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Low-Energy Autonomy and Navigation (LEAN) Group

| EAN HOME ~ TEAM  RESEARCH  PUBLICATIONS  PRESS  RECOGNITION

A broad range of next-generation applications will be enabled by low-energy, miniature mobile robotics including insect-size flapping wing robots that
can help with search and rescue, chip-size satellites that can explore nearby stars, and blimps that can stay in the air for years to provide
communication services in remote locations. While the low-energy, miniature actuation, and sensing systems have already been developed in many of
these cases, the processors currently used to run the algorithms for autonomous navigation are still energy-hungry. Our research addresses this
challenge as well as brings together the robotics and hardware design communities,

We enable efficient computing on various key modules of other autonomous navigation systems including perception, localization, exploration and
planning. We also consider the overall system by considering the energy cost of computing in conjunction with actuation and sensing.

Motion Planning

Many motion planning and control algorithms aim to design trajectories and controllers that minimize actuation energy.
However, in low-energy robotics, computing such trajectories and controls themselves may consume a large amount of
energy. We develop algorithms that optimize this trade-off.

Mutual Information for Exploration

Computing mutual information between the map and future measurements is critical to efficient exploration. Unfortunately,
mutual information computation is computationally very challenging. We develop new algorithms and hardware for efficient
computation of mutual information, and demonstrate real-time computation for the whole map in a reasonably-sized map.

Depth Sensing and Perception

Depth sensing is a critical function for robotic tasks such as localization, mapping and obstacle detection. State-of-the-art
single-view depth estimation algorithms are based on fairly complex deep neural networks that are too slow for real-time
inference on an embedded platform, for instance, mounted on a micro aerial vehicle. We address the problem of fast depth
estimation on embedded systems.

Group Website: http://lean.mit.edu

Localization and Mapping

Autonomous navigation of miniaturized robots (e.g., nano/pico aerial vehicles) is currently a grand challenge for robotics
research, due to the need for processing a large amount of sensor data (e.g., camera frames) with limited on-board
computational resources, We focus on the design of a visual-inertial odometry (VIO) system in which the robot estimates
its ego-motion (and a landmark-based map) from on-board camera and IMU data.

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit Mir
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Computing Challenge for Self-Driving Cars

WEIR 4D

(Feb 2018)

SELEDRIVING CARS USF, CRAZY
AMOUNTS OF POWER. ANDIT'S
BECOMING A PROBLEN

Cameras and radar generate
~6 gigabytes of data every 30 seconds.

Self-driving car prototypes use
approximately 2,500 Watts of
computing power.

Generates wasted heat and some
prototypes need water-cooling!

Vivienne Sze & http://sze.mit.edu/ % @eems_mit Mir
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Robots Consuming < 1 Watt for Actuation
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Existing Processors Consume Too Much Power

< 1 Watt > 10 Watts

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit i
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Il Transistors Are Not Getting More Efficient

I Stuttering
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Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist *Maximum safe power consumption
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Slowdown of Moore’s Law and
Dennard Scaling

General purpose microprocessors are
not getting faster or more efficient

Slowdown

Need specialized hardware for
significant improvements in speed
and energy efficiency

Redesign computer from the
ground up!
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Efficient Computing with Cross-Layer Design
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Il Energy Dominated by Data Movement

Operation: Energy | Relative Energy Cost
(pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9 Memory access is orders
8b Multiply 0.2 of magnitude higher
32b Multiply 31 energy than compute
16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) | 5
32b DRAM Read 640

1 10 102 103 104

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit [Horowitz, ISSCC 2014] i
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Bl Autonomous Navigation Uses a Lot of Data

Semantic Understanding Geometric Understanding

* High frame rate  Growing map size
* Large resolutions

* Data expansion

2mi||ionpixe| o 10x-100x more pixels

Vivienne Sze @ http://sze.mit.edu/ % @eems_mit [Pire, RAS 2017] Mir
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Visual-Inertial Localization

Determines location/orientation of robot from images and IMU
(also used by headset in Augmented Reality and Virtual Reality)

Localization

4 )
Image sequence —| Visual-Inertial
Odometry
IMU - (VIO)*
Inertial Measurement Unit \_ J

"T...Y/:\
[\
7$12_

*Subset of SLAM algorithm
(Simultaneous Localization And Mapping) Mapping

Vivienne Sze & http://sze.mit.edu/ % @eems_mit i
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Localization at Under 25 mW

First chip that performs

complete Visual-Inertial Odometry

Front-End for camera
(Feature detection, tracking, and
outlier elimination)

Front-End for IMU
(pre-integration of accelerometer
and gyroscope data)

Back-End Optimization of Pose
Graph

Consumes 684x and 1582x
less energy than
mobile and desktop CPUs,
respectively

Technology 65nm CMOS | Supply 1V
Chip area (mm?) 4.0x5.0 Resolution 752x480
Core area (mm?) | 3.54x4.54 | Camera rate 28-171fps
Logic gates 2,043 kgates | Keyframe rate 16 - 90 fps
SRAM 854KB Average Power 24 mW
VFE Frequency 62.5 MHz GOPS 105-59.1
BE Frequency 83.3 MHz GFLOPS 1-5.7

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit
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[Zhang, RSS 2017], [Suleiman, VLSI-C 2018]

Joint work with Sertac Karaman
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Key Methods to Reduce Data Size

Navion: Fully integrated system — no off-chip processing or storage
http://navion.mit.edu
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Use compression and exploit sparsity to reduce memory down to 854KB

Vivienne Sze @ http://sze.mit.edu/ » @eems_mit [Suleiman, VLS/-C 2018] Best Student Paper Award i
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Understanding the Environment

Depth Estimation

output layer
input layer
hidden layer

State-of-the-art approaches use

Deep Neural Networks, which

require up to several hundred
millions of operations and
building weights to compute!

& >100x more complex than video

body road airplane compression

‘F"sky

tree

grass grass
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Deep Neural Networks

Deep Neural Networks (DNNs) have become a cornerstone of Al

Computer Vision Speech Recognition
U, RN | 202

Vivienne Sze & http://sze.mit.edu/ % @eems_mit Mir
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Properties We Can Leverage

* Operations exhibit high parallelism

— high throughput possible

* Memory Access is the Bottleneck

DRAM

Memory Read : MAC" Memory Write
filter weighté A ALU
fmgp act ® updated
partial sum ( Sartial sum >
1x

200x

Worst Case: all memory R/W are DRAM accesses

Vivienne Sze @ http://sze.mit.edu/

Example:

@eems_mit

* multiply-and-accumulate

AlexNet has 724M MACs
- 2896M DRAM accesses required
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Properties We Can Leverage

* Operations exhibit high parallelism
— high throughput possible

* Input data reuse opportunities (up to 500x)

Filter Input Fmap

0. I 0. :
C
|

Convolutional Reuse
(Activations, Weights)

CONYV layers only
(sliding window)

Vivienne Sze & http://sze.mit.edu/ % @eems_mit

Filters

Input Fmap

1

=
\
y

Fmap Reuse
(Activations)
CONV and FC layers

Input Fmaps

Filter

- .
*
‘\“

Filter Reuse
(Weights)
CONV and FC layers
(batch size > 1)
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Exploit Data Reuse at Low-Cost Memories

NoC: 200 - 1000 PEs | PE

Global

Buffer

Specialized
PE H PE Reg File hardware with
small (< 1kB)
PE M ALU low cost memory
Control near compute

0.5-1.0 kB [lg—>

Normalized Enerqy Cost’

ALU

ALU

>

ALU

ALU

ALU

1% (Reference)
1%

2%
6%

{ 200x

* measured from a commercial 65nm process

Vivienne Sze @ http://sze.

Farther and larger memories consume more power i
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Deep Neural Networks at Under 0.3W

Eyeriss: Energy-Efficient Dataflow
http://eyeriss.mit.edu

Link Clock! Core Clock DCNN Accelerator

14x 1£ Pé A.;r.ay

Filter

(D

Input Image
Decomp

Output Image LS M

Comp pa RelU

Off-Chip DRAM
64 bits

Exploits data reuse for 100x reduction in memory accesses from global
buffer and 1400x reduction in memory accesses from off-chip DRAM

Admm

[Chen, ISSCC 2016], Micro Top Picks

| Overall >10x energy reduction compared to a mobile GPU (Nvidia TK1) |

Results for AlexNet

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit Joint work with Joel Emer Mir
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Features: Energy vs. Accuracy

Exponential
10000
*VGG162
1000
Energy/ 100 + AlexNet?
Pixel (nJ)
10 .
Measured in 65nm* Video
4mm 1 ComEression
E fhiiia *HOG!
' Linear
s 0.1 . . . .
0 20 40 60 80
@ (suleiman, VLSI 2016] @) [Chen, ISSCC 2016] .
Accuracy (Average Precision)
* Only feature extraction. Does Measured in on VOC 2007 Dataset
not include data, classification 1. DPM V5 [Girshick 2012]

energy, augmentation and
ensemble, etc.

2. Fast R-CNN [Girshick, CVPR 2015]

Vivienne Sze @ http://sze.mit.edu/ % @eems [Suleiman, ISCAS 2017] i
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Energy-Efficient Processing of DNNs

A significant amount of algorithm and hardware research
on energy-efficient processing of DNNs

Proceedings IEEE

Hardware Architectures for
Deep Neural Networks

V. Sze, Y.-H. Chen,
T-J. Yang, J. Emer,
“Efficient Processing of
Deep Neural Networks:
A Tutorial and Survey,”
Proceedings of the IEEE,
Dec. 2017

ISCA Tutorial
June 24, 2017

Website: http://eyeriss.mit.edu/tutorial.html

mmm Massachusetts —
I l Institute of (2, nv I Dl A
Technology - »

http://eyeriss.mit.edu/tutorial.html

We identified various limitations to existing approaches

Vivienne Sze & http://sze.mit.edu/ % @eems_mit i
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Design of Efficient DNN Algorithms

Popular efficient DNN algorithm approaches

Network Pruning Efficient Network Architectures

before pruning after pruning

E;lrj]r;lgges 7 | ‘
' .
Egsjcglri T ( : ’

«— —> ¥

Examples: SqueezeNet, MobileNet

... also reduced precision

* Focus on reducing number of MACs and weights
* Does it translate to energy savings and reduced latency?

Vivienne Sze @ http://sze.mit.edu/ % @eems_mit [Chen*, Yang®*, SysML 2018] Mir
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Number of MACs and Weights are Not Good Proxies

# of operations (MACs) does not approximate

latency well
30
o .. Similar latency, 3x range in # MACs
D e e e =
. S SN . ¥ e
/ .\
= 20 o I' : e o
E 019
> @ ! ®
o i
2 L.
- 10 1 @ !
€ ooo ! Similar # MACs,
® " .0 - 2xrange in latency
4
0
25 50 75 100 125 150 175

# MACs (Million)

Source: Google
(https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit

# of weights alone is not a good metric for energy

(All data types should be considered)

Computation
10% Input Feature Map

25%

Weights

22%
Energy breakdown of

GooglLeNet

https://energyestimation.mit.edu/
[Yang, CVPR 2017]
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Energy-Aware Pruning

Directly target energy
and incorporate it into the
optimization of DNNs to provide
greater energy savings

« Sort layers based on energy and prune layers
that consume the most energy first

* Energy-aware pruning reduces AlexNet
energy by 3.7x w/ similar accuracy
« Outperforms magnitude-based pruning by 1.7x

[Yang, CVPR 2017]

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit

4.5
4
3.5
3
2.5
2
1.5
1
0.5
0

x10°

Normalized Energy (AlexNet)

2.1x

Ori. Magnitude Energy Aware

Based Pruning Pruning

Pruned models available at
http://eyeriss.mit.edu/energy.html
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NetAdapt: Platform-Aware DNN Adaptation

- Automatically adapt DNNtoa  "reiraned Budget crpiical Measuremens Platform
mobile platform to reach a E e R T I e -
target latency or energy budget icl

 Use empirical measurements NetAdapt | Measure
to guide optimization (avoid ) NZtWOrkCPmPO;a'S )
modeling of tool chain or \ o ST
platform architecture) E ! : :: : ! : :' =

= | o= e
Few hyperparameters to Adaptec

reduce tuning effort
[Yang, ECCV 2018]
« >1.7x speed up on MobileNet

w/ similar accuracy Code available at
http://netadapt.mit.edu

Vivienne Sze @ http://sze.mit.edu/ ¥ @eems_mit Joint work with Google’s Mobile Vision Team ir
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FastDepth: Fast Monocular Depth Estimation

Depth estimation from a single RGB image desirable, due to the

relatively low cost and size of monocular cameras.
RGB Prediction

Auto Encoder DNN Architecture (Dense Output)

upsample  upsample ‘upsample l upsample @  upsample 1x1
| | LR layer 1 layer2 @ Jayer3 layer 4 fayer’s T Dense
— I — - —- _ — Depth
- Map
7x7%1024 14x14x512  28x28x256 56x56x128  112x112x64 SRRl
| 22422453 ' i 224x224x1
(HxWxC) Encoding Layers — < Decoding Layers
J |\ ' |
Reduction _
Expansion

(similar to classification)

Vivienne Sze & http://sze.mit.edu/ % @eems_mit i
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FastDepth: Fast Monocular Depth Estimation

Apply NetAdapt, compact network design, and depth wise decomposition
to decoder layer to enable depth estimation at high frame rates on an

embedded platform while still maintaining accuracy

0.80 A S 10x
8 < >
~ & *
é’ 0.75 4
5‘ * This Work
® 0.70 - & Eigen'l4
8 @® Eigen'l5 (AlexNet)
2 ® Eigen'l5 (VGG)
= 0.65 A ® Laina'l6 (UpConv)
Laina'l6 (UpProj)
® Xian'l8
0.60 -+ T T T

0 25 50 75 100 125 150 175
Frames per second (on Jetson TX2 GPU)

Configuration: Batch size of one (32-bit float)

Models available at http://fastdepth.mit.edu

~40fps on
an iPhone

Vivienne Sze & http://sze.mit.edu/ % @eems_mit [Wofk*, Ma*, ICRA 2019] Joint work with Sertac Karaman Mir
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NetAdapt v2: Reduce Adaption Time

Reduce time to find efficient DNN that adapts to hardware by up to 5.8x

Typical Steps in Neural Architecture Search (NAS):
1) Train super-network (search space of DNNs)
2) Sample and evaluate different DNNs

Total Search Time

78
3) Fine tune the final DNN This Work A Unknown
2\"577 {g 2 @ 400 GPU-Hours
Contributions §' .' A ‘ 1300 GPU-Hours
* Ordered dropout: train multiple DNNs in single 3 76- o NAS Mothods
forward pass (reduce step 1) < A MnasNet
Y P lessNAS
- Channel-level bypass: merge layer depth and 5| A A il
channel width into a single search dimension 2 A © : TGRS,
oplieNe
(reduce step 2) al | | | A FairNAS
* Multi-layer coordinate descent optimizer: 50 60 70 80 90 @ Once-for-All
Y P Latency (ms) @® NetAdaptV2

consider joint effect of multiple layers (reduce step 2
& support non-differentiable metrics, e.g., latency)

More info at http://netadapt.mit.edu

Vivienne Sze @ http://sze.mit.edu/ % @eems_mit [Yang, CVPR 2021] i
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Measuring Uncertainty in DNN Monocular Depth Estimation

Need to estimate uncertainty (sensor noise model) for robot decision making

DNN
srediction Ground Truth Error

Uncertainty

-

Popular approaches involve running multiple DNNs on the same input

Vivienne Sze @ http://sze.mit.edu/ ¥ @eems_mit [Sudhakar, /ICRA 2022] Joint work with Sertac Karaman i
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Uncertainty from Motion (UfM)

seen for first time

not seen ‘

S UfM needs to run only one DNN per input

It exploits temporal redundancy in video inputs
by merging outputs that belong to the same
point in 3D space across multiple views to
estimate uncertainty

RGB input \gtssae:
Depth pred.

Uncertainty
pred.

Frame 1 Frame 2 Frame 3

Vivienne Sze @ http://sze.mit.edu/ ¥ @eems_mit [Sudhakar, /ICRA 2022] Joint work with Sertac Karaman i
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Mapping with Gaussian Mixture Models

Convert depth images to Gaussian Mixture Models (GMMs) to construct a
compact 3D map of an environment.

2D Depth Image Gaussian Mixture Models (blue)

Convert

307,200 pixels (3.5MB) Around 1000 parameters (12-18 kB)

While existing approaches focus on reducing map size, they do not
account for the memory cost during the conversion process

Vivienne Sze @ http://sze.mit.edu/ ¥ @eems_mit [Li, ICRA 2022] Joint work with Sertac Karaman i
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Single Pass Gaussian Fitting (SPGF)

Depth Image
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e
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-

Vivienne Sze @ http://sze.mit.edu/

@eems_mit

[Li,

Lyv.1

+ Segment Fusion

SPGF Approach: Scanline Segmentation

Single pass reduces storage of inputs
and temporary variables

Row-by-row based approach allows
for accurate and efficient inference of

surface geometries in a single pass

ICRA 2022] Joint work with Sertac Karaman
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SPGF Results on TUM RGB-D Room

Comparison of SPGF with other approaches at similar accuracy and compactness

Memory Overhead
104 5
| 4.9MB
3.0MB

)
%
? 10%1
q) 4
£ 0.42MB
m ——— i ———— — ——— —
>
©)
2
g 15x

102 -
2 E 49x
X
= . 28KB

10" 5 v 8.7KB

H-EM NDT RG SPGF SPGF
(100 (10 (10  (10)  (4Q)

Average Throughput (fps)

40 A

30 A

20 A

10 A

Throughput
5.2x
12
84 _______ thax | .
<0.001 0.6
H-EM NDT RG SPGF SPGF
(1C) (1C) (1C) (1C) (4C)

Average Energy (J) per Image

Energy Consumption

103-E

102 5

10"

] 2527

3.26
0.20
-- - . _0.08
H-EM NDT  RG  SPGF  SPGF
(1)  (10) (10 (10)  (40Q)

Hierarchical EM (H-EM):[Eckart, CVPR 2016], Normal Distance Transform (NDT):[Saarinen, /[JRR 2013], Region Growing (RG):[Dhawale, RSS 2020]

SPGF only uses KBs of memory overhead and achieves real-time on a low-power ARM Cortex-57 CPU

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit

Note: All algorithms were similarly optimized in C++
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Where to Go Next: Planning and Mapping

Robot Exploration

Vivienne Sze &) http://sze.mit.edu/ ¥ @eems_mit Mir
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Mutual-Information-Based Exploration

Robot Exploration: Decide where to go by computing Shannon Mutual Information

| Select candidate scan | Compute Shannon M| and choose ) Mqve to Update
> : > : » location and |— Occupancy
locations best location
scan Map
Where to scan? Mutual Information Updated Map

xxxxxx
1111111

it
T
T

||||||
111111

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit Joint work with Sertac Karaman Mir
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Information Theoretic Mapping

Occupancy grid map, M Mutual information map, I(M; Z)
HM|Z) = HM) - IM;2)
Perspective updated Current map Mutual
map entropy entropy information

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit Mir
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FSMI: Fast Shannon Mutual Information

Shannon Mutual Information | Zy

(between ray Z and map M) =
[Julian, IURR 2014] i R
I(M; Z) = z j P(2)f(8;(2),r)dz :
i—1|” 220

No closed form solution. Requires expensive
numerical integration at resolution 1,. 0(n?1,)

>’¥=~$~

FSMI: Fast Shannon Mutual Information Approximate FSMI
n n n Jj+A
I(M,Z) =22P(ej)Cka,j I(M,Z) =z z P(ej)Cka,j
J=1k=1 =1 k=j—A
Evaluate Ml for all cells in entire ray altogether Approximate noise model of depth sensor
removes numerical integration. 0(n?) with truncated Gaussian*. 0(n)

*Charrow et al., ICRA 2015
Vivienne Sze & http://sze.mit.edu/ % @eems_mit [Zhang, ICRA 2019] Joint work with Sertac Karaman Mir
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FSMI: Fast Shannon Mutual Information
Original Mill FSMI CSQMiI?l | Approximate FSMI

0(n%1,) 0(n?) 0(n) 0(n)
[1] Julian et al., IURR 2014; [2] Charrow et al., ICRA 2015
188046
Measured run time
per ray (Jsec) on an
Intel Xeon core 132
29 17
(desktop)
Original MI FSMI csQwmi Approximate FSMI
422

Measured run time per ray (usec) on
an ARM Cortex-A57 core 149

(embedded) -—

csQmi Approximate FSMI
Approximate FSMI is over 1000x faster than original Ml and 1.7 — 2.8x faster than CSQMI

Vivienne Sze & http://sze.mit.edu/ % @eems_mit [Zhang, IJRR 2020] Joint work with Sertac Karaman Mir
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Experimental Results (4x Real Time)

I —

Occupancy map
with planned
path using RRT*
(compute Ml on
all possible paths)

M
I surface

Exploration with a mini race car using motion capture for localization

Vivienne Sze & http://sze.mit.edu/ % @eems_mit [Zhang, ICRA 2019] Joint work with Sertac Karaman Mir
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Building Hardware to Compute FSMI

Motivation: Compute MI faster for faster exploration!

n Jj+A

I(M;Z)=2 z P(e;)CyGy,;

j=1k=j—-A

Algorithm is embarrassingly parallel!
High throughput should be possible with multiple cores.

IIIII

C_0re N Process beams in parallel with multiple cores

|
[ \ Core 1
\ _ Core 3

=

Occupancy %
I B - i i Map E
= b ' Core N

|
'% \‘/_ Core 1
|

» [(M; Z)

Vivienne Sze & http://sze.mit.edu/ % @eems_mit
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Challenge is Data Delivery to All Cores

Power consumption of memory scales with number of ports.

Low power SRAM limited to two-ports!

Read Port 1 .| Core 1

Occupancy %

Map Arbiter

Read Port 2

| Core N

Data delivery, specifically memory bandwidth,
limits the throughput (not compute)
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Specialized Memory Architecture

Break up map into separate memory banks and novel storage pattern
to minimize read conflicts when processing different rays in parallel.

Memory Access Pattern Diagonal Banking Pattern

8 ; Bank 0
/ ’ / Bank 1

6 / Bank 2

5 B sank 3

8 | [MBank 4

3 5 [ 6 [ 7 Bank 5
Bank 6

YL 21 3 yau - Bank 7
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Experimental Results

x10* e
8 - | —©— Baseline (1 bank) e
7 || = 16 banks,vertical banking,1x1 packing 7 ] Specialized banking efficient
6 - 16 banks,diagonal banking,1x1 packing - . ! .
- | == 16 banks diagonal banking,2x2 packing Z : memory arbiter and packing
5 - | ====Unlimited bandwidth : .
; ; multiple values at each address
é Al ] results in throughput within
= | . 94% of theoretical limit
£3} : (unlimited bandwidth)
o I —x
< | | :
5| | Compute MI for an entire map of 20m x 20m
: at 0.1m resolution in under a second while
consuming under 2W on a ZC706 FPGA
' (100x faster than CPU at 10x lower power)
oo —— o5 ....H
2 4 6 8 10 12 14 16

Number of Cores
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FCMI: Fast Continuous Mutual Information

Reformulate with a continuous occupancy map framework and
exploit recursive structure when computing Ml across entire map

n = cells per ray Accumulation of 1D Scans
L = number of rays

H? = size of map
FSMI: O(nLH?)—~> FCMI: O(LH?)
Two orders of magnitude
speed up over FSMI!

Occupancy Grid
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Several Orders of Magnitude Speed up Via Co-Design

Optimize memory subsystem,

For a 200x200 Map time-interleave cores and
(Note: Speed up increases for larger maps) approximate computing
Reformulate using a
100,000,000 Optimize memory continuous occupancy
- subsystem (banking) map framework and
10,000,000 for multi-beam parallel  exploit recursive structure

rocessin
1,000,000 Evaluate MI for all cells P J \\‘
in entire ray altogether

100,000 -
removes numerical

10,000 integration
1,000
100
10
1
Shannon M| FSMI (CPU) FSMI (hardware) FCMI (CPU) FCMI (hardware)

[Julian, IURR 2014] [Zhang, ICRA 2019] [Li, RSS 2019] [Henderson, ICRA 2020] [Gupta, /IROS 2021]

Compute mutual information for the entire map
in real time for the first time!
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Balancing Actuation and Computing Energy

Motion Planning
Find a feasible (obstacle-free) path
[typically optimize for shortest path]

Low-Energy Robotics
Actuation and computing energy
are similar order of magnitude

Vivienne Sze & http://sze.mit.edu/ % @eems_mit

start M we
Path

(obstacle free)

Energy to move 1 more meter (P,/v [W/(m/s)])

. Cheerwing  Slocum Ocean 2 WD Robot 2 WD Robot
Robobee ~ Viper Dash .. .o~ Glider Chassis Chassis
» ey b -

" l‘ . 4

. v ! R )
4 5 6 7 4 8

ASIC  FPGA Cortex-A7 Cortex-Al5 Nvidia Jetson TX2
Embedded CPUs GPU

Energy to compute 1 more second (P [W])
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Balancing Actuation and Computing Energy

Baseline
(compute 20,000 samples) Time: 0 s

ttttt y
@ CEIMP Stopping Point
70 —

Energy (J)
S

0 5 10 15 20
Time (s)

Compute Energy Included Motion Planning (CEIMP)
A framework to balance the energy spent on computing a path and
the energy spent on moving along that path (Don’t think too hard!)
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Low Power 3D Time of Flight Imaging

* Pulsed Time of Flight: Measure distance using round trip time of laser light for each
image pixel
— Illlumination + Imager Power: 2.5 - 20 W for range from 1-8 m

* Use computer vision techniques and passive images to estimate changes in depth

without turning on laser
— CMOS Imaging Sensor Power: < 350 mW

2

"

Estimated Depth Maps

Real-time Performance on Embedded Processor
VGA @ 30 fps on Cortex-A7 CPU (< 0.5W active power)

Vivienne Sze @ http://sze.mit.edu/ ¥ @eems_mit [Noraky, TCSVT 2019] Mir
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Results of Low Power Depth ToF Imaging

RGB Image

Depth Map
Ground Truth

Depth Map
Estimated

Mean Relative Error: 0.7%

Duty Cycle (on-time of laser): 11%

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit

[Noraky, TCSVT 2019]


http://sze.mit.edu/

Summary

e Efficient computing is critical for advancing the progress of autonomous robots,
particularly at the smaller scales. = Critical step to making autonomy ubiquitous!

* |n order to meet computing demands in terms of power and speed, need to redesign
computing hardware from the ground up - Focus on data movement!

* Specialized hardware creates new opportunities for the co-design of algorithms and
hardware = Innovation opportunities for the future of robotics!

.

Algorithms Hardware

A
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Low-Energy Autonomy and Navigation (LEAN) Group

| EAN HOME ~ TEAM  RESEARCH  PUBLICATIONS  PRESS  RECOGNITION

A broad range of next-generation applications will be enabled by low-energy, miniature mobile robotics including insect-size flapping wing robots that
can help with search and rescue, chip-size satellites that can explore nearby stars, and blimps that can stay in the air for years to provide
communication services in remote locations. While the low-energy, miniature actuation, and sensing systems have already been developed in many of
these cases, the processors currently used to run the algorithms for autonomous navigation are still energy-hungry. Our research addresses this
challenge as well as brings together the robotics and hardware design communities,

We enable efficient computing on various key modules of other autonomous navigation systems including perception, localization, exploration and
planning. We also consider the overall system by considering the energy cost of computing in conjunction with actuation and sensing.

Motion Planning

Many motion planning and control algorithms aim to design trajectories and controllers that minimize actuation energy.
However, in low-energy robotics, computing such trajectories and controls themselves may consume a large amount of
energy. We develop algorithms that optimize this trade-off.

Mutual Information for Exploration

Computing mutual information between the map and future measurements is critical to efficient exploration. Unfortunately,
mutual information computation is computationally very challenging. We develop new algorithms and hardware for efficient
computation of mutual information, and demonstrate real-time computation for the whole map in a reasonably-sized map.

Depth Sensing and Perception

Depth sensing is a critical function for robotic tasks such as localization, mapping and obstacle detection. State-of-the-art
single-view depth estimation algorithms are based on fairly complex deep neural networks that are too slow for real-time
inference on an embedded platform, for instance, mounted on a micro aerial vehicle. We address the problem of fast depth
estimation on embedded systems.

Group Website: http://lean.mit.edu

Localization and Mapping

Autonomous navigation of miniaturized robots (e.g., nano/pico aerial vehicles) is currently a grand challenge for robotics
research, due to the need for processing a large amount of sensor data (e.g., camera frames) with limited on-board
computational resources, We focus on the design of a visual-inertial odometry (VIO) system in which the robot estimates
its ego-motion (and a landmark-based map) from on-board camera and IMU data.

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit Mir
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Resources on Efficient Processing of DNNs
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Additional Resources

Talks and Tutorial Available Online
http://sze.mit.edu/slides

- > - - -
ARATARR PATPACAR _AACAPAPAPAPA LAPATACARS PR . PATAFA LY
R A L L]

"NEURAL INFORMATION
rAararara

. PROCESSING SYSTEMS
*, VANCOUVER | DEC8-14

.
r,
.
r
5

€

[

T IS

Brarararararey

.
"
.
r
5
’
.
.,
.
.
5

L A N A

BEFsrarnrar
s LTI IS

-

EFFICIENT PROCESSING OF
DEEP NEURAL NETWORK: FROM
ALGORITHMS TO HARDWARE
ARCHITECTURES

Vivienne Sze

FArAFAFARARAY
YT
mrararATArAFA R
e A da v dadavaane
-
AL LA MR LaaVa

\

dua

December 9th - 11:15am

Uploads PLAY ALL = SORTBY

Eificient Compuing for Autonomous
Navigation ering Algor thrm-and-Hardware
Ce-desiga

VIVIENNE SZ5 Drergten aw

Efficlent Computing for Al Efficient Computing for :  Efficient Computing for Energy-Efficient Al Efficient Computing for

and Robatics Robotics and Al Autonomous Navigation of... 65 ows 10 ronhs a0 Autonomous Navigation wit...
405 views * 7 manths ago 347 views - 7 months ago 2 7K views - 3 manths ago 203 views - 10 months ago
Challenges and Opportunities Arehitecture Dosign for Tunrgy (ficiont Accbrators Tor
Navom: dn Bere-CT O Weishosm Oneiry Highly Flaxible and Energy-=flicient
Aatopaier de Wy Bolrotas el ey, Doep Noural Notwork Accelerators Aesr Solonts
i Hon Sy
ouTube anne % 2
i My =\
- - I e Prat. Vieros Gas, P e
EEMS Group — PI: Vivienne Sze ... | == i) E——
L

Energy-Efficient Deep Navion: An Energy-Efficient Design for Highly Flexible Energy-Efficient Accelerators Navion: Test chip performing
Learning: Challenges and . Visual-Inertial Odometry . and Energy-Efficient Deep . for AL Navigati real-time pr ingon._.
51K views + 1 year ago 689 views * 1 year ago 1.6K views + 1 year ago 368 views * 1 year ago 481 views * 1 year age

Vivienne Sze & http://sze.mit.edu/ % @eems_mit i



http://sze.mit.edu/

References

* Energy-Efficient Visual Inertial Localization

— Project website: http://navion.mit.edu

— Z.Zhang*, A. Suleiman*, L. Carlone, V. Sze, S. Karaman, “Visual-Inertial Odometry on Chip: An Algorithm-and-Hardware Co-
design Approach,” Robotics: Science and Systems (RSS), July 2017

— A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, “Navion: A Fully Integrated Energy-Efficient Visual-Inertial Odometry
Accelerator for Autonomous Navigation of Nano Drones,” IEEE Symposium on VLSI Circuits (VLSI-Circuits), June 2018

— A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, “Navion: A 2mW Fully Integrated Real-Time Visual-Inertial Odometry
Accelerator for Autonomous Navigation of Nano Drones,” IEEE Journal of Solid-State Circuits (JSSC), VLSI Symposia Special
Issue, Vol. 54, No. 4, pp. 1106-1119, April 2019

» Efficient Map Compression

— Project website: https://lean.mit.edu/highlights/localization-mapping

— P.Z.X. Li, S. Karaman, V. Sze, “Memory-Efficient Gaussian Fitting for Depth Images in Real Time,” IEEE International
Conference on Robotics and Automation (ICRA), May 2022.

Vivienne Sze & http://sze.mit.edu/ % @eems_mit i



http://sze.mit.edu/
http://navion.mit.edu/
https://lean.mit.edu/highlights/localization-mapping

References

 Efficient Processing for Deep Neural Networks

Project website: http://eyeriss.mit.edu

Y.-H. Chen, T. Krishna, J. Emer, V. Sze, “Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional
Neural Networks,” IEEE Journal of Solid-State Circuits (JSSC), ISSCC Special Issue, Vol. 52, No. 1, pp. 127-138, January 2017.

Y.-H. Chen, J. Emer, V. Sze, “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural
Networks,” International Symposium on Computer Architecture (ISCA), pp. 367-379, June 2016.

Y.-H. Chen*, T.-J. Yang®, J. Emer, V. Sze, “Understanding the Limitations of Existing Energy-Efficient Design Approaches for
Deep Neural Networks,” SysML Conference, February 2018.

V. Sze, Y.-H. Chen, T.-J. Yang, J. Emer, “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings
of the IEEE, vol. 105, no. 12, pp. 2295-2329, December 2017.

A. Suleiman®*, Y.-H. Chen*, J. Emer, V. Sze, “Towards Closing the Energy Gap Between HOG and CNN Features for
Embedded Vision,” IEEE International Symposium of Circuits and Systems (ISCAS), Invited Paper, May 2017.

Hardware Architecture for Deep Neural Networks: http://eyeriss.mit.edu/tutorial.html

Vivienne Sze & http://sze.mit.edu/ % @eems_mit i



http://sze.mit.edu/
http://eyeriss.mit.edu/
http://eyeriss.mit.edu/tutorial.html

References

e Co-Design of Algorithms and Hardware for Deep Neural Networks

— T.-J. Yang, Y.-H. Chen, V. Sze, “Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning,” IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

— Energy estimation tool: http://eyeriss.mit.edu/energy.html

— T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, V. Sze, H. Adam, “NetAdapt: Platform-Aware Neural Network Adaptation
for Mobile Applications,” European Conference on Computer Vision (ECCV), 2018. http://netadapt.mit.edu

— T.-J.Yang, Y.-L. Liao, V. Sze, “NetAdaptV2: Efficient neural architecture search with fast super-network training and
architecture optimization,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2021.

* Monocular Depth Estimation using Deep Neural Networks
— Project website: https://lean.mit.edu/highlights/depth-sensing

— D. Wofk*, F. Ma*, T.-J. Yang, S. Karaman, V. Sze, “FastDepth: Fast Monocular Depth Estimation on Embedded Systems,”
IEEE International Conference on Robotics and Automation (ICRA), May 2019. http://fastdepth.mit.edu/

— S. Sudhakar, V. Sze, S. Karaman, “Uncertainty from Motion for DNN Monocular Depth Estimation,” IEEE International
Conference on Robotics and Automation (ICRA), May 2022.

Vivienne Sze & http://sze.mit.edu/ % @eems_mit i



http://sze.mit.edu/
http://eyeriss.mit.edu/energy.html
http://netadapt.mit.edu/
https://lean.mit.edu/highlights/depth-sensing
http://fastdepth.mit.edu/

References

* Fast Shannon Mutual Information for Robot Exploration

— Project website: https://lean.mit.edu/highlights/mutual-information

— Z.Zhang, T. Henderson, V. Sze, S. Karaman, “FSMI: Fast computation of Shannon Mutual Information for information-
theoretic mapping,” IEEE International Conference on Robotics and Automation (ICRA), May 2019

— P. Li*, Z. Zhang*, S. Karaman, V. Sze, “High-throughput Computation of Shannon Mutual Information on Chip,” Robotics:
Science and Systems (RSS), June 2019

— Z.Zhang, T. Henderson, S. Karaman, V. Sze, “FSMI: Fast computation of Shannon Mutual Information for information-
theoretic mapping,” International Journal of Robotics Research (IJRR), August 2020

— T. Henderson, V. Sze, S. Karaman, “An Efficient and Continuous Approach to Information-Theoretic Exploration,” IEEE
International Conference on Robotics and Automation (ICRA), May 2020

— K. Gupta, P. Z. X. Li, S. Karaman, V. Sze, “Efficient Computation of Map-scale Continuous Mutual Information on Chip in Real
Time,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 2021.

Vivienne Sze & http://sze.mit.edu/ % @eems_mit i



http://sze.mit.edu/
https://lean.mit.edu/highlights/mutual-information

References

e Balancing Actuation and Computation
— Project website: https://lean.mit.edu/highlights/motion-planning

— S. Sudhakar, S. Karaman, V. Sze, “Balancing Actuation and Computing Energy in Motion Planning,” IEEE International
Conference on Robotics and Automation (ICRA), May 2020

* Low Power Time of Flight Imaging

— J. Noraky, V. Sze, “Low Power Depth Estimation of Rigid Objects for Time-of-Flight Imaging,” IEEE Transactions on Circuits
and Systems for Video Technology (TCSVT), 2019.

— J. Noraky, V. Sze, “Depth Map Estimation of Dynamic Scenes Using Prior Depth Information,” arXiv, February 2020.
https://arxiv.org/abs/2002.00297

— J. Noraky, V. Sze, “Depth Estimation of Non-Rigid Objects For Time-Of-Flight Imaging,” IEEE International Conference on
Image Processing (ICIP), October 2018.

— J. Noraky, V. Sze, “Low Power Depth Estimation for Time-of-Flight Imaging,” IEEE International Conference on Image
Processing (ICIP), September 2017.

Vivienne Sze & http://sze.mit.edu/ % @eems_mit i


http://sze.mit.edu/
https://lean.mit.edu/highlights/motion-planning
https://arxiv.org/abs/2002.00297

