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Low-Energy Autonomy and Navigation (LEAN) Group

Group Website: http://lean.mit.edu
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Computing Challenge for Self-Driving Cars

(Feb 2018)

Cameras and radar generate 
~6 gigabytes of data every 30 seconds. 

Generates wasted heat and some 
prototypes need water-cooling!

Self-driving car prototypes use 
approximately 2,500 Watts of 

computing power.
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Robots Consuming < 1 Watt for Actuation4

31 mW 
Robobee (2019) 

500 mW
Seaglider (2003)

132 mW
Chipsat (2016)

13.5 mW 
Robotic Water Strider 
(2015)

Mini Autonomous Blimp (2017) 50 mW
Robofly (2020)

SOURCE: KONGSBERG SOURCE: CORNELL

SOURCE: SEOUL NAT’L UNIVERSITYSOURCE: HARVARD

SOURCE: UWASH. SOURCE: GEORGIA TECH

• Miniature aerial vehicles 
• Lighter than air vehicles 
• Micro unmanned gliders
• Miniature satellites

Low Energy Robotics
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Existing Processors Consume Too Much Power

< 1 Watt > 10 Watts
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Transistors Are Not Getting More Efficient

Slowdown of Moore’s Law and 
Dennard Scaling 

General purpose microprocessors are 
not getting faster or more efficient 

Need specialized hardware for 
significant improvements in speed 

and energy efficiency

Redesign computer from the 
ground up!

Slowdown
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Efficient Computing with Cross-Layer Design

Architectures

Algorithms Systems

Circuits
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Energy Dominated by Data Movement

Operation: Energy 
(pJ)

8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Multiply 0.2
32b Multiply 3.1
16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

[Horowitz, ISSCC 2014] 

Relative Energy Cost

1 10 102 103 104

Memory access is orders 
of magnitude higher 
energy than compute
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Autonomous Navigation Uses a Lot of Data

Geometric Understanding

• Growing map size

2 million pixels 10x-100x more pixels

Semantic Understanding

• High frame rate
• Large resolutions
• Data expansion

[Pire, RAS 2017] 
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Visual-Inertial Localization

Visual-Inertial 
Odometry 

(VIO) 

Localization 

Mapping 

Image sequence 

IMU 
Inertial Measurement Unit 

… 

*Subset of SLAM algorithm 
(Simultaneous Localization And Mapping) Slide 28 

Determines location/orientation of robot from images and IMU
(also used by headset in Augmented Reality and Virtual Reality)

*
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Localization at Under 25 mW

[Zhang et al., RSS 2017], [Suleiman et al., VLSI 2018]

Consumes 684× and 1582×
less energy than 

mobile and desktop CPUs, 
respectively

First chip that performs 
complete Visual-Inertial Odometry 

Joint work with Sertac Karaman

Navion

Front-End for camera 
(Feature detection, tracking, and 

outlier elimination)

Front-End for IMU 
(pre-integration of accelerometer 

and gyroscope data)

Back-End Optimization of Pose 
Graph
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[Zhang, RSS 2017], [Suleiman, VLSI-C 2018]
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Key Methods to Reduce Data Size

Backend Control

Data & Control Bus
Build 
Graph

Linear 
Solver

Linearize

Marginal

Retract

Graph
Linear 
Solver

Horizon 
States

Shared 
Memory

Floating 
Point 

Arithmetic

Matrix 
Operations

Cholesky

Back 
Substitute

Rodrigues 
Operations

Feature 
Tracking 

(FT)

Previous 
FrameLine Buffers

Feature 
Detection 

(FD)

Undistort 
& Rectify 

(UR)

Undistort 
& Rectify 

(UR)

Data & Control Bus

Sparse Stereo (SS)

Vision Frontend Control

RANSAC Fixed Point 
Arithmetic Point Cloud Pre-IntegrationFloating Point 

Arithmetic

IMU 
memory

Current 
Frame

Left 
Frame

Right 
Frame

Vision Frontend (VFE)

IMU Frontend (IFE)

Backend (BE)

Register 
File

Apply Low 
Cost 

Frame
Compression

Use compression and exploit sparsity to reduce memory down to 854KB

Exploit 
Sparsity in 
Graph and 

Linear Solver

Navion: Fully integrated system – no off-chip processing or storage
http://navion.mit.edu

[Suleiman, VLSI-C 2018]  Best Student Paper Award
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Understanding the Environment
Depth Estimation

State-of-the-art approaches use 
Deep Neural Networks, which 
require up to several hundred 

millions of operations and 
weights to compute!

>100x more complex than video 
compression

Semantic Segmentation
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Deep Neural Networks

Computer Vision Speech Recognition

Game Play Medical

Deep Neural Networks (DNNs) have become a cornerstone of AI
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Properties We Can Leverage

• Operations exhibit high parallelism
à high throughput possible

• Memory Access is the Bottleneck

ALU

Memory Read Memory WriteMAC*

* multiply-and-accumulate

filter weight
fmap act

partial sum updated 
partial sum

• Example: AlexNet has 724M MACs 
à 2896M DRAM accesses required

Worst Case: all memory R/W are DRAM accesses

200x 1x

DRAM DRAM
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Properties We Can Leverage

• Operations exhibit high parallelism
à high throughput possible

• Input data reuse opportunities (up to 500x)

Filter Input Fmap

Convolutional Reuse 
(Activations, Weights)

CONV layers only
(sliding window)

Filters

2

1

Input Fmap

Fmap Reuse
(Activations)

CONV and FC layers

Filter

2

1

Input Fmaps

Filter Reuse
(Weights)

CONV and FC layers
(batch size > 1)
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Exploit Data Reuse at Low-Cost Memories

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 

Farther and larger memories consume more power

0.5 – 1.0 kB

Control

Reg File
Specialized 

hardware with 
small (< 1kB) 

low cost memory 
near compute
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Deep Neural Networks at Under 0.3W

On
-ch

ip 
Bu

ffe
r Spatial 

PE Array

4mm

4m
m

Results for AlexNet

Overall >10x energy reduction compared to a mobile GPU (Nvidia TK1)

Exploits data reuse for 100x reduction in memory accesses from global 
buffer and 1400x reduction in memory accesses from off-chip DRAM

[Chen, ISSCC 2016], Micro Top Picks 

Eyeriss: Energy-Efficient Dataflow
http://eyeriss.mit.edu
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Features: Energy vs. Accuracy 

0.1

1

10

100

1000

10000

0 20 40 60 80
Accuracy (Average Precision)

Energy/
Pixel (nJ)

VGG162

AlexNet2

HOG1

Measured in on VOC 2007 Dataset
1. DPM v5 [Girshick, 2012]
2. Fast R-CNN [Girshick, CVPR 2015] 

Exponential

Linear

Video 
Compression

[Suleiman, ISCAS 2017]

Measured in 65nm*

* Only feature extraction. Does 
not include data, classification 

energy, augmentation and 
ensemble, etc.

On
-c

hip
 B

uff
er Spatial 

PE Array

4mm

4m
m

4mm

4m
m

[Suleiman, VLSI 2016] [Chen, ISSCC 2016]1 2
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Energy-Efficient Processing of DNNs

V. Sze, Y.-H. Chen, 
T-J. Yang, J. Emer, 

“Efficient Processing of 
Deep Neural Networks: 
A Tutorial and Survey,” 
Proceedings of the IEEE, 

Dec. 2017

A significant amount of algorithm and hardware research 
on energy-efficient processing of DNNs

We identified various limitations to existing approaches

http://eyeriss.mit.edu/tutorial.html
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Design of Efficient DNN Algorithms
Popular efficient DNN algorithm approaches 

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Network Pruning

C
1

1
S

R

1

R

S
C

Efficient Network Architectures

Examples: SqueezeNet, MobileNet

... also reduced precision

• Focus on reducing number of MACs and weights
• Does it translate to energy savings and reduced latency?

[Chen*, Yang*, SysML 2018] 
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Number of MACs and Weights are Not Good Proxies

# of operations (MACs) does not approximate 
latency well

Source: Google 
(https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)

Output	Feature	Map	
43%	

Input	Feature	Map	
25%	

Weights	
22%	

Computa:on	
10%	

Energy	Consump:on	
of	GoogLeNet	

[Yang, CVPR 2017]

# of weights alone is not a good metric for energy 
(All data types should be considered) 

Energy breakdown of 
GoogLeNet

https://energyestimation.mit.edu/
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Energy-Aware Pruning

Directly target energy 
and incorporate it into the 

optimization of DNNs to provide 
greater energy savings

• Sort layers based on energy and prune layers 
that consume the most energy first

• Energy-aware pruning reduces AlexNet
energy by 3.7x w/ similar accuracy

• Outperforms magnitude-based pruning by 1.7x
0 

0.5 
1 

1.5 
2 

2.5 
3 

3.5 
4 

4.5 

Ori. DC EAP 

Normalized Energy (AlexNet) 

2.1x 3.7x 

x109 

Magnitude 
Based Pruning 

Energy Aware 
Pruning 

Pruned models available at 
http://eyeriss.mit.edu/energy.html

[Yang, CVPR 2017]
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NetAdapt: Platform-Aware DNN Adaptation

• Automatically adapt DNN to a 
mobile platform to reach a 
target latency or energy budget

• Use empirical measurements 
to guide optimization (avoid 
modeling of tool chain or 
platform architecture) 

• Few hyperparameters to 
reduce tuning effort

• >1.7x speed up on MobileNet
w/ similar accuracy

NetAdapt Measure

…

Network Proposals

Empirical Measurements
Metric Proposal A … Proposal Z

Latency 15.6 … 14.3

Energy 41 … 46

…… …

Pretrained
Network Metric Budget

Latency 3.8

Energy 10.5

Budget

Adapted
Network

… …

Platform

A B C D Z

[Yang, ECCV 2018]

Code available at
http://netadapt.mit.edu

24

Joint work with Google’s Mobile Vision Team
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FastDepth: Fast Monocular Depth Estimation25

Depth estimation from a single RGB image desirable, due to the 
relatively low cost and size of monocular cameras.

RGB Prediction

Auto Encoder DNN Architecture (Dense Output)

Reduction 
(similar to classification) Expansion

http://sze.mit.edu/
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FastDepth: Fast Monocular Depth Estimation26

Apply NetAdapt, compact network design, and depth wise decomposition 
to decoder layer to enable depth estimation at high frame rates on an 

embedded platform while still maintaining accuracy

[Wofk*, Ma*, ICRA 2019]

Configuration: Batch size of one (32-bit float)

Models available at http://fastdepth.mit.edu

> 10x

~40fps on 
an iPhone

Joint work with Sertac Karaman

http://sze.mit.edu/
http://fastdepth.mit.edu/
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NetAdapt v2: Reduce Adaption Time 27

Reduce time to find efficient DNN that adapts to hardware by up to 5.8x 

Typical Steps in Neural Architecture Search (NAS):
1) Train super-network (search space of DNNs)
2) Sample and evaluate different DNNs
3) Fine tune the final DNN

Contributions
• Ordered dropout: train multiple DNNs in single

forward pass (reduce step 1)
• Channel-level bypass: merge layer depth and 

channel width into a single search dimension 
(reduce step 2)

• Multi-layer coordinate descent optimizer: 
consider joint effect of multiple layers (reduce step 2 
& support non-differentiable metrics, e.g., latency)

[Yang, CVPR 2021]

More info at http://netadapt.mit.edu

http://sze.mit.edu/
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Measuring Uncertainty in DNN Monocular Depth Estimation28

Need to estimate uncertainty (sensor noise model) for robot decision making

Popular approaches involve running multiple DNNs on the same input 

RGB
DNN 

prediction UncertaintyGround Truth Error

[Sudhakar, ICRA 2022] Joint work with Sertac Karaman

http://sze.mit.edu/
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Uncertainty from Motion (UfM) 29

Frame 1 Frame 2 Frame 3

RGB input

Depth pred.

Uncertainty 
pred.

seen for first time
seen for k’th time
not seen 

UfM needs to run only one DNN per input 

It exploits temporal redundancy in video inputs 
by merging outputs that belong to the same 
point in 3D space across multiple views to 

estimate uncertainty 

[Sudhakar, ICRA 2022] Joint work with Sertac Karaman
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Convert depth images to Gaussian Mixture Models (GMMs) to construct a 
compact 3D map of an environment.

Mapping with Gaussian Mixture Models30

While existing approaches focus on reducing map size, they do not 
account for the memory cost during the conversion process

Gaussian Mixture Models (blue)2D Depth Image

Convert

307,200 pixels (3.5MB) Around 1000 parameters (12-18 kB)

[Li, ICRA 2022] Joint work with Sertac Karaman
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Single Pass Gaussian Fitting (SPGF) 31

• Single pass reduces storage of inputs 
and temporary variables

• Row-by-row based approach allows 
for accurate and efficient inference of 
surface geometries in a single pass

[Li, ICRA 2022] Joint work with Sertac Karaman

SPGF Approach: Scanline Segmentation
+ Segment Fusion

L0

L1

L2

LV-1

s0,0

s1,0

s2,0

s0,1 s0,2

s1,1 s1,2

s1,2

sV-1,0 sV-1,1

Depth Image

L0

L1

L2

LV-1

s0,0

s1,0

s2,0

s0,1 s0,2

s1,1 s1,2

s1,2

sV-1,0 sV-1,1

g1 g2

g3

gJ-2

g0

gJ-1

Depth Image
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SPGF only uses KBs of memory overhead and achieves real-time on a low-power ARM Cortex-57 CPU

SPGF Results on TUM RGB-D Room32

Note: All algorithms were similarly optimized in C++

Memory Overhead Throughput Energy Consumption

Hierarchical EM (H-EM):[Eckart, CVPR 2016], Normal Distance Transform (NDT):[Saarinen, IJRR 2013], Region Growing (RG):[Dhawale, RSS 2020]

49x
15x

1.4x

5.2x

3.4x

Comparison of SPGF with other approaches at similar accuracy and compactness

http://sze.mit.edu/
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Where to Go Next: Planning and Mapping
Robot Exploration

33
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Mutual-Information-Based Exploration 

Select candidate scan 
locations

Compute Shannon MI and choose 
best location

Move to 
location and 

scan

Update 
Occupancy 

Map

Where to scan?

Occupancy map Mutual information map

Mutual Information Updated Map

Robot Exploration: Decide where to go by computing Shannon Mutual Information

34

Joint work with Sertac Karaman
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Information Theoretic Mapping

Occupancy grid map, 𝑀

𝐻 𝑀 𝑍 = 𝐻 𝑀 − 𝐼(𝑀; 𝑍)
Perspective updated 

map entropy
Mutual 

information
Current map 

entropy

Mutual information map, 𝐼(𝑀; 𝑍)

35
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FSMI: Fast Shannon Mutual Information
Shannon Mutual Information

(between ray Z and map M)
[Julian, IJRR 2014]

𝐼 𝑀; 𝑍 =*
'()

*

+
+,-
𝑃 𝑧 𝑓 𝛿' 𝑧 , 𝑟' 𝑑𝑧

No closed form solution. Requires expensive 
numerical integration at resolution 𝜆!. 𝑶(𝒏𝟐𝝀𝒛)

𝐼 𝑀; 𝑍 =*
.()

*

*
/()

*

𝑃 𝑒. 𝐶/𝐺/,.

FSMI: Fast Shannon Mutual Information

Evaluate MI for all cells in entire ray altogether 
removes numerical integration. 𝑶(𝒏𝟐)

Approximate FSMI

Approximate noise model of depth sensor 
with truncated Gaussian*. 𝑶(𝒏)

𝐼 𝑀; 𝑍 =*
.()

*

*
/(.12

.32

𝑃 𝑒. 𝐶/𝐺/,.

[Zhang, ICRA 2019]

௧ݔ

ܼ௧
௜ܯ

*Charrow et al., ICRA 2015

36

Joint work with Sertac Karaman
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FSMI: Fast Shannon Mutual Information
Original MI[1] FSMI CSQMI[2] Approximate FSMI
𝑂(𝑛!𝜆") 𝑂(𝑛!) 𝑂(𝑛) 𝑂(𝑛)

188046

132
29 17

Measured run time 
per ray (µsec) on an 

Intel Xeon core
(desktop)

Original MI FSMI CSQMI Approximate FSMI

422

149

CSQMI Approximate FSMI

Measured run time per ray (µsec) on 
an ARM Cortex-A57 core 

(embedded) 

Approximate FSMI is over 1000x faster than original MI and 1.7 – 2.8x faster than CSQMI

[1] Julian et al., IJRR 2014; [2] Charrow et al., ICRA 2015
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[Zhang, IJRR 2020] Joint work with Sertac Karaman
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Experimental Results (4x Real Time)

Occupancy map 
with planned 

path using RRT* 
(compute MI on 

all possible paths)

MI 
surface

Exploration with a mini race car using motion capture for localization

[Zhang, ICRA 2019]

38

Joint work with Sertac Karaman
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Building Hardware to Compute FSMI

𝐼 𝑀; 𝑍 =*
.()

*

*
/(.12

.32

𝑃 𝑒. 𝐶/𝐺/,.

Algorithm is embarrassingly parallel!
High throughput should be possible with multiple cores.

Motivation: Compute MI faster for faster exploration!

Core 1

Core 2

Core 3

Core N

Core N

Core 2

Core 1

Process beams in parallel with multiple cores

39
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Challenge is Data Delivery to All Cores

Core N

Core 2

Core 1Read Port 1

Read Port 2

Power consumption of memory scales with number of ports.
Low power SRAM limited to two-ports!

Data delivery, specifically memory bandwidth, 
limits the throughput (not compute)

40
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Specialized Memory Architecture
Break up map into separate memory banks and novel storage pattern 
to minimize read conflicts when processing different rays in parallel.

X
Y

X

Y

Memory Access Pattern

8 8 8

7 7 7

6 6 6

5 5 5

4 4 4 8

3 3 3 5 6 7

2 2 3 4

1 2 3 4 5 6 7 8

Diagonal Banking Pattern

X

Y

Bank 0

Bank 1

Bank 4

Bank 3

Bank 5

Bank 7

Bank 2

Bank 6

8 8 8

7 7 7

6 6 6

5 5 5

4 4 4 8

3 3 3 5 6 7

2 2 3 4

1 2 3 4 5 6 7 8

[Li, RSS 2019]

41

Joint work with Sertac Karaman
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2 4 6 8 10 12 14 16

Number of FSMI Cores

2

3

4

5

6

7

8

T
h

ro
u

g
h

p
u

t 
(M

I/
s)

104

Baseline (1 bank)

16 banks,vertical banking,1x1 packing

16 banks,diagonal banking,1x1 packing

16 banks,diagonal banking,2x2 packing

Unlimited bandwidth

Experimental Results

Specialized banking, efficient 
memory arbiter and packing 

multiple values at each address 
results in throughput within 

94% of theoretical limit
(unlimited bandwidth) 

[Li, RSS 2019]

Compute MI for an entire map of 20m x 20m 
at 0.1m resolution in under a second while 

consuming under 2W on a ZC706 FPGA 
(100x faster than CPU at 10x lower power)

Number of Cores

42
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FCMI: Fast Continuous Mutual Information

[Henderson, ICRA 2020]

FSMI: O(nLH2)à FCMI: O(LH2) 
Two orders of magnitude 

speed up over FSMI! 

43

Joint work with Sertac Karaman

Reformulate with a continuous occupancy map framework and 
exploit recursive structure when computing MI across entire map

n = cells per ray
L = number of rays
H2 = size of map

http://sze.mit.edu/
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1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

Shannon MI FSMI (CPU) FSMI (hardware) FCMI (CPU) FCMI (hardware)

Several Orders of Magnitude Speed up Via Co-Design

[Zhang, ICRA 2019] [Li, RSS 2019] [Henderson, ICRA 2020]

Compute mutual information for the entire map 
in real time for the first time!

44

Evaluate MI for all cells 
in entire ray altogether 
removes numerical 

integration

Optimize memory 
subsystem (banking) 
for multi-beam parallel 

processing 

Reformulate using a 
continuous occupancy 
map framework and 

exploit recursive structure

Optimize memory subsystem,
time-interleave cores and 
approximate computing 

For a 200x200 Map 
(Note: Speed up increases for larger maps)

[Julian, IJRR 2014] [Gupta, IROS 2021]

Joint work with Sertac Karaman
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Balancing Actuation and Computing Energy

Motion Planning
Find a feasible (obstacle-free) path
[typically optimize for shortest path]

Energy to move 1 more meter (Pa/v [W/(m/s)])

Energy to compute 1 more second (Pc [W])

Low-Energy Robotics 
Actuation and computing energy 
are similar order of magnitude 

Robobee
Cheerwing
Mini RC 

Slocum Ocean 
GliderViper Dash 2 WD Robot 

Chassis
2 WD Robot 
Chassis

ASIC      FPGA Cortex-A15 Nvidia Jetson TX2 
GPUEmbedded CPUs

Cortex-A7 
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Balancing Actuation and Computing Energy

Compute Energy Included Motion Planning (CEIMP) 
A framework to balance the energy spent on computing a path and
the energy spent on moving along that path (Don’t think too hard!)

[Sudhakar, ICRA 2020]

Baseline 
(compute 20,000 samples) CEIMP
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• Pulsed Time of Flight: Measure distance using round trip time of laser light for each 
image pixel
– Illumination + Imager Power: 2.5 – 20 W for range from 1 - 8 m 

• Use computer vision techniques and passive images to estimate changes in depth 
without turning on laser
– CMOS Imaging Sensor Power: < 350 mW

Low Power 3D Time of Flight Imaging

Estimated Depth Maps
Real-time Performance on Embedded Processor

VGA @ 30 fps on Cortex-A7 CPU  (< 0.5W active power)

[Noraky, TCSVT 2019]
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Results of Low Power Depth ToF Imaging

RGB Image Depth Map
Ground Truth

Depth Map
Estimated

Mean Relative Error: 0.7%
Duty Cycle (on-time of laser): 11%

[Noraky, TCSVT 2019]
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• Efficient computing is critical for advancing the progress of autonomous robots, 
particularly at the smaller scales. à Critical step to making autonomy ubiquitous!

• In order to meet computing demands in terms of power and speed, need to redesign 
computing hardware from the ground up à Focus on data movement!

• Specialized hardware creates new opportunities for the co-design of algorithms and 
hardware à Innovation opportunities for the future of robotics!

Summary

Algorithms Hardware
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Low-Energy Autonomy and Navigation (LEAN) Group

Group Website: http://lean.mit.edu
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Resources on Efficient Processing of DNNs52
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Additional Resources
Talks and Tutorial Available Online

http://sze.mit.edu/slides

YouTube Channel
EEMS Group – PI: Vivienne Sze
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• Energy-Efficient Visual Inertial Localization  
– Project website: http://navion.mit.edu
– Z. Zhang*, A. Suleiman*, L. Carlone, V. Sze, S. Karaman, “Visual-Inertial Odometry on Chip: An Algorithm-and-Hardware Co-

design Approach,” Robotics: Science and Systems (RSS), July 2017

– A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, “Navion: A Fully Integrated Energy-Efficient Visual-Inertial Odometry 
Accelerator for Autonomous Navigation of Nano Drones,” IEEE Symposium on VLSI Circuits (VLSI-Circuits), June 2018 

– A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, “Navion: A 2mW Fully Integrated Real-Time Visual-Inertial Odometry 
Accelerator for Autonomous Navigation of Nano Drones,” IEEE Journal of Solid-State Circuits (JSSC), VLSI Symposia Special 
Issue, Vol. 54, No. 4, pp. 1106-1119, April 2019

• Efficient Map Compression
– Project website: https://lean.mit.edu/highlights/localization-mapping
– P. Z. X. Li, S. Karaman, V. Sze, “Memory-Efficient Gaussian Fitting for Depth Images in Real Time,” IEEE International 

Conference on Robotics and Automation (ICRA), May 2022.
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• Efficient Processing for Deep Neural Networks
– Project website: http://eyeriss.mit.edu
– Y.-H. Chen, T. Krishna, J. Emer, V. Sze, “Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional 

Neural Networks,” IEEE Journal of Solid-State Circuits (JSSC), ISSCC Special Issue, Vol. 52, No. 1, pp. 127-138, January 2017.

– Y.-H. Chen, J. Emer, V. Sze, “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural 
Networks,” International Symposium on Computer Architecture (ISCA), pp. 367-379, June 2016. 

– Y.-H. Chen*, T.-J. Yang*, J. Emer, V. Sze, “Understanding the Limitations of Existing Energy-Efficient Design Approaches for 
Deep Neural Networks,” SysML Conference, February 2018.

– V. Sze, Y.-H. Chen, T.-J. Yang, J. Emer, “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings 
of the IEEE, vol. 105, no. 12, pp. 2295-2329, December 2017.

– A. Suleiman*, Y.-H. Chen*, J. Emer, V. Sze, “Towards Closing the Energy Gap Between HOG and CNN Features for 
Embedded Vision,” IEEE International Symposium of Circuits and Systems (ISCAS), Invited Paper, May 2017.

– Hardware Architecture for Deep Neural Networks: http://eyeriss.mit.edu/tutorial.html
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• Co-Design of Algorithms and Hardware for Deep Neural Networks 
– T.-J. Yang, Y.-H. Chen, V. Sze, “Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning,” IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 
– Energy estimation tool: http://eyeriss.mit.edu/energy.html

– T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, V. Sze, H. Adam, “NetAdapt: Platform-Aware Neural Network Adaptation 
for Mobile Applications,” European Conference on Computer Vision (ECCV), 2018. http://netadapt.mit.edu

– T.-J. Yang, Y.-L. Liao, V. Sze, “NetAdaptV2: Efficient neural architecture search with fast super-network training and 
architecture optimization,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2021.

• Monocular Depth Estimation using Deep Neural Networks 
– Project website: https://lean.mit.edu/highlights/depth-sensing

– D. Wofk*, F. Ma*, T.-J. Yang, S. Karaman, V. Sze, “FastDepth: Fast Monocular Depth Estimation on Embedded Systems,” 
IEEE International Conference on Robotics and Automation (ICRA), May 2019. http://fastdepth.mit.edu/

– S. Sudhakar, V. Sze, S. Karaman, “Uncertainty from Motion for DNN Monocular Depth Estimation,” IEEE International 
Conference on Robotics and Automation (ICRA), May 2022.
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• Fast Shannon Mutual Information for Robot Exploration
– Project website: https://lean.mit.edu/highlights/mutual-information
– Z. Zhang, T. Henderson, V. Sze, S. Karaman, “FSMI: Fast computation of Shannon Mutual Information for information-

theoretic mapping,” IEEE International Conference on Robotics and Automation (ICRA), May 2019

– P. Li*, Z. Zhang*, S. Karaman, V. Sze, “High-throughput Computation of Shannon Mutual Information on Chip,” Robotics: 
Science and Systems (RSS), June 2019

– Z. Zhang, T. Henderson, S. Karaman, V. Sze, “FSMI: Fast computation of Shannon Mutual Information for information-
theoretic mapping,” International Journal of Robotics Research (IJRR), August 2020 

– T. Henderson, V. Sze, S. Karaman, “An Efficient and Continuous Approach to Information-Theoretic Exploration,” IEEE 
International Conference on Robotics and Automation (ICRA), May 2020

– K. Gupta, P. Z. X. Li, S. Karaman, V. Sze, “Efficient Computation of Map-scale Continuous Mutual Information on Chip in Real 
Time,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 2021.
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• Balancing Actuation and Computation
– Project website: https://lean.mit.edu/highlights/motion-planning
– S. Sudhakar, S. Karaman, V. Sze, “Balancing Actuation and Computing Energy in Motion Planning,” IEEE International 

Conference on Robotics and Automation (ICRA), May 2020

• Low Power Time of Flight Imaging
– J. Noraky, V. Sze, “Low Power Depth Estimation of Rigid Objects for Time-of-Flight Imaging,” IEEE Transactions on Circuits 

and Systems for Video Technology (TCSVT), 2019.
– J. Noraky, V. Sze, “Depth Map Estimation of Dynamic Scenes Using Prior Depth Information,” arXiv, February 2020. 

https://arxiv.org/abs/2002.00297
– J. Noraky, V. Sze, “Depth Estimation of Non-Rigid Objects For Time-Of-Flight Imaging,” IEEE International Conference on 

Image Processing (ICIP), October 2018.
– J. Noraky, V. Sze, “Low Power Depth Estimation for Time-of-Flight Imaging,” IEEE International Conference on Image 

Processing (ICIP), September 2017.
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