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● “[T]rillions of inference per day across Facebook’s 

data centers” (Wu et al. 2021)

● Autonomous vehicles (AVs) w/ 10 deep neural 

network (DNN) inferences at 60 Hz on 10 cameras:
○ One AV: 21.6 million inferences per hour driven
○ One billion AVs: 21.6 quadrillion inferences per hour driven!
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Could the carbon emissions from computing onboard a global fleet of AVs be significant?



Increased Attention to Emissions from Computing

2018 2020

Scaling of number 
of devices

Significant 
computational 
workloads

Emerging 
applications

Carbon emissions and 
large NN training
[Patterson et al. (2021)]

Bitcoin emissions
[Mora et al. (Nature Climate 

Change 2018)]

Lifecycle analysis of 
mobile phone’s carbon
[Gupta et al. (IEEE Micro 2022)]

Architecture carbon 
modeling tool

[Gupta et al. (ISCA 2022)]

Training large NLP 
models

[Strubell et al. (2018)]

Data center 
emissions

[Jones et al. (Nature 2018)]

Sustainable machine 
learning

[Wu et al. (ML and Systems 2022)]
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Computing energy may be also comparable to actuation energy for AVs!
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Assume 2020 global average carbon intensity 
and each AV driven for 1 hour per day 

G = 𝜶NQIP
Number of AVs
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power source 

[CO2 eq. grams/kWh]

Emissions from computing 
onboard AVs (CO2 eq. tons/yr)

Sources of uncertainty:
● Proprietary information about industry AV stacks
● AV software stack for Level 5 autonomy: 

○ What algorithms will be used? Types and 
number of sensors? Throughput of the 
system? 

● Hardware energy efficiency?

(G
)
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Assume 2020 global average carbon intensity 
and each AV driven for 1 hour per day 

G = 𝜶NQIP
Number of AVs

Average computer 
power [W]

Average time driven 
per AV [hrs/day]

Carbon intensity of 
power source 

[CO2 eq. grams/kWh]

Uncertainty on emerging application of 
Level 5 AVs and future trends of variables

Emissions from computing 
onboard AVs (CO2 eq. tons/yr)?
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Assume 2020 global average carbon intensity 
and each AV driven for 1 hour per day 

G = 𝜶NQIP
Number of AVs

Average computer 
power [W]

Average time driven 
per AV [hrs/day]

Carbon intensity of 
power source 
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Proposed framework (this work) explicitly takes 
uncertainties in each variable into account and 

produces a distribution of likely emissions scenarios
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Method: Probabilistic Open-Source Framework to Model Emissions

● Probabilistically model each variable as a 
distribution to directly incorporate 
uncertainty and produce distributions of 
emissions 

● Project future scenarios from 2025-2050 
based on different adoption rates and 
annual changes in workload size, hardware 
efficiency, and carbon intensity
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G = 𝜶NQIP

Open-source framework that can be modified as new information is learned or 
used by industry using internal proprietary numbers
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EfficientNet-B0

DeepLabV3+

DeepLabV3+

DeepLabV3+

…
1344x1344

Number of tasks T
(e.g., pedestrian detector)

Measure power and latency on hardware platform (e.g., Nvidia 2080 RTX Ti) for different number of tasks
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throughput 
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…
…

… @ F [Hz] @ target 
hardware 
efficiency

Scale by ratio of TOPS (INT8)/Watt η
e.g., Nvidia 2080 RTX Ti: 215 TOPS/250 W

 Nvidia Drive Orin: 2000 TOPS/800 W
 η = 0.344
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Size of workload: 

…
…

…

…
…

…

Sc
ale 
by 
a 
fac
tor 
A

Scale by 
factor A

Hardware energy efficiency:

Framework capable of modeling increase in hardware energy efficiency and workload size

……
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Results: Computer Power to Stay Under Emissions Targets
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In 90% of scenarios where 95% of cars are AVs, computer power must stay under 1.2 kW for 
emissions to stay under 2018 data centers

Emissions from computing onboard AVs: G = 𝜶NQIP
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Results: Scenarios with Different Rates of Hardware Efficiency Increase

Assuming workload doubles every 3 years, business-as-usual decarbonization
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Moderate adoption: 95% market share by 2075 Aggressive adoption: 95% market share by 2050

Hardware energy efficiency would need to double every 1.4 or 1.1 years to contain emissions 
to 2018 data center emissions in moderate or aggressive adoption scenarios

G G



Smaller Workload Growth Rate and Faster Decarbonization Helps

50

Hardware energy efficiency doubles every 2.8 years, aggressive adoption scenario

Effect of growth rate of workload:
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Smaller Workload Growth Rate and Faster Decarbonization Helps
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Hardware energy efficiency doubles every 2.8 years, aggressive adoption scenario

Smaller workload growth and rapid decarbonization reduces potential emissions from AVs, 
may still rival emissions from data centers

Effect of growth rate of workload: Effect of decarbonization rate:

Business-as-usual decarbonization Workload doubles every three years

Current rate

2020 rate

2o warming

1.5o warming

G G



Future Directions: Challenges Unique to AVs

1. Explore algorithmic efficiency improvements without sacrificing safety

2. Characterize emissions from sensing

3. Characterize embodied (manufacturing) carbon vs. operational carbon 
emissions 

4. Explore trade-off between hardware specialization and generalization
5. Encourage an industry standard to release data points to calculate emissions 

of autonomy stack
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Efficient Algorithms That Will Not Compromise Safety

● Cannot tolerate decrease in performance 
metrics relevant to safety

● Many techniques used to make data centers 
greener cannot be applied here 

55



Efficient Algorithms That Will Not Compromise Safety

● Cannot tolerate decrease in performance 
metrics relevant to safety

● Many techniques used to make data centers 
greener cannot be applied here 

● Research needed on which algorithmic 
efficiency improvements (e.g., compact, 
pruned, sparse DNNs, choosing to compute 
less and accept longer paths) can be safely 
applied
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Example path returned by baseline

Example path returned by CEIMP 
(prior work)

Look to resource-constrained robot literature since computing is similarly not negligible



Encouraging an Industry Standard to Evaluate Footprint of Autonomy
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Computers: embodied 
carbon

Sensors: embodied 
carbon

Batteries: embodied 
carbon 

Computers: operational 
carbon

Sensors: operational 
carbon

● Use framework with internal numbers to 
evaluate and release emissions from 
autonomy stack

● Release data that allows the community to 
evaluate footprint (e.g., computer power)



Key Takeaways: 

1. Emissions from computing on AVs could be significant: emissions could rival that of 
data centers due to significant workload size and the size of a global fleet of AVs

2. Business-as-usual trends are not enough to constrain emissions: current rates of 
decarbonization, hardware energy efficiency increase, and workload size increase will 
likely not constrain emissions to that of data centers today. 

3. Probabilistic framework enables emissions estimates that incorporate uncertainties 

4. Encourage industry to account and release autonomy carbon footprint 

58

Sudhakar, Soumya, Vivienne Sze, and Sertac Karaman. "Data Centers on Wheels: Emissions from Computing 
Onboard Autonomous Vehicles." To be published at IEEE MICRO Special Issue on Environmentally 
Sustainable Computing. 2023. 

Link: https://www.rle.mit.edu/eems/wp-content/uploads/2022/10/2022_micro_carbonAV.pdf

This work was partially supported by National Science Foundation (NSF) Cyber-Physical Systems program grant no. 1837212, NSF 
Real-Time Machine Learning program grant no. 1937501, and the MIT-Accenture Fellowship.

Power plant



Back-Up

59



Modeling Number of Vehicles (N)
Current trends:

● ̴ 1.2 billion cars on the road
● 1,400 AVs approved for testing in 2019 in US
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Future trends:

● Aggressive adoption scenario: 95% of 
market share by 2050

● Moderate adoption scenario: 95% of 
market share by 2075



Emissions from Computing Onboard AVs
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Assume 2020 global average carbon intensity 
and each AV driven for 1 hour per day 

G = 𝜶NQIP
Number of AVs

Average computer 
power [W]

Average time driven 
per AV [hrs/day]

Carbon intensity of 
power source 

[CO2 eq. grams/kWh]

Emissions from computing 
onboard AVs (CO2 eq. tons/yr)

Sources of uncertainty:
● Will Level 5 autonomy be solved?
● How fast will AVs be adopted by the public?
● Growth in population and car ownership? 
● Trends toward car sharing vs. private 

ownership?
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Assume 2020 global average carbon intensity 
and each AV driven for 1 hour per day 

G = 𝜶NQIP
Number of AVs

Average computer 
power [W]

Average time driven 
per AV [hrs/day]

Carbon intensity of 
power source 

[CO2 eq. grams/kWh]

Emissions from computing 
onboard AVs (CO2 eq. tons/yr)

Sources of uncertainty:
● Will driving time increase due to ability to 

multitask, access to underserved populations 
who cannot drive?

● Will driving time decrease due to optimized 
routing, eco-driving strategies? 
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Assume 2020 global average carbon intensity 
and each AV driven for 1 hour per day 

G = 𝜶NQIP
Number of AVs

Average computer 
power [W]

Average time driven 
per AV [hrs/day]

Carbon intensity of 
power source 

[CO2 eq. grams/kWh]

Emissions from computing 
onboard AVs (CO2 eq. tons/yr)

Sources of uncertainty:
● Is the global average the right metric to use 

for geographically varying carbon intensity?
● How quickly will the world decarbonize over 

the next decades?  
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With a computer that consumes 250 W:With a computer that consumes 2500 W:



Level 5 Autonomy
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NYTimes 2021

NYTimes 2022

NYTimes 2021

NYTimes 2019



Future Directions: Challenges Unique to AVs

2. Characterize emissions from sensing

a. Industry proposed AVs have different sensor suites and configurations
b. LiDAR not negligible power consumption

3. Characterize embodied (manufacturing) carbon vs. operational carbon emissions 

a. Capture the total carbon footprint of computing onboard AVs
b. AVs will have longer lifespans than that of data center servers or mobile devices – does operational 

carbon dominate over embodied carbon over the AV lifespan? 
c. Identify impact of strategies like car-sharing that will lower embodied carbon, but not operational 

carbon

4. Explore trade-off between hardware specialization and generalization

a. Unlike data centers, AVs handle constant workloads that are known ahead of time, making the case for 
hardware specialization  

b. Still need to generalize to new workloads over the lifespan of the car
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Future Directions: Efficiency with Safety

1. Explore algorithmic efficiency improvements without sacrificing safety

a. Trading off computing energy vs. actuation energy in tasks such as motion planning

b. Choosing less perceptually difficult (more compute intensive) paths to spend less energy and 
lower emissions from computing

68

Example path returned by baseline Example path returned by CEIMP 
(prior work)



Modeling Computer Power (P)

Current trends:

● DNN workload (likely major component of perception)

● Assume a multitask DNN (shared EfficientNet-B0 encoder 
between tasks, new DeepLabV3+ decoder per task, full 
autoencoder run per 1344x1344 camera image) at desired 
throughput

● Extrapolate to power on target hardware (e.g., Nvidia Drive 
Orin) using ratio of TOPS (INT8)/Watt η

Ptarget = Pmeas(T)Lmeas(T)ηFC

G = 𝜶NQIPmeas(T)Lmeas(T)ηFC
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Results: Potential for Significant Emissions
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Under current trends, potential for emissions from computing onboard AVs to rival 2018 data centers
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Under current trends, potential for emissions from computing onboard AVs to rival 2018 data centers
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Emissions from computing onboard AVs: G = 𝜶NQIP


