10.1145/3400302.3416344
https://doi.org/10.1109/ASP-DAC52403.2022.9712520
https://doi.org/10.1109/ASP-DAC52403.2022.9712520
https://doi.org/10.1145/2897937.2898010
https://doi.org/10.1145/2897937.2898010
https://doi.org/10.1109/TVLSI.2014.2334635
https://doi.org/10.1109/ICPR.2016.7900023
https://doi.org/10.1109/ICPR.2016.7900023
https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830276
https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830276
https://doi.org/10.1109/IJCNN.2019.8851966
https://doi.org/10.1109/IJCNN.2019.8851966
https://arxiv.org/abs/1806.08342
http://arxiv.org/abs/1806.08342
https://doi.org/10.1109/ISSCC.2013.6487818
https://doi.org/10.1109/ISCA45697.2020.00073
https://doi.org/10.1016/j.neucom.2021.07.045
https://doi.org/10.1145/3287624.3287715
https://doi.org/10.1038/nmat2748
https://doi.org/10.1109/ISSCC19947.2020.9062953
https://doi.org/10.1109/AICAS51828.2021.9458501
https://doi.org/10.1145/1873951.1874254
https://doi.org/10.1109/JETCAS.2018.2796379
https://doi.org/10.1109/JETCAS.2018.2796379
https://doi.org/10.1109/ISCAS51556.2021.9401293
https://doi.org/10.1109/ISCAS51556.2021.9401293
https://doi.org/10.3390/make1010005
https://doi.org/10.1109/FTFC.2013.6577781

RAELLA: Reforming the Arithmetic for Efficient, Low-Resolution, and Low-Loss Analog PIM: No Retraining Required! ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

Towards the Physical Limits of Crossbar Acceleration. IEEE Micro 38, 5 (2018),
41–49. https://doi.org/10.1109/MM.2018.053631140

[37] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. 2019.
Data-Free Quantization ThroughWeight Equalization and Bias Correction. (2019).
https://doi.org/10.48550/ARXIV.1906.04721

[38] M. O’Halloran and R. Sarpeshkar. 2004. A 10-nW 12-bit accurate analog storage
cell with 10-aA leakage. IEEE Journal of Solid-State Circuits 39, 11 (2004), 1985–
1996. https://doi.org/10.1109/JSSC.2004.835817

[39] Atsuya Okazaki, Pritish Narayanan, Stefano Ambrogio, Kohji Hosokawa, Hsinyu
Tsai, Akiyo Nomura, Takeo Yasuda, Charles Mackin, Alexander Friz, Masatoshi
Ishii, Yasuteru Kohda, Katie Spoon, An Chen, Andrea Fasoli, Malte J. Rasch, and
Geoffrey W. Burr. 2022. Analog-memory-based 14nm Hardware Accelerator for
Dense Deep Neural Networks including Transformers. In 2022 IEEE International
Symposium on Circuits and Systems (ISCAS). 3319–3323. https://doi.org/10.1109/
ISCAS48785.2022.9937292

[40] Shunsuke Okumura, Makoto Yabuuchi, Kenichiro Hijioka, and Koichi Nose. 2019.
A Ternary Based Bit Scalable, 8.80 TOPS/W CNN accelerator with Many-core
Processing-in-memory Architecture with 896K synapses/mm2. In 2019 Sym-
posium on VLSI Technology. C248–C249. https://doi.org/10.23919/VLSIT.2019.
8776544

[41] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A. Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W. Keckler, and Joel Emer. 2019. Timeloop: A Systematic Approach to
DNN Accelerator Evaluation. In 2019 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS). 304–315. https://doi.org/10.
1109/ISPASS.2019.00042

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

[43] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia,
Daniel Rothchild, David So, Maud Texier, and Jeff Dean. 2021. Carbon Emissions
and Large Neural Network Training. https://doi.org/10.48550/ARXIV.2104.10350

[44] Xiaochen Peng, Shanshi Huang, Hongwu Jiang, Anni Lu, and Shimeng Yu. 2021.
DNN+NeuroSim V2.0: An End-to-End Benchmarking Framework for Compute-
in-Memory Accelerators for On-Chip Training. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 40, 11 (2021), 2306–2319. https:
//doi.org/10.1109/TCAD.2020.3043731

[45] Lillian Pentecost, Alexander Hankin, Marco Donato, Mark Hempstead, Gu-Yeon
Wei, and David Brooks. 2022. NVMExplorer: A Framework for Cross-Stack
Comparisons of Embedded Non-Volatile Memories. In 2022 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). 938–956. https:
//doi.org/10.1109/HPCA53966.2022.00073

[46] Antonio Polino, Razvan Pascanu, and Dan Alistarh. 2018. Model compression
via distillation and quantization. https://doi.org/10.48550/ARXIV.1802.05668

[47] Ximing Qiao, Xiong Cao, Huanrui Yang, Linghao Song, and Hai Li. 2018. Atom-
Layer: A Universal ReRAM-Based CNN Accelerator with Atomic Layer Compu-
tation. In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). 1–6.
https://doi.org/10.1109/DAC.2018.8465832

[48] Songyun Qu, Bing Li, Ying Wang, and Lei Zhang. 2021. ASBP: Automatic Struc-
tured Bit-Pruning for RRAM-based NNAccelerator. In 2021 58th ACM/IEEE Design
Automation Conference (DAC). 745–750. https://doi.org/10.1109/DAC18074.2021.
9586105

[49] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
SQuAD: 100,000+ Questions for Machine Comprehension of Text. In Proceed-
ings of the 2016 Conference on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics, Austin, Texas, 2383–2392.
https://doi.org/10.18653/v1/D16-1264

[50] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
2022. Hierarchical Text-Conditional Image Generation with CLIP Latents. https:
//doi.org/10.48550/ARXIV.2204.06125

[51] Babak Rokh, Ali Azarpeyvand, and Ali Reza Khanteymoori. 2022. A Com-
prehensive Survey on Model Quantization for Deep Neural Networks. ArXiv
abs/2205.07877 (2022).

[52] Mehdi Saberi, Reza Lotfi, Khalil Mafinezhad, and Wouter A. Serdijn. 2011. Analy-
sis of Power Consumption and Linearity in Capacitive Digital-to-Analog Con-
verters Used in Successive Approximation ADCs. IEEE Transactions on Circuits
and Systems I: Regular Papers 58, 8 (2011), 1736–1748. https://doi.org/10.1109/
TCSI.2011.2107214

[53] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks.
4510–4520. https://doi.org/10.1109/CVPR.2018.00474

[54] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R. Stanley Williams, and Vivek Srikumar. 2016.

ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arith-
metic in Crossbars. In 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). 14–26. https://doi.org/10.1109/ISCA.2016.12

[55] Mahmut E. Sinangil, Burak Erbagci, Rawan Naous, Kerem Akarvardar, Dar Sun,
Win-San Khwa, Hung-Jen Liao, Yih Wang, and Jonathan Chang. 2021. A 7-
nm Compute-in-Memory SRAM Macro Supporting Multi-Bit Input, Weight and
Output and Achieving 351 TOPS/W and 372.4 GOPS. IEEE Journal of Solid-State
Circuits 56, 1 (2021), 188–198. https://doi.org/10.1109/JSSC.2020.3031290

[56] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. 2017. PipeLayer: A
Pipelined ReRAM-Based Accelerator for Deep Learning. In 2017 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA). 541–552.
https://doi.org/10.1109/HPCA.2017.55

[57] Tao Song, Xiaoming Chen, Xiaoyu Zhang, and Yinhe Han. 2021. BRAHMS:
Beyond Conventional RRAM-based Neural Network Accelerators Using Hybrid
Analog Memory System. In 2021 58th ACM/IEEE Design Automation Conference
(DAC). 1033–1038. https://doi.org/10.1109/DAC18074.2021.9586247

[58] Katie Spoon, Hsinyu Tsai, An Chen, Malte J. Rasch, Stefano Ambrogio, Charles
Mackin, Andrea Fasoli, Alexander M. Friz, Pritish Narayanan, Milos Stanisavl-
jevic, and Geoffrey W. Burr. 2021. Toward Software-Equivalent Accuracy on
Transformer-Based Deep Neural Networks With Analog Memory Devices. Fron-
tiers in Computational Neuroscience 15 (2021). https://doi.org/10.3389/fncom.
2021.675741

[59] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2020. Efficient
Processing of Deep Neural Networks. Springer International Publishing. https:
//doi.org/10.1007/978-3-031-01766-7

[60] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 1–9. https://doi.org/10.1109/CVPR.2015.7298594

[61] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the Inception Architecture for Computer Vision. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2818–2826.
https://doi.org/10.1109/CVPR.2016.308

[62] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. 2014. DeepFace:
Closing the Gap to Human-Level Performance in Face Verification. In 2014 IEEE
Conference on Computer Vision and Pattern Recognition. 1701–1708. https://doi.
org/10.1109/CVPR.2014.220

[63] Fengbin Tu, Weiwei Wu, Shouyi Yin, Leibo Liu, and Shaojun Wei. 2018. RANA:
Towards Efficient Neural Acceleration with Refresh-Optimized Embedded DRAM.
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA) (2018), 340–352.

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[65] Marian Verhelst and Boris Murmann. 2012. Area scaling analysis of CMOS ADCs.
Electronics Letters 48 (2012), 314–315.

[66] Ching-Hua Wang, Yi-Hung Tsai, Kai-Chun Lin, Meng-Fan Chang, Ya-Chin King,
Chrong-Jung Lin, Shyh-Shyuan Sheu, Yu-Sheng Chen, Heng-Yuan Lee, Freder-
ick T. Chen, and Ming-Jinn Tsai. 2010. Three-dimensional 4F2 ReRAM cell with
CMOS logic compatible process. In 2010 International Electron Devices Meeting.
29.6.1–29.6.4. https://doi.org/10.1109/IEDM.2010.5703446

[67] Linfang Wang, Wang Ye, Chunmeng Dou, Xin Si, Xiaoxin Xu, Jing Liu, Dashan
Shang, Jianfeng Gao, Feng Zhang, Yongpan Liu, Meng-Fan Chang, and Qi Liu.
2021. Efficient and Robust Nonvolatile Computing-In-Memory Based on Volt-
age Division in 2T2R RRAM With Input-Dependent Sensing Control. IEEE
Transactions on Circuits and Systems II: Express Briefs 68, 5 (2021), 1640–1644.
https://doi.org/10.1109/TCSII.2021.3067385

[68] Wikipedia. 2022. Iron law of processor performance — Wikipedia, The
Free Encyclopedia. http://en.wikipedia.org/w/index.php?title=Iron%20law%
20of%20processor%20performance&oldid=1112639388. [Online; accessed 22-
November-2022].

[69] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius.
2020. Integer Quantization for Deep Learning Inference: Principles and Empirical
Evaluation. ArXiv abs/2004.09602 (2020).

[70] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius.
2020. Integer Quantization for Deep Learning Inference: Principles and Empirical
Evaluation.

[71] Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze. 2019. Accelergy: An
Architecture-Level Energy Estimation Methodology for Accelerator Designs.
In 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
1–8. https://doi.org/10.1109/ICCAD45719.2019.8942149

[72] Yannan Nellie Wu, Vivienne Sze, and Joel S. Emer. 2020. An Architecture-Level
Energy and Area Estimator for Processing-In-Memory Accelerator Designs. In
2020 IEEE International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS). 116–118. https://doi.org/10.1109/ISPASS48437.2020.00024

https://doi.org/10.1109/MM.2018.053631140
https://doi.org/10.48550/ARXIV.1906.04721
https://doi.org/10.1109/JSSC.2004.835817
https://doi.org/10.1109/ISCAS48785.2022.9937292
https://doi.org/10.1109/ISCAS48785.2022.9937292
https://doi.org/10.23919/VLSIT.2019.8776544
https://doi.org/10.23919/VLSIT.2019.8776544
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.48550/ARXIV.2104.10350
https://doi.org/10.1109/TCAD.2020.3043731
https://doi.org/10.1109/TCAD.2020.3043731
https://doi.org/10.1109/HPCA53966.2022.00073
https://doi.org/10.1109/HPCA53966.2022.00073
https://doi.org/10.48550/ARXIV.1802.05668
https://doi.org/10.1109/DAC.2018.8465832
https://doi.org/10.1109/DAC18074.2021.9586105
https://doi.org/10.1109/DAC18074.2021.9586105
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.48550/ARXIV.2204.06125
https://doi.org/10.48550/ARXIV.2204.06125
https://doi.org/10.1109/TCSI.2011.2107214
https://doi.org/10.1109/TCSI.2011.2107214
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/ISCA.2016.12
https://doi.org/10.1109/JSSC.2020.3031290
https://doi.org/10.1109/HPCA.2017.55
https://doi.org/10.1109/DAC18074.2021.9586247
https://doi.org/10.3389/fncom.2021.675741
https://doi.org/10.3389/fncom.2021.675741
https://doi.org/10.1007/978-3-031-01766-7
https://doi.org/10.1007/978-3-031-01766-7
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2014.220
https://doi.org/10.1109/CVPR.2014.220
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1109/IEDM.2010.5703446
https://doi.org/10.1109/TCSII.2021.3067385
http://en.wikipedia.org/w/index.php?title=Iron%20law%20of%20processor%20performance&oldid=1112639388
http://en.wikipedia.org/w/index.php?title=Iron%20law%20of%20processor%20performance&oldid=1112639388
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ISPASS48437.2020.00024

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Tanner Andrulis, Joel S. Emer, and Vivienne Sze

[73] T. Patrick Xiao, Ben Feinberg, Christopher H. Bennett, Venkatraman Prabhakar,
Prashant Saxena, Vineet Agrawal, Sapan Agarwal, andMatthew J. Marinella. 2021.
On the Accuracy of Analog Neural Network Inference Accelerators [Feature].
IEEE Circuits and Systems Magazine 22 (2021), 26–48.

[74] J. Joshua Yang, Dmitri B. Strukov, and Duncan R. Stewart. 2013. Memristive
devices for computing. Nature Nanotechnology 8, 1 (01 Jan 2013), 13–24. https:
//doi.org/10.1038/nnano.2012.240

[75] Tzu-Hsien Yang, Hsiang-Yun Cheng, Chia-Lin Yang, I-Ching Tseng, Han-Wen
Hu, Hung-Sheng Chang, and Hsiang-Pang Li. 2019. Sparse ReRAM Engine: Joint
Exploration of Activation and Weight Sparsity in Compressed Neural Networks.
In 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture
(ISCA). 236–249.

[76] Tien-Ju Yang and Vivienne Sze. 2019. Design Considerations for Efficient Deep
Neural Networks on Processing-in-Memory Accelerators. 22.1.1–22.1.4. https:
//doi.org/10.1109/IEDM19573.2019.8993662

[77] Amir Yazdanbakhsh, Ashkan Moradifirouzabadi, Zheng Li, and Mingu Kang.
2022. Sparse Attention Acceleration with Synergistic In-Memory Pruning and
On-Chip Recomputation. https://doi.org/10.48550/ARXIV.2209.00606

[78] Shihui Yin, Zhewei Jiang, Jae-Sun Seo, and Mingoo Seok. 2020. XNOR-SRAM:
In-Memory Computing SRAM Macro for Binary/Ternary Deep Neural Networks.
IEEE Journal of Solid-State Circuits 55, 6 (2020), 1733–1743. https://doi.org/10.
1109/JSSC.2019.2963616

[79] Geng Yuan, Payman Behnam, Yuxuan Cai, Ali Shafiee, Jingyan Fu, Zhiheng
Liao, Zhengang Li, Xiaolong Ma, Jieren Deng, Jinhui Wang, Mahdi Bojnordi,

Yanzhi Wang, and Caiwen Ding. 2021. TinyADC: Peripheral Circuit-aware
Weight Pruning Framework for Mixed-signal DNN Accelerators. In 2021 Design,
Automation Test in Europe Conference Exhibition (DATE). 926–931. https:
//doi.org/10.23919/DATE51398.2021.9474235

[80] Geng Yuan, Payman Behnam, Zhengang Li, Ali Shafiee, Sheng Lin, Xiaolong
Ma, Hang Liu, Xuehai Qian, Mahdi Nazm Bojnordi, Yanzhi Wang, and Caiwen
Ding. 2021. FORMS: Fine-grained Polarized ReRAM-based In-situ Computation
for Mixed-signal DNN Accelerator. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). 265–278. https://doi.org/10.1109/
ISCA52012.2021.00029

[81] Jinshan Yue, Yongpan Liu, Fang Su, Shuangchen Li, Zhe Yuan, Zhibo Wang,
Wenyu Sun, Xueqing Li, and Huazhong Yang. 2019. AERIS: Area/Energy-Efficient
1T2R ReRAM Based Processing-in-Memory Neural Network System-on-a-Chip.
In Proceedings of the 24th Asia and South Pacific Design Automation Conference
(Tokyo, Japan) (ASPDAC ’19). Association for Computing Machinery, New York,
NY, USA, 146–151. https://doi.org/10.1145/3287624.3287635

[82] Xiandong Zhao, Ying Wang, Xuyi Cai, Chuanming Liu, and Lei Zhang. 2020.
Linear Symmetric Quantization of Neural Networks for Low-precision Integer
Hardware. In ICLR.

Received 22 November 2022; revised 21 February 2023; accepted 9 March
2023

https://doi.org/10.1038/nnano.2012.240
https://doi.org/10.1038/nnano.2012.240
https://doi.org/10.1109/IEDM19573.2019.8993662
https://doi.org/10.1109/IEDM19573.2019.8993662
https://doi.org/10.48550/ARXIV.2209.00606
https://doi.org/10.1109/JSSC.2019.2963616
https://doi.org/10.1109/JSSC.2019.2963616
https://doi.org/10.23919/DATE51398.2021.9474235
https://doi.org/10.23919/DATE51398.2021.9474235
https://doi.org/10.1109/ISCA52012.2021.00029
https://doi.org/10.1109/ISCA52012.2021.00029
https://doi.org/10.1145/3287624.3287635

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Deep Neural Network (DNN) Inference
	2.2 ReRAM Properties
	2.3 Arithmetic with Slices
	2.4 ADCs Limit PIM Accelerators
	2.5 Reducing ADC Cost
	2.6 Motivation

	3 RAELLA: Low Resolution, High Fidelity
	3.1 Center+Offset Weights
	3.2 Adaptive Weight Slicing
	3.3 Dynamic Input Slicing
	3.4 Accepting Fidelity Loss

	4 Implementing RAELLA's Strategies
	4.1 Implementing Center+Offset Weights
	4.2 Implementing Adaptive Weight Slicing
	4.3 Implementing Dynamic Input Slicing

	5 RAELLA Architecture and Pipeline
	5.1 Crossbar
	5.2 In-Situ Multiply Accumulate
	5.3 Tile
	5.4 Accelerator & Programming
	5.5 DNN Dataflow
	5.6 RAELLA Reduces Analog Nonidealities

	6 Evaluation
	6.1 Methodology
	6.2 DNN Models and Test Sets
	6.3 Efficiency And Throughput: No Retraining
	6.4 Comparison with Retraining Architectures
	6.5 Accuracy Comparison

	7 Ablation Studies
	7.1 Energy Ablation
	7.2 Accuracy and In-Crossbar Noise Ablation

	8 Related Work
	9 Conclusion
	10 Acknowledgements
	References

