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Concern for Emissions from Data Centers and ML Workloads

Data centers could cause serious

environmental damage — if we don’t
regulate them now

NextWeb 2021

How to stop data centres from
gobbling up the world’s electricity

Nature 2018

ARTIFICIAL INTELLIGENCE

Training a single Al model can emit as much
carbon as five cars in their lifetimes

Technology Review 2019
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® “[Trillions of inference per day across Facebook’s
data centers” (Wu et al. 2021)

® Autonomous vehicles (AVs) w/ 10 deep neural

network (DNN) inferences at 60 Hz on 10 cameras:

o One AV: 21.6 million inferences per hour driven
o One billion AVs: 21.6 quadrillion inferences per hour driven!
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Could the carbon emissions from computing onboard a global fleet of AVs be significant?
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Increased Attention to Emissions from Computing

Emissions from... 2018 2020
s'9n|f|can.t Data center Training large NLP Carbon emissions and  Sustainable machine
computational  emissions models large NN training learning
workloads [Jones et al. (Nature 2018)] [Strubell et al. (2018)] [Patterson et al. (2021)] [Wu et al. (ML and Systems 2022)]

Emerging Bitcoin emissions  Lower Bitcoin emissions
. . [Mora et al. (Nature Climate [Masanet et al. (Nature Climate
applications Change 2018)] Change 2019)]
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Increased Attention to Emissions from Computing

Emissions from... 2018 2020
Significant Data center Training large NLP Carbon emissions and  Sustainable machine
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Computing Energy vs. Actuation Energy in AVs
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Computing Energy vs. Actuation Energy in AVs
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Computing energy may be also comparable to actuation energy for AVs! 15



Background: Levels of Autonomy
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Scope of Analysis: Operational Carbon

Footprint of autonomy onboard AVs:
embodied = emissions from manufacturing
operational = emissions from usage

Computers: embodied Computers:boperatlonal
carbon ) ) carbon
Batteries: embodied
carbon

Sensors: embodied
carbon .
Sensors: operational
carbon

*Not including emissions from prototyping/training AV software stack
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Operational Emissions from Computing Onboard AVs

Emissions from computing
onboard AVs (CO, eq. tons/yr)

G = aNQIP
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Operational Emissions from Computing Onboard AVs
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Operational Emissions from Computing Onboard AVs

Emissions from computing Average time driven Average computer
onboard AVs (CO, eq. tons/yr) per AV [hrs/day] power [W]
Constant for unit Carbon intensity of
conversion power source

[CO, eq. grams/kWh]
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Emissions per year [tons CO,e/yr] (G)

Emissions from Computing Onboard AVs

_ Assume 2020 global average carbon intensity
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Emissions per year [tons CO,e/yr] (G)

Emissions from Computing Onboard AVs

1010 4

10° 4
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Computer power for autonomy stack [kW] (P)

--— 2018 data center emissions 0.1 billion AVs
-=-= 1% of 2019 total emissions = 1.0 billion AVs
--= 5% of 2019 total emissions 2.0 billion AVs
—--—= 2019 total emissions 3.0 billion AVs

Assume 2020 global average carbon intensity
and each AV driven for 1 hour per day

Average time driven Average computer
per AV [hrs/day] power [W]

Emissions from computing
onboard AVs (CO, eq. tons/yr)

G = aNQIP

Carbon intensity of
power source
[CO, eq. grams/kWh]

Sources of uncertainty:
e Will Level 5 autonomy be solved?
e How fast will AVs be adopted by the public?
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Emissions per year [tons CO,e/yr] (G)

Emissions from Computing Onboard AVs
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Computer power for autonomy stack [kW] (P)

--— 2018 data center emissions 0.1 billion AVs
-=-= 1% of 2019 total emissions = 1.0 billion AVs
--= 5% of 2019 total emissions 2.0 billion AVs
—--—= 2019 total emissions 3.0 billion AVs

Assume 2020 global average carbon intensity
and each AV driven for

Emissions from computing Average time driven Average computer
onboard AVs (CO, eq. tons/yr) per AV [hrs/day] power [W]

G = aNQIP

Carbon intensity of
power source
[CO, eq. grams/kWh]

Sources of uncertainty:
e Will driving time increase (e.g., ability to
multitask)?
e Will driving time decrease (e.g., optimized
routing)?
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Emissions per year [tons CO,e/yr] (G)

Emissions from Computing Onboard AVs
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--— 2018 data center emissions 0.1 billion AVs
-=-= 1% of 2019 total emissions = 1.0 billion AVs
--= 5% of 2019 total emissions 2.0 billion AVs
—--—= 2019 total emissions 3.0 billion AVs

Assume
and each AV driven for 1 hour per day

Emissions from computing Average time driven Average computer
onboard AVs (CO, eq. tons/yr) per AV [hrs/day] power [W]

G = aNQIP

Carbon intensity of
power source
[CO, eq. grams/kWh]

Sources of uncertainty:

e How quickly will the world decarbonize over
the next decades?
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Emissions per year [tons CO,e/yr] (G)

Emissions from Computing Onboard AVs

i
10° 4
108 E

107 E

106

(0] 2 4 6 8 10

Computer power for autonomy stack [kW] (P)

- 2018 data center emissions 0.1 billion AVs
- 1% of 2019 total emissions = 1.0 billion AVs
- 5% of 2019 total emissions 2.0 billion AVs
- 2019 total emissions 3.0 billion AVs

Assume 2020 global average carbon intensity
and each AV driven for 1 hour per day

Emissions from computing Average time driven Average computer
onboard AVs (CO, eq. tons/yr) per AV [hrs/day] power [W]

G = aNQIP

Carbon intensity of
power source
[CO, eq. grams/kWh]
Sources of uncertainty:
e Proprietary information about industry AV stacks
e AV software stack for Level 5 autonomy:

o What algorithms will be used? Types and
number of sensors? Throughput of the
system?

e Hardware energy efficiency? 31



Emissions per year [tons CO,e/yr]

Technical Gap:
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--— 2018 data center emissions 0.1 billion AVs
-=-= 1% of 2019 total emissions = 1.0 billion AVs
--= 5% of 2019 total emissions 2.0 billion AVs
—--—= 2019 total emissions 3.0 billion AVs

Emissions from Computing Onboard AVs

Assume 2020 global average carbon intensity
and each AV driven for 1 hour per day

Average time driven Average computer
per AV [hrs/day] power [W]

Emissions from computing
onboard AVs (CO, eq. tons/yr)

G = aNQIP

Carbon intensity of
power source
[CO, eq. grams/kWh]

Uncertainty on emerging application of
Level 5 AVs and future trends of variables
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Emissions per year [tons CO,e/yr]

Method: Emissions from Computing Onboard AVs
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--— 2018 data center emissions 0.1 billion AVs
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—--—= 2019 total emissions 3.0 billion AVs

Assume 2020 global average carbon intensity
and each AV driven for 1 hour per day

Average time driven Average computer
per AV [hrs/day] power [W]

Emissions from computing
onboard AVs (CO, eq. tons/yr)

G = aNQIP

Carbon intensity of
power source
[CO, eq. grams/kWh]

Proposed framework (this work) explicitly takes
uncertainties in each variable into account and
produces a distribution of likely emissions scenarios
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Method: Probabilistic Open-Source Framework to Model Emissions

e Probabilistically model each variable as a
distribution to directly incorporate
uncertainty and produce distributions of

emissions G OCNQIP
/X /\
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Method: Probabilistic Open-Source Framework to Model Emissions

e Probabilistically model each variable as a
distribution to directly incorporate
uncertainty and produce distributions of

emissions G OCNQIP

e Project future scenarios from 2025-2050
based on different adoption rates and /\ j\
annual changes in workload size, hardware
efficiency, and carbon intensity

Open-source framework that can be modified as new information is learned or

used by industry using internal proprietary numbers
85



Modeling Computer Power (P)
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Modeling Computer Power (P)
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>

Measure power and latency on hardware platform (e.g., Nvidia 2080 RTX Ti) for different number of tasks
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Modeling Computer Power (P)
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Modeling Computer Power (P)
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Modeling Future Trends in Computer Power (P)

Hardware energy efficiency:

Qualcomm Snapdragon Ride
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Modeling Future Trends in Computer Power (P)

TOPS/Watt

Hardware energy efficiency:

2.72 A

0.37

Qualcomm Snapdragon Ride
Xilinx Versal Al Edge  MobileEye Ey&Q6High
,,,,,, MobileEye EyeQUItra
Nvidia’D‘rhfe'Xavier
1 _-Fesla FSD
Nvidia Drive Pegasus In(y) = 0.25x-498.19
. --- R2=0.52
MobileEye EyeQ4 doubling time: 2.81 yrs
2019 2020 2021 2022 2023 2024 2025

Production Date

Framework capable of modeling increase in hardware energy efficiency and workload size

Size of workload:

Scale by g g

factor A
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Results: Baselines
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Results: Computer Power to Stay Under Emissions Targets
Emissions from computing onboard AVs: G = aNQIP

2018 data center emissions
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Results: Computer Power to Stay Under Emissions Targets

Emissions from computing onboard AVs: G = aNQIP

2018 data center emissions 1% of 2019 total emissions
pn=0.2 0.6 1 Pn =0.2
mm p,=04 mm p,=04
G 20 O _
ey pn=0.6 = 05 pn=0.6
Yo U
Yy— pn=0.8 o pn=0.8
_8_ 154 e p,=0.95 _8_ 0.4 - s p,=0.95
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‘= 1.0 : =
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W o5 4 L
0.1
0.0 - T . T 0.0 - : - - T
0 2 4 6 8 10 0 5 10 15 20 25 30
Computer Power P [kW] Computer Power P [kW]

In 90% of scenarios where 95% of cars are AVs, computer power must stay under 1.2 kW for
emissions to stay under 2018 data centers
46



Results: Scenarios with Different Rates of Hardware Efficiency Increase

Moderate adoption: 95% market share by 2075
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Assuming workload doubles every 3 years, business-as-usual decarbonization
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Results: Scenarios with Different Rates of Hardware Efficiency Increase
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Results: Scenarios with Different Rates of Hardware Efficiency Increase

Moderate adoption: 95% market share by 2075 Aggressive adoption: 95% market share by 2050
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Assuming workload doubles every 3 years, business-as-usual decarbonization

Hardware energy efficiency would need to double every 1.4 or 1.1 years to contain emissions
to 2018 data center emissions in moderate or aggressive adoption scenarios



Smaller Workload Growth Rate and Faster Decarbonization Helps

Effect of growth rate of workload:
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Smaller Workload Growth Rate and Faster Decarbonization Helps

Effect of growth rate of workload:

1lel0

1.2 1 Workload doubling years: 3
=== \Norkload doubling years: 5
+ [==== Workload doubling years: 10
=== 2018 data center emissions
1|=== 1% of 2019 total emissions
=== 5% of 2019 total emissions

rG
=
o

@
©

CO,e tons/y

&
[N)

©
o
!

2025 2030 2035 2040 2045 2050
Years

Business-as-usual decarbonization

Hardware energy efficiency doubles every 2.8 years, aggressive adoption scenario



Smaller Workload Growth Rate and Faster Decarbonization Helps

Effect of growth rate of workload:
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may still rival emissions from data centers
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Future Directions: Challenges Unique to AVs

1. Explore algorithmic efficiency improvements without sacrificing safety
2. Characterize emissions from sensing

3. Characterize embodied (manufacturing) carbon vs. operational carbon
emissions

4. Explore trade-off between hardware specialization and generalization

5. Encourage an industry standard to release data points to calculate emissions
of autonomy stack
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Future Directions: Challenges Unique to AVs

1. Explore algorithmic efficiency improvements without sacrificing safety

2. Characterize emissions from sensing

3. Characterize embodied (manufacturing) carbon vs. operational carbon
emissions

B

Explore trade-off between hardware specialization and generalization
5. Encourage an industry standard to release data points to calculate
emissions of autonomy stack
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Efficient Algorithms That Will Not Compromise Safety

e Cannot tolerate decrease in performance
metrics relevant to safety

e Many techniques used to make data centers
greener cannot be applied here
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Efficient Algorithms That Will Not Compromise Safety

Cannot tolerate decrease in performance
metrics relevant to safety

Many techniques used to make data centers
greener cannot be applied here

Research needed on which algorithmic
efficiency improvements (e.g., compact,
pruned, sparse DNNs, choosing to compute
less and accept longer paths) can be safely
applied

e

LR B

=T I T [ T (e e

Example path returned by baseline
— | e | - f—
=7 7 ¥ ar= - B

=TT o et [aaio

Example path returned by CEIMP
(prior work)

Look to resource-constrained robot literature since computing is similarly not negligible
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Encouraging an Industry Standard to Evaluate Footprint of Autonomy

e Use framework with internal numbers to
evaluate and release emissions from
autonomy stack

e Release data that allows the community to
evaluate footprint (e.g., computer power)

Computers: embodied Computers:boperatlonal
carbon Caroon
Batteries: embodied
carbon

Sensors: embodied
carbon ]
Sensors: operational
carbon
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Key Takeaways:

1. Emissions from computing on AVs could be significant: emissions could rival that of 'f”

data centers due to significant workload size and the size of a global fleet of AVs

2. Business-as-usual trends are not enough to constrain emissions: current rates of Power plant

decarbonization, hardware energy efficiency increase, and workload size increase will
likely not constrain emissions to that of data centers today.

3. Probabilistic framework enables emissions estimates that incorporate uncertainties

4. Encourage industry to account and release autonomy carbon footprint 6‘_\:@

Sudhakar, Soumya, Vivienne Sze, and Sertac Karaman. "Data Centers on Wheels: Emissions from Computing
Onboard Autonomous Vehicles" To be published at IEEE MICRO Special Issue on Environmentally
Sustainable Computing. 2023.

Link: https://www.rle.mit.edu/eems/wp-content/uploads/2022/10/2022_micro_carbonAV.pdf

This work was partially supported by National Science Foundation (NSF) Cyber-Physical Systems program grant no. 1837212, NSF
Real-Time Machine Learning program grant no. 1937501, and the MIT-Accenture Fellowship.
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Back-Up
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Modeling Number of Vehicles (N)

Current trends:

e 1.2 billion cars on the road °
1,400 AVs approved for testing in 2019 in US

0.05
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Number of AVs (n) le9

Future trends:

Aggressive adoption scenario: 95% of
market share by 2050

Moderate adoption scenario: 95% of
market share by 2075

e Projected number of AVs

95% market share by 2050
= 95% market share by 2075
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Emissions per year [tons CO,e/yr]

Emissions from Computing Onboard AVs

1010 4

10° 4

108 E

106 T T T T T T
(0] 2 4 6 8 10

Computer power for autonomy stack [kW]

--— 2018 data center emissions 0.1 billion AVs
-=-= 1% of 2019 total emissions = 1.0 billion AVs
--= 5% of 2019 total emissions 2.0 billion AVs
—--—= 2019 total emissions 3.0 billion AVs

Assume 2020 global average carbon intensity
and each AV driven for 1 hour per day

Average time driven Average computer
per AV [hrs/day] power [W]

Emissions from computing
onboard AVs (CO, eq. tons/yr)

G = aNQIP

Carbon intensity of
power source
[CO, eq. grams/kWh]

Sources of uncertainty:
e Will Level 5 autonomy be solved?
e How fast will AVs be adopted by the public?
e Growth in population and car ownership?
e Trends toward car sharing vs. private
ownership?

61



Emissions per year [tons CO,e/yr]

Emissions from Computing Onboard AVs

1010 4

10° 4

108 E

106 T T T T T T
(0] 2 4 6 8 10

Computer power for autonomy stack [kW]

--— 2018 data center emissions 0.1 billion AVs
-=-= 1% of 2019 total emissions = 1.0 billion AVs
--= 5% of 2019 total emissions 2.0 billion AVs
—--—= 2019 total emissions 3.0 billion AVs

Assume 2020 global average carbon intensity
and each AV driven for

Average time driven Average computer
per AV [hrs/day] power [W]

Emissions from computing
onboard AVs (CO, eq. tons/yr)

G = aNQIP

Carbon intensity of
power source
[CO, eq. grams/kWh]

Sources of uncertainty:

e Will driving time increase due to ability to
multitask, access to underserved populations
who cannot drive?

e Will driving time decrease due to optimized

routing, eco-driving strategies? -



Emissions per year [tons CO,e/yr]

Emissions from Computing Onboard AVs

1010 4

10° 4

108 E

106 T T T T T T
(0] 2 4 6 8 10

Computer power for autonomy stack [kW]

--— 2018 data center emissions 0.1 billion AVs
-=-= 1% of 2019 total emissions = 1.0 billion AVs
--= 5% of 2019 total emissions 2.0 billion AVs
—--—= 2019 total emissions 3.0 billion AVs

Assume
and each AV driven for

Average time driven Average computer
per AV [hrs/day] power [W]

Emissions from computing
onboard AVs (CO, eq. tons/yr)

G = aNQIP

Carbon intensity of
power source
[CO, eq. grams/kWh]

Sources of uncertainty:
e |s the global average the right metric to use
for geographically varying carbon intensity?
e How quickly will the world decarbonize over
the next decades?
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Computing Energy vs. Actuation Energy for AVs

For an AV that consumes 0.25 kWh/mile that travels 30 miles over one hour,

With a computer that consumes 2500 W

Computing energy
25.0%

Actuation energy
75.0%

64



Computing Energy vs. Actuation Energy for AVs

For an AV that consumes 0.25 kWh/mile that travels 30 miles over one hour,

With a computer that consumes 2500 W With a computer that consumes 250 W:

Computing energy

Computing energy 309

25.0%

Actuation energy
75.0%

Actuation energy
96.8%

65



Level 5 Autonomy

Tesla Sells ‘Full Self-Driving,’ but
What Is It Really?

As the company deals with government scrutiny of its driver-
assistance technology, an add-on kit sold for up to $10,000 is also
getting more attention.

NYTimes 2021

Despite High Hopes, Self-Driving Cars
Are ‘Way in the Future’

Ford and other companies say the industry overestimated the
arrival of autonomous vehicles, which still struggle to anticipate

what other drivers and pedestrians will do.

NYTimes 2019

FUTURE OF TRANSPORTATION

As Driverless Cars Falter, Are
‘Driver Assistance’ Systems in

Closer Reach?

With investigations and lawsuits over accidents adding
skepticism toward fully driverless technology, car companies are
betting on systems that take some, but not all, control.

NYTimes 2022

The Costly Pursuit of Self-Driving Cars
Continues On. And On. And On.

Many in Silicon Valley promised that self-driving cars would be a
common sight by 2021. Now the industry is resetting
expectations and settling in for years of more work.

NYTimes 2021
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Future Directions: Challenges Unique to AVs

2. Characterize emissions from sensing

a. Industry proposed AVs have different sensor suites and configurations
b. LiDAR not negligible power consumption

3. Characterize embodied (manufacturing) carbon vs. operational carbon emissions

a. Capture the total carbon footprint of computing onboard AVs

b. AVs will have longer lifespans than that of data center servers or mobile devices — does operational
carbon dominate over embodied carbon over the AV lifespan?

c. Identify impact of strategies like car-sharing that will lower embodied carbon, but not operational

carbon

4. Explore trade-off between hardware specialization and generalization

a. Unlike data centers, AVs handle constant workloads that are known ahead of time, making the case for

hardware specialization
b.  Still need to generalize to new workloads over the lifespan of the car
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Future Directions: Efficiency with Safety

1. Explore algorithmic efficiency improvements without sacrificing safety

a. Trading off computing energy vs. actuation energy in tasks such as motion planning

b. Choosing less perceptually difficult (more compute intensive) paths to spend less energy and
lower emissions from computing

RN G| AR

S IC IC T BT (R S RN T PL R

Example path returned by baseline Example path returned by CEIMP
(prior work)
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Modeling Computer Power (P)

Current trends:

e DNN workload (likely major component of perception)

e Assume a multitask DNN (shared EfficientNet-BO encoder
between tasks, new DeeplLabV3+ decoder per task, full
autoencoder run per 1344x1344 camera image) at desired

throughput

e Extrapolate to power on target hardware (e.g., Nvidia Drive

Orin) using ratio of TOPS (INT8)/Watt n
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T)L

meas(

meas

meas(

(TnFC

T)nFC

t

Probability T

=C

Probability C

=f

Probability F

=)
H
[N}

0.10 A

=
=)
©

&
o
=

=
o
i

=
o
]

=
=
S

Ar=10
[ ] /\T= 50

Ar=100

0

2’0 4‘0 6‘0 8‘0 160 12‘0
Number of tasks t

0.14

0.12

0.10

0.08

0.06

0.04 A

0.02

Ac=8
o0 [ ] AC=12
Ac=16

10 15 20 25
Number of cameras ¢

Ar =30
e Ar=60

.A.

/ N

T
20

T T y T T T
30 40 50 60 70 80

Throughput f

69



Results: Potential for Significant Emissions

Emissions from computing onboard AVs: G = aNQIP

le—8
o -=-= 2018 data center emissions
' -—- 1% of 2019 total emissions
GO 1.2 1 pn=0.2
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'5_ 0.6 :
1
£ od] :
i
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|
1
0.0 . . - . .
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Emissions per year G [tons CO,e/yr]

Under current trends, potential for emissions from computing onboard AVs to rival 2018 data centers
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Results: Potential for Significant Emissions

Emissions from computing onboard AVs: G = aNQIP
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Under current trends, potential for emissions from computing onboard AVs to rival 2018 data centers
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Results: Potential for Significant Emissions

Emissions from computing onboard AVs: G = aNQIP
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Under current trends, potential for emissions from computing onboard AVs to rival 2018 data centers
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Results: Potential for Significant Emissions

Emissions from computing onboard AVs: G = aNQIP

le—8

14 i ---— 2018 data center emissions

' - --— 1% of 2019 total emissions
W12 ; pn=0.2

| A

‘4_6 Y : | pn—0.4
o : pn=0.6
Trg 0.8 - : pn=0.8
= i B p,=0.95
= '
£

0.0 (V7 0.4 0.6 Ob
Emissions per year G [tons CO,e/yr]

1.0

NN
o (6]

Empirical pdf fg

1

- 2018 data center emissions

1% of 2019 total emissions
5% of 2019 total emissions
10% of 2019 total emissions
8 cameras, 10 tasks, 60 Hz
12 cameras, 50 tasks, 60 Hz
16 cameras, 100 tasks, 60 Hz

2
Emissions per year G [tons CO,e/yr]

3

4 5 () 7

Under current trends, potential for emissions from computing onboard AVs to rival 2018 data centers
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