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Abstract— Deployment of deep neural networks (DNNs) for
monocular depth estimation in safety-critical scenarios on
resource-constrained platforms requires well-calibrated and
efficient uncertainty estimates. However, many popular uncer-
tainty estimation techniques, including state-of-the-art ensem-
bles and popular sampling-based methods, require multiple
inferences per input, making them difficult to deploy in latency-
constrained or energy-constrained scenarios. We propose a new
algorithm, called Uncertainty from Motion (UfM), that requires
only one inference per input. UfM exploits the temporal redun-
dancy in video inputs by merging incrementally the per-pixel
depth prediction and per-pixel aleatoric uncertainty prediction
of points that are seen in multiple views in the video sequence.
When UfM is applied to ensembles, we show that UfM can
retain the uncertainty quality of ensembles at a fraction of the
energy by running only a single ensemble member at each frame
and fusing the uncertainty over the sequence of frames. In a set
of representative experiments using FCDenseNet and eight in-
distribution and out-of-distribution video sequences, UfM offers
comparable uncertainty quality to an ensemble of size 10 while
consuming only 11.3% of the ensemble’s energy and running
6.4× faster on a single Nvidia RTX 2080 Ti GPU, enabling
near ensemble uncertainty quality for resource-constrained,
real-time scenarios.

I. INTRODUCTION

Deployment of deep neural networks (DNNs) for monoc-
ular depth estimation for resource-constrained robots is
an increasingly popular way for sensing the environ-
ment [1], [2], [3]. Using a DNN trained to predict per-pixel
depth from images enables depth estimation for autonomous
vehicles and robotic platforms where a single camera can be
used rather than traditional depth sensors that are heavier,
larger, and consume more power such as LIDAR, structured
light, and stereo cameras. However, in order to deploy
in safety-critical scenarios and reason probabilistically to
minimize the chance of collisions, we require accurate and
efficient estimates of the uncertainty of the DNN prediction.

The total predictive uncertainty of a DNN can come
from two sources: uncertainty inherent to the data (e.g.,
lighting, blur, glare), called aleatoric uncertainty, and uncer-
tainty inherent to the model called epistemic uncertainty [4].
Aleatoric uncertainty stays constant with increased training
data, while epistemic uncertainty decreases as the training
data increases. Estimating both sources of uncertainty is
necessary for capturing the total predictive uncertainty of
the DNN. For instance, in Figure 1, DNNs trained on the
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Fig. 1: Uncertainty estimation comparison for an aleatoric
network, ensemble, and UfM applied to ensembles on an out-
of-distribution cropped example from the TUM RGBD [5]
dataset. Lower NLL indicates better uncertainty quality.

NYUDepthV2 dataset [6] predict the depth for an out-of-
distribution (OOD) image from the TUM RGBD dataset [5].
This image contains a vacuum cleaner, for which all the
DNNs have difficulty estimating the depth as seen by the
high error. Aleatoric uncertainty alone fails to predict high
uncertainty in the vacuum region. Meanwhile, even though
the ensemble also has high error in that region, it correctly
predicts higher uncertainty in that region due to its ability to
also capture epistemic uncertainty.

We quantify uncertainty by estimating the variance of the
DNN prediction. While estimating aleatoric variance is com-
putationally inexpensive [4], estimating epistemic variance is
computationally expensive. Techniques used to estimate epis-
temic variance, such as sampling a stochastic DNN [7] [8]
and the state-of-the-art ensemble method [9], [10], involve
capturing the variance of predictions using M networks on
a single image and require M inferences per input. For
example, in Figure 1, although the ensemble returns the best
uncertainty quality, it has a latency of 193 ms on a Nvidia
RTX 2080 Ti GPU, which makes it far from real-time video
speed (33.3 ms for 30 fps). Even for a smaller and faster
network such as FastDepth [2], running M = 10 inferences
per input sequentially would reduce the speed from 178 fps
to 17.8 fps on the Nvidia Jetson TX2, reducing the speed of
the network to slower than real-time.

The main contribution of this paper is a new algorithm,
called Uncertainty from Motion (UfM), in which we consider
the variance of predictions across images in a video sequence
using a single ensemble member or sampled network on each
image. Given the DNN’s depth prediction, aleatoric variance
prediction, and the pose estimate of the camera, we merge the
per-pixel depth predictions and per-pixel aleatoric variance
predictions that are multiple views of the same point in 3D



space to compute the total predictive variance, which in-
cludes epistemic variance, with only one inference per input.
UfM is lightweight and works with any DNN that outputs
a depth prediction and aleatoric variance prediction or just
a depth prediction, without requiring any modifications to
the original network architecture or training procedure. For
example, when applied to an ensemble on a Nvidia RTX
2080 Ti GPU over eight datasets for the FCDenseNet DNN
architecture, UfM obtains on average similar uncertainty
quality to an ensemble of size 10 while consuming only 5.0
J at 32 fps compared to the ensemble which consumes 44.5
J at 5 fps.

II. RELATED WORK

DNN uncertainty estimation: Uncertainty estimation for
DNNs is a large and active field of research. Nix et al. [11]
showed how to learn to predict aleatoric variance through
a modified loss function and Kendall et al. [4] extended
aleatoric variance estimation for dense prediction tasks.
For estimating epistemic variance, sampling-based methods
such as Bayesian NNs have been explored, where instead
of constant DNN weights, each weight has a distribution
that is sampled at inference time to produce a DNN with
sampled weights [8] [12] [13]. Gal et al. [7] [4] proposed a
popular sampling-based method called MC-Dropout, where
dropout is applied at inference time for M inferences and the
epistemic variance is the variance of the M predictions. Lak-
shminarayan et al. [9] proposed the state-of-the-art method of
ensembles [14] [10], where M ensemble members that each
make depth predictions and aleatoric variance predictions
are randomly initialized and trained on randomly ordered
datasets; the predictions are combined through a mixture of
Gaussians approach to produce the total predictive variance.

Both sampling-based methods and ensembles require M
inferences per input. The UfM algorithm proposed in this
work is used to reduce the computational cost of sampling-
based and ensemble-based methods, requiring only one in-
ference per input while maintaining the uncertainty quality.

Temporal consistency: There exists a rich body of
work that has looked at consistency between images for
the tasks of structure-from-motion (SfM) [15], [16], [17],
self-supervised learning [18], [19], [20], [21], temporally
consistent depth prediction [22], [23], and data augmenta-
tion [24]. These works use consistency between images to
infer structure of the environment or to improve the depth
prediction itself. In this work, we use consistency between
images to help measure uncertainty of the DNN prediction.

Similar to this work, Liu et al. [25] and Huang et al. [26]
consider temporal consistency between images to measure
uncertainty of a DNN prediction. In Liu et al. [25], a DNN
is trained to take in a sequence of images and predict a non-
parametric probability distribution for the depth prediction
which is post-processed by two additional DNNs that apply a
modified Bayesian filter with learned parameters and increase
the resolution respectively. Unlike Liu et al. [25], our work
does not introduce any additional DNNs, which reduces
computational cost and avoids introducing new unknown

sources of DNN uncertainty to estimate the original DNN’s
uncertainty. Instead, UfM provides a method to accelerate ex-
isting DNN ensembles and sampling-based methods without
retraining by running a single ensemble member or sampled
DNN per image and merging those predictions over time.

The closest work in the spirit of this paper is Huang et
al. [26], which also requires only one inference per input
by using optical flow to estimate correspondences between
images and computing a running average of MC-Dropout
class predictions across images for the task of semantic
segmentation. While their work can be extended to depth,
it cannot handle merging predicted aleatoric variances. Fur-
thermore, an additional DNN is used to compute optical flow
which can be computationally expensive and introduces an
additional source of unknown DNN uncertainty in order to
compute the original DNN’s uncertainty. Meanwhile, UfM
merges both DNN depth predictions and aleatoric variance
predictions through a mixture of Gaussians approach, allow-
ing it to be used to accelerate state-of-the-art ensembles [9]
and popular sampling-based aleatoric networks [4]. The
method of finding correspondences in UfM does not require
an additional DNN, relying instead on a pose estimate, and
is lightweight (6.1 ms for 224x224 depth predictions on
Nvidia GTX 2080 Ti) such that it can be applied to real-
time systems.

III. PROBLEM DEFINITION

Let θm(Xn) → (Zm,n,σ
2
m,n) be the m’th functional

mapping parameterized by weights (DNN) that takes in
the n’th image Xn in video sequence N = {1, ...n, ...N}
and outputs per-pixel depth prediction Zm,n and per-pixel
aleatoric variance prediction σ2

m,n. Let Yn be the ground-
truth depth label for image Xn and let θ1:M be M functional
mappings parameterized by weights (e.g., a DNN ensemble
of size M or M sampled networks from a BNN). We assume
we are given the relative pose In−1

In
R,

In−1

In
t of the camera

reference frame In at image n with respect to the camera
reference frame In−1 at the previous image n − 1. Since
autonomous navigation requires the robot to estimate its
pose as part of its localization framework, we believe this
assumption is reasonable. It also allows us to incorporate
information from other sensor modalities (e.g., IMU). We
assume a static world world assumption; dynamic objects
can be marked with high uncertainty due to geometric
inconsistency between images. We consider the case where
the DNNs θ1:M are fixed, and so we require a solution that
does not require retraining which can be expensive and time-
consuming. Given DNNs θ1:M and the pose of the camera,
our goal is to the estimate the total predictive uncertainty
σ2
n for a sequence of images 1 to N while keeping the

latency and energy low to enable real-time, energy-efficient
uncertainty estimation.

IV. ALGORITHM

We now propose a new algorithm called Uncertainty from
Motion (UfM) that merges the depth predictions and aleatoric
variance predictions of the DNNs θ1:M temporally across a



sequence of images, allowing us to run only one inference
using a single DNN per image. The pseudocode for UfM
is presented in Algorithm 1 and our implementation can be
found at https://github.com/mit-lean/ufm. We
next outline the steps of the algorithm at each image.

1) Select and run DNN: Although we have access to
all M DNNs θ1:M , the efficiency advantage of UfM comes
from only running one inference using a single DNN per
image. We cycle through the M networks over the N images
such that we run θm on the n’th input image Xn where
m = n modulo M to obtain the depth prediction Zm,n and
aleatoric variance prediction σ2

m,n (line 2 in Algorithm 1).
2) Project point cloud to image plane: UfM maintains

a point cloud C where each point p describes the mean
and covariance of the mixture of K − 1 Gaussians from
the K − 1 views of that point that we have seen before in
the previous n − 1 images. Each point p has a 3D position
In−1µ1:K−1 w.r.t. the camera reference frame in frame n−1,
a covariance matrix In−1Σ1:K−1 w.r.t. the camera reference
frame in frame n−1, and a counter for the number of times
this point has been seen, here equal to K−1. For each point
in the point cloud, we rotate the position and covariance
matrix from the previous camera’s reference frame to the
current camera’s reference frame using

Inµ1:K−1 =
In−1

In
R In−1µ1:K−1 +

In−1

In
t,

InΣ1:K−1 =
In−1

In
RIn−1Σ1:K−1

In−1

In
R
T
,

(1)

(lines 5-6 in Algorithm 1). We drop the reference frame
notation for rest of this section for brevity. Next, to find cor-
respondences between the point cloud, the depth prediction
Zm,n, and the aleatoric variance prediction σ2

mn, we project
each point in the point cloud back to the image plane and
calculate the pixel it projects to (line 7 in Algorithm 1), using

u′ = bfxµ1:K−1,x/µ1:K−1,z + cxe
v′ = bfyµ1:K−1,y/µ1:K−1,z + cye,

(2)

where µ1:K−1,x, µ1:K−1,y , µ1:K−1,z are the x, y, z compo-
nents of µ1:K−1, and fx, fy, cx, and cy are the camera focal
lengths and image center from the intrinsic matrix F . The
point µ1:K−1 is within bounds of the new image if it satisfies

u′ < umax ∧ u′ ≥ 0 ∧ v′ < vmax ∧ v′ ≥ 0, (3)

where umax and vmax are the width and height of the image.
If pixel u′, v′ is in bounds of the new image, we interpret the
depth prediction Zm,n at pixel u′, v′ and aleatoric variance
prediction σ2

m,n at pixel u′, v′, as the K’th view of µ1:K−1
(K > 1). If pixel u′, v′ is out of bounds of the new image, we
interpret Zm,n and σ2

m,n to be the first view of a new point
we have not seen before (K = 1). If u′, v′ is within bounds
of the image, we update a mask of the image D indexed
at pixel u′, v′ to be true and store a pointer to the point
µ1:K−1 (lines 8-9 in Algorithm 1). We repeat this process
for all points in the point cloud.

3) Project image to 3D space: Let u, v index all pixels in
the image. For each Zm,n and σ2

m,n at pixel u, v, we project

Zm,n and σ2
m,n to 3D space (line 11 in Algorithm 1) using

µK = [u−cxfx
Zm,n

v−cy
fy

Zm,n Zm,n]
T

ΣK =


(
u−cx
fx

)2
σ2
m,n

u−cx
fx

v−cy
fy

σ2
m,n

u−cx
fx

σ2
m,n

u−cx
fx

v−cy
fy

σ2
m,n

(
v−cy
fy

)2
σ2
m,n

v−cy
fy

σ2
m,n

u−cx
fx

σ2
m,n

v−cy
fy

σ2
m,n σ2

m,n

 .
(4)

4) Update point cloud: If mask D indexed at pixel u, v
is true, then pixel u, v represents the K’th view of a point
we have seen before (K > 1), and we update µ1:K−1 and
Σ1:K−1 with the new K’th Gaussian with mean µK and
covariance ΣK (lines 12-14 in Algorithm 1). To merge the
K’th measurement µK and ΣK into µ1:K−1 and Σ1:K−1,
we assume a uniformly-weighted Gaussian mixture model
K−1

∑K
k N (µk,Σk) in which the k’th measurement of the

point contributes a Gaussian parameterized by µk and Σk.
We approximate the distribution of the mixture as a Gaussian
parameterized by the mean and covariance of the mixture.
The mean of the mixture model is

µ1:K =
1

K

K∑
k=1

µk, (5)

and the covariance matrix of the mixture model is

Σ1:K =
1

K

K∑
k=1

(Σk + (µk − µ1:K)(µk − µ1:K)T ). (6)

We incrementally update the mean and covariance of the
mixture to avoid having to store the depth prediction and
aleatoric variance predictions from previous images. As each
point in 3D space is seen for the K’th time, its new Gaussian
is added to the mixture of K − 1 Gaussians for that point.
The incremental update to the mixture mean is

µ1:K = µ1:K−1 + (µK − µ1:K−1)/K, (7)

and the incremental update to the mixture variance is

Σ1:K =
K − 1

K
(Σ1:K−1 + µ1:K−1µ

T
1:K−1)− µ1:Kµ

T
1:K

+
1

K
(ΣK + µK).

(8)

If mask D indexed at pixel u, v is false, then none of
the points in the point cloud projected to pixel u, v and it
represents the first view of a new point (K = 1). We initialize
a new point in the point cloud with mean µ1 and covariance
Σ1 from Eq. 4 with the counter K = 1 (lines 15-16 in
Algorithm 1).

The total predictive uncertainty σ2
n for the pixel u, v is

the z-variance component of Σ1:K of the updated or added
point (line 17 in Algorithm 1). We repeat this process for all
the pixels in the predicted depth map, and obtain the total
predictive uncertainty σ2

n for all pixels in the n’th image.
5) Threshold point cloud: The time complexity of UfM

per image is O(umaxvmax + |C|) where umaxvmax is the
number of pixels in the depth prediction and |C| is the



Algorithm 1: Uncertainty from Motion (UfM)

Input : RGB input Xn, relative pose In−1

In
R, In−1

In
t for

n’th image ∈ [1, N ], DNNs θ1:M , camera
intrinsic matrix F , image dimensions umax, vmax

Output: Depth prediction Zm,n, total predictive variance
σ2

n for n’th image ∈ [1, N ]
1 for n← 1 to N do
2 Zm,n,σ

2
m,n ← select and run dnn(n,M )

3 D← 0
4 for p ∈ C do
5 µ1:K−1 ← rotate pos(In−1

In
R, In−1

In
t) (Eq. 1)

6 Σ1:K−1 ← rotate cov(In−1

In
R, In−1

In
t) (Eq. 1)

7 u′, v′ ← project to image(µ1:K−1, F ) (Eq. 2)
8 if in bounds(u′, v′, umax, vmax) (Eq. 3) then
9 D[u′, v′]← 1

10 for u← 0 to umax, v ← 0 to vmax do
11 µK ,ΣK ← project to 3D(Zm,n, σ2

m,n, u, v, F )
(Eq. 4)

12 if D[u, v] = 1 then
13 µ1:K ← update mean(µK , µ1:K−1,K)

(Eq. 7)
14 Σ1:K ← update cov

(Σ1:K−1,ΣK ,µ1:K ,µ1:K−1,µK ,K)
(Eq. 8)

15 else
16 C ← C ∪ (µK ,ΣK , 1)

17 σ2
n[u, v]← Σ1:K [2, 2]

18 if |C| > Cmax then
19 C ← threshold point cloud(C)

number of points in the point cloud C. While the image
dimension is generally fixed for a task, |C| will keep growing
if left unbounded. For efficiency, we apply a threshold Cmax
to the point cloud so that when |C| > Cmax, points are
removed from the point cloud (lines 18-19 in Algorithm 1).
We use the rule that points out of view are removed first,
followed by oldest points. Note, thresholding can cause the
total predictive variance to be discontinuous across images
when a point is thrown away and then seen again.

Note, we present operations per point in the point cloud
and per pixel in the image in the pseudocode for simplicity;
our implementation uses vectorized matrix operations to
speed the processing on the GPU. Note, in this work, UfM
is only applied to depth estimation. However, once the
correspondences between frames are calculated, the same
correspondences can be used to apply UfM to other dense
prediction tasks such as semantic segmentation.

V. METRICS FOR UNCERTAINTY QUALITY

While there is no ground-truth for uncertainty, we would
like the total predictive variance to behave such that it is high
when the accuracy is low, and it is low when the accuracy is
high. The pixel-wise negative-log likelihood (NLL) captures
this trend when it is minimized [27], given for the Gaussian

case by

NLL =
1

2σ2
n

(Yn − Zm,n)2 +
1

2
ln(2πσ2

n). (9)

We show the NLL for each pixel in Figure 1, where the
proposed method has a low NLL like the ensemble. We can
also average the pixel-wise NLL across all pixels across all
images in a sequence to obtain an average NLL.

In addition to NLL, calibration curves are widely used to
quantify uncertainty quality and they can indicate when the
total predictive variance is underestimating or overestimating
its uncertainty [28], [27], [4], [9]. We first look at the
calibration of accuracy vs. confidence. The confidence of
the depth prediction is the probability that the true depth lies
within in an interval δ around the depth prediction (e.g., δ
= ±25% of depth prediction) and can be calculated from
the depth prediction and total predictive variance. For each
pixel u, v, we calculate the probability mass within interval
δ for the Gaussian distribution parameterized by the depth
prediction and total predictive variance N (Zm,n, σ

2
n). If an

uncertainty estimate is perfectly calibrated, there is a one-to-
one correspondence between the confidence of the pixels and
the average accuracy of the pixels with that confidence level.
For example, for all pixels that the model is 60% confident
in, the average accuracy of those pixels should be 60%. If
the accuracy is instead 40%, the model is overconfident,
and if the accuracy is instead 80%, the model is under-
confident. The expected calibration error (ECEδ) is the
weighted RMSE of the confidence vs. accuracy calibration
from perfect calibration, given by

ECEδ =

B∑
b

|b|
S
|acc(b)− conf(b)| (10)

where |b| is the number of pixels in confidence bin b of B
total bins, and S = Numaxvmax which is the total number
of pixels in the sequence [28] [27].

We also consider the calibration curve of expected fre-
quency vs. observed frequency used in prior works [4], [29],
where for a range of probabilities, we calculate the inverse
CDF of N (Zm,n, σ2

n) over a range of probabilities for each
pixel and consider observed frequency to be the fraction of
corresponding ground-truth pixels that fall under the inverse
CDF. Under perfect calibration, the expected and observed
frequency are equivalent, and we can calculate

ECEfreq =

B∑
b

|b|
S
|expfreq(b)− obsfreq(b)| . (11)

Uncertainty quality for an uncertainty estimation method
is higher when ECEδ , ECEfreq and NLL are lower.

VI. EXPERIMENTAL SETUP

In this section, we discuss the experimental set-up for the
results in Section VII. We use a threshold Cmax = 100, 000
points and we test two use cases of UfM: Ensemble-UfM
where θ1:M is an ensemble with M ensemble members as in
Lakshminarayan et al. [9] and MC-Dropout-UfM where θ1:M



is an aleatoric network that is sampled M times with different
dropouts as in Kendall et al. [4]. We test three architectures:
1) FC-DenseNet [30], 2) ResNet50-UpProj [31], and 3) Fast-
Depth [2] and train an ensemble of size M = 10 aleatoric
networks, a MC-Dropout network with dropout probability
p = 0.2, and a network that predicts only depth with l1 loss
for each architecture. Note, ResNet50-UpProj and FastDepth
both have ImageNet pretrained encoder weights which are
not randomly initialized for the ensemble. All networks are
trained for 50 epochs on the NYUDepthV2 dataset [6] with
the SGD optimizer.

ORBSLAM2 [32], [33] is used to obtain pose estimates
for the sequences where ground-truth pose is unavailable. All
RGB inputs are processed into 224x224x3 inputs as in [2].
We run all the experiments in PyTorch on a Nvidia RTX
2080 Ti GPU. We measure the average power P the GPU
consumes during the experiment; we calculate energy using
E = Pt.

VII. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of UfM
with different methods, network architectures, datasets, and
pose estimates. Table I shows the validation δ1 accuracy
on the official NYUDepthV2 validation set, where δi =
% of Zm,n s.t. |Zm,n−Yn|

Yn
< (1.25i − 1), where δ1 ac-

curacy is the fraction of depth predictions Zm,n that are
within 25% of ground-truth Yn. Note, many prior works use
δi = % of Zm,n s.t. max(Zm,n

Yn
, Yn

Zm,n
) < 1.25i to measure

relative error [34] [35] [36] [2] [3]. However, this expression
does not evaluate to relative error when Yn > Zm,n ;
we report δi in Table I for comparison to previous works,
and use δ1 for the remainder of the results. We see that
the accuracy on the validation set is similar to that in the
literature [30], [31], [2].

TABLE I: δ1, δ1 accuracy on NYUDepthv2 official val. set

Method FCDenseNet ResNet50 UpProj FastDepth
Depth only 81.0, 77.0 84.1, 80.7 81.7, 77.5
Aleatoric 80.7, 77.2 83.6, 79.9 80.7, 76.7

MC-Dropout 78.1, 73.5 82.1, 78.3 78.2, 74.3
Ensemble 81.0, 77.0 83.1, 80.0 80.7, 76.5

TABLE II: Numbering for sequences and datasets used

Num. Sequence Num. Sequence

1 TUM: long office 5 KITTI: 0022
2 TUM: pioneer slam3 6 KITTI: 0061
3 TUM: room 7 NYU: bathroom 0003
4 KITTI: 0009 8 NYU: living room 0003

For the remainder of the results, we test on video se-
quences where UfM can be applied. We test on TUM
RGBD (indoor out-of-distribution) [5], KITTI (outdoor
out-of-distribution) [37], and NYUDepthV2 (indoor in-
distribution) [6], numbered in Table II for reference. Since
there is a lack of uncertainty quality baselines to compare

(a) δ1 acc. vs. conf. calibration (b) Per bin pixel count

(c) Frequency calibration (d) Poor ensemble calibration

Fig. 2: Calibration curves (a,b,c) Sequence 1 (d) Sequence 2

to in the literature for video sequences, we evaluate the
UfM algorithms in relation to an aleatoric only network
(one inference per image) [4], an aleatoric MC-Dropout
network (10 inferences per image) [4], and an ensemble of
size M = 10 [9] (10 inferences per image) as baselines.

TABLE III: UfM applied with FC-DenseNet on Seq. 1 with
ground-truth pose; arrows show favorable direction for metric

Method δ1 ↑ ECEδ1 ↓ NLL ↓ t (ms) ↓
Aleatoric 0.471 0.399 8.20 25.9

MC-Dropout 0.460 0.265 3.86 194.8
MC-Dropout-UfM 0.454 0.214 3.35 33.2

Ensemble 0.475 0.299 4.63 199.1
Ensemble-UfM 0.458 0.269 4.35 32.5

Depth only-UfM 0.451 0.508 6652.9 31.7
Full MC-Dropout-UfM 0.460 0.216 3.87 200.7

Full ensemble-UfM 0.476 0.233 3.87 201.5

The top of Table III shows the results for MC-Dropout-
UfM, Ensemble-UfM, and the baselines. We see that MC-
Dropout-UfM and Ensemble-UfM both outperform the net-
work that outputs aleatoric variance only. Furthermore, MC-
Dropout-UfM is able to maintain similar uncertainty quality
to MC-Dropout at a fraction of the latency; this trend also
holds true for Ensemble-UfM. UfM adds an average latency
of 6.1 ms, showing it has lightweight overhead.

Although UfM is motivated by the need to speed up
ensembles and sampling based networks, it can be applied to
any network that produces a depth prediction. On the bottom
of Table III (italicized), we see that UfM applied to a network
that does depth prediction only (σ2

m,n = 0) performs very
poorly indicating the importance of incorporating aleatoric
variance predictions. In addition, UfM can also be applied
in the case where we run the full θ1:M networks on each
image, but we lose the advantage in efficiency.

Table IV and Table V show a subset of results for different
architectures and datasets for Ensemble-UfM and the base-



TABLE IV: Results of Ensemble-UfM vs. baselines on three architectures on Sequence 2

Arch. Method δ1 ↑ ECEδ1 ↓ δ2 ↑ ECEδ2 ↓ ECEfreq ↓ NLL ↓ t (ms) ↓ P [W] E [J] ↓

FC-DN
Aleatoric 0.418 0.379 0.766 0.213 0.122 8.58 25.7 163.4 4.20
Ensemble 0.356 0.365 0.712 0.246 0.138 5.07 195.1 232.7 45.84

Ensemble-UfM 0.399 0.251 0.731 0.190 0.101 4.32 30.3 165.1 5.01

ResNet50
Aleatoric 0.320 0.554 0.585 0.388 0.249 39.54 16.4 191.0 3.13
Ensemble 0.318 0.512 0.586 0.384 0.286 10.93 148.0 238.2 35.25

Ensemble-UfM 0.326 0.413 0.607 0.328 0.205 7.99 24.2 178.5 4.32

FastDepth
Aleatoric 0.474 0.383 0.793 0.189 0.129 14.34 6.0 64.0 0.38
Ensemble 0.412 0.342 0.663 0.306 0.184 6.83 49.9 69.4 3.46

Ensemble-UfM 0.423 0.240 0.727 0.203 0.101 5.08 13.6 68.8 0.93

TABLE V: Results of Ensemble-UfM vs. baselines on FCDenseNet architecture and different sequences

Seq. Method δ1 ↑ ECEδ1 ↓ δ2 ↑ ECEδ2 ↓ ECEfreq ↓ NLL ↓ t (ms) ↓ P [W] E [J] ↓

3
Aleatoric 0.358 0.495 0.651 0.339 0.301 6.99 26.0 171.6 4.46
Ensemble 0.390 0.357 0.676 0.292 0.253 4.28 196.3 233.1 45.76

Ensemble-UfM 0.366 0.305 0.656 0.282 0.243 3.55 30.8 167.3 5.15

4
Aleatoric 0.000 0.700 0.009 0.948 0.490 53.85 25.3 163.8 4.14
Ensemble 0.000 0.606 0.004 0.920 0.570 33.38 197.3 219.5 43.31

Ensemble-UfM 0.000 0.539 0.006 0.868 0.490 28.57 32.5 161.6 5.25

5
Aleatoric 0.000 0.697 0.019 0.942 0.570 58.10 25.7 168.3 4.33
Ensemble 0.000 0.566 0.014 0.881 0.490 36.47 197.9 227.3 44.98

Ensemble-UfM 0.000 0.546 0.019 0.858 0.570 32.67 30.5 158.3 4.83

6
Aleatoric 0.001 0.751 0.031 0.947 0.490 56.68 25.6 165.8 4.24
Ensemble 0.001 0.600 0.020 0.898 0.490 34.10 199.9 232.5 46.48

Ensemble-UfM 0.001 0.557 0.026 0.862 0.489 29.58 30.7 160.7 4.93

7
Aleatoric 0.199 0.702 0.637 0.356 0.441 3.11 24.1 161.5 3.89
Ensemble 0.240 0.604 0.576 0.410 0.404 2.40 198.5 193.4 38.39

Ensemble-UfM 0.216 0.553 0.605 0.364 0.428 1.75 30.1 160.0 4.80

8
Aleatoric 0.723 0.211 0.964 0.033 0.234 1.20 24.7 164.3 4.06
Ensemble 0.689 0.224 0.964 0.032 0.252 1.24 196.4 235.0 46.15

Ensemble-UfM 0.707 0.143 0.964 0.034 0.227 0.98 30.7 156.1 4.79

lines. We see that Ensemble-UfM obtains close to ensemble
uncertainty quality and in some cases, surpasses ensemble
uncertainty quality at a much lower latency and energy. For
FC-DenseNet, Ensemble-UfM consumes on average 11.3%
of the energy that an ensemble consumes and runs 6.4×
faster. On all three architectures, Ensemble-UfM can run at or
faster than real-time (< 33.3 ms for 30 fps) with comparable
uncertainty quality to ensembles. These savings will increase
when compared to larger ensembles. Note, all the networks
perform poorly both in accuracy and uncertainty quality on
Sequences 4-6 though Ensemble-UfM still returns the lowest
NLL; this behavior is likely due to the KITTI dataset being
extremely out-of-distribution (outdoor vs. indoor).

We next look at calibration curves in Figure 2. Ensemble-
UfM performs close the ensemble baseline and is less over-
confident than the aleatoric network. There are high accuracy
pixels that are classified as low confidence in Ensemble-UfM
in Figure 2a, but as seen in Figure 2b, there are few pixels
in those bins, lessening the effect on ECE by the poorly
calibrated bins. Ensemble-UfM can help mimic ensembles,
but if ensemble uncertainty quality is itself poor, Ensemble-
UfM will mimic the poor quality as in Figure 2d.

In Table VI, we study the effect of noise in the pose
estimate. We see that UfM with a noisy pose returns similar
uncertainty quality to UfM with a ground-truth pose. At
times, UfM with a noisy pose seems to perform better such
as in Sequence 3; this behavior may be due uncertainty being

TABLE VI: Effect of different VO modalities on uncertainty

Seq. Pose Traj. RMSE ECEδ1 ↓ ECEfreq ↓ NLL ↓

1
GT 0 0.269 0.125 4.34

RGBD 0.010 0.251 0.121 4.07
Mono. 1.22 0.223 0.114 3.82

2
GT 0 0.251 0.101 4.32

RGBD 0.049 0.399 0.101 4.04

3
GT 0 0.366 0.243 3.55

RGBD 0.05 0.304 0.244 3.54
Mono. 0.289 0.248 0.220 2.77

underestimated by Ensemble-UfM, such that when a noisy
pose increases the geometric inconsistency and therefore, the
uncertainty, the metrics improve. It is possible odometry with
just an IMU may suffice in the future since we do not need to
consider drift over a long trajectory when using a threshold
Cmax as UfM will maintain a local point cloud.

VIII. CONCLUSION

In this paper, we propose Uncertainty from Motion (UfM),
an algorithm that enables us to merge depth predictions and
aleatoric variance predictions over a sequence of images
to speed up ensembles and sampling-based methods for
uncertainty estimation. UfM retains the methods’ uncertainty
quality while running only one inference per input, making
high quality uncertainty a possibility for real-time, resource-
constrained scenarios.
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