
1

Hardware-Aware Efficient Deep
Neural Network Design

Tien-Ju Yang
August 21, 2020

Thesis Advisor: Prof. Vivienne Sze
Thesis Committee: Prof. Joel Emer, Prof. Sertac Karaman

2

Motivation

3

Challenge of Deep Neural Networks

The high accuracy of DNNs is at the cost of
much higher computational complexity

Machine Translation

Image Classification

Cat

Speech Recognition

Object Detection
Conventional

Accuracy

0.1k – 0.5k OP/Px

DNN
15k – 300k OP/Px

Computation

Image sources: webmd.com, fbi.gov, fiverr.com, tweakreviews.com

4

Impact of High Complexity
Financially

Training GPT-3 costs
$4.6 million

(high latency)

Environmentally

Training Transformer emits
5x car lifetime carbon

dioxide emission
(high energy)

Functionally

High accuracy networks drain
battery fast or run slowly
(high energy and latency)

Image sources: solarschools.net, 123rf.com

5

Efficient Neural Network Design

Hardware

Image source: Venturebeat

CPU GPU

FPGA ASIC

Deep Neural Network

3x3? 5x5?

128 Filters?

Pool? CONV?

Important to design DNNs that run efficiently on various hardware

Optimize Efficiency
(Hardware Metrics)
(Latency, Energy)

6

DNN Design Disregards Hardware

Hardware

CPU GPU

FPGA ASIC

Deep Neural Network

3x3? 5x5?

128 Filters?

Pool? CONV?

DNN design usually focuses on optimizing proxy metrics

Proxy Metrics
(Unrelated to Hardware)

MAC
(Multiply-and-Accumulate)

Weights

Optimize

7

of MACs vs. Latency

of MACs does not approximate latency well

Optimize
MACs

Optimize
Latency

Image sources: Google

8

of Weights/MACs vs. Energy
of weights/MACs alone does not approximate energy well

Reason 1: activations and partial sums are not considered
Reason 2:
Reason 3:

DRAM
MACWeight

Activation
Partial sum

Updated partial sum

Image sources: Yu-Hsin Chen

9

of Weights/MACs vs. Energy

DRAM
MACWeight

Activation
Partial sum

Updated partial sum
of weights/MACs does not approximate energy well

Normalized Energy

1×

200×

Reason 1: activations and partial sums are not considered
Reason 2: computation is cheap but data movement is expensive
Reason 3:

* measured from a commercial
65nm process

Image sources: Yu-Hsin Chen

10

of Weights/MACs vs. Energy
of weights/MACs does not approximate energy well

Normalized Energy

1×

200×
6×

1×

Reason 1: activations and partial sums are not considered
Reason 2: computation is cheap but data movement is expensive
Reason 3: where data comes from/goes to is important for energy

DRAM
MAC

Buffer RF

0.5 – 1.0 kB100 – 500 kB

* measured from a commercial
65nm process

Image sources: Yu-Hsin Chen

11

Hardware-Aware Efficient DNN Design

Hardware

CPU GPU

FPGA ASIC

Deep Neural Network

3x3? 5x5?

128 Filters?

Pool? CONV?

To maximize the efficiency, we need to bring hardware in the
loop by directly optimizing hardware metrics

Optimize
Hardware Metrics

Image source: Venturebeat

12

Focus of Thesis
We focus on answering 3 main questions to address 3 challenges:

• Challenge 1: hardware metrics are usually not differentiable and highly
depend on hardware properties

• How to design efficient DNNs with hardware metrics?

• Challenge 2: evaluating hardware metrics on the hardware can be slow

• How to efficiently estimate hardware metrics?

• Challenge 3: existing design approaches for efficient DNNs are mostly
designed for digital accelerators and image classification

• How to design efficient DNNs for various hardware accelerators
and applications?

13

Our Solutions

Automated algorithms
optimizing hardware
metrics to significantly
improve the efficiency

Fast methods for both
with/without knowing
how the hardware
processes DNNs

Design approaches and
efficient architectures for
1 hardware accelerators
and 2 applications

1) Design efficient DNNs with hardware metrics
• Energy-aware pruning [CVPR 2017]

• NetAdapt V1 [ECCV 2018]

• NetAdapt V2 [Under review]

2) Efficiently estimate hardware metrics
• Energy estimation methodology [CVPR 2017,

Asilomar 2017]

• Lookup table approximation [ECCV 2018]

3) Design efficient DNNs for various accelerators
and applications

• Processing-in-memory accelerators [IEDM 2019]

• Panoptic segmentation [arXiv 2019]

• Monocular depth estimation [ICRA 2019]

14

Summary of Key Contributions
1) Design efficient DNNs with hardware metrics

• Hardware-aware DNN design strategy
• Feature-map-based network pruning
• Fast local fine-tuning
• Hardware-guided optimizers for NAS
• DNN structure for searching multiple dimensions
• Efficient search space pre-training

2) Efficiently estimate hardware metrics
• Fast metric estimation for white-box hardware
• Fast metric estimation for black-box hardware

3) Design efficient DNNs for various accelerators and
applications

• Analysis and DNN design approach for PIM accelerators
• Novel single-shot, bottom-up architecture for panoptic

segmentation
• Design approaches for efficient dense prediction applications
• New accuracy metric for panoptic segmentation
• Efficient architecture for depth estimation with hardware-

oriented design

Energy-aware pruning

NetAdapt V1/V2

Energy est. method
Lookup table approx.

PIM accelerator

Panoptic segmentation

Depth estimation

15

What We Will Cover Today
1) Design efficient DNNs with hardware metrics

• Hardware-aware DNN design strategy
• Feature-map-based network pruning
• Fast local fine-tuning
• Hardware-guided optimizers for NAS
• DNN structure for searching multiple dimensions
• Efficient search space pre-training

2) Efficiently estimate hardware metrics
• Fast metric estimation for white-box hardware
• Fast metric estimation for black-box hardware

3) Design efficient DNNs for various accelerators and
applications

• Analysis and DNN design approach for PIM accelerators
• Novel single-shot, bottom-up architecture for panoptic

segmentation
• Design approaches for efficient dense prediction applications
• New accuracy metric for panoptic segmentation
• Efficient architecture for depth estimation with hardware-

oriented design

Energy-aware pruning

NetAdapt V1/V2

Energy est. method
Lookup table approx.

PIM accelerator

Panoptic segmentation

Depth estimation

16

Summary of Key Contributions

[V. Sze, Y.-H. Chen, T.-J. Yang,
J. Emer, PIEEE 2017]

[V. Sze, Y.-H. Chen, T.-J. Yang,
J. Emer, Morgan & Claypool 2020]

A survey and a book provide a structured treatment of the key
principles and techniques for enabling efficient processing of DNNs

17

Designing Efficient DNNs
with Hardware Metrics

18

Two Classes of Approaches
Network Pruning
(Change Weights)

Neural Architecture Search (NAS)
(Change Architecture)

CONV

CONV

CONV

CONV

CONV

CONV

1 … M … 1 … M …
… …

Energy-Aware Pruning NetAdapt V1

19

Two Classes of Approaches
Network Pruning
(Change Weights)

Neural Architecture Search (NAS)
(Change Architecture)

CONV

CONV

CONV

CONV

CONV

CONV

1 … M … 1 … M …
… …

Energy-Aware Pruning NetAdapt V1

20

The Proposed Methods

1) Energy-Aware Pruning [CVPR 2017]

• A hardware-aware network pruning method guided by
energy

2) NetAdapt V1 [ECCV 2018]

21

Energy-Aware Pruning (EAP)
• Problem formulation:

• Reduces energy by pruning redundant weights
• Layer-by-layer pruning algorithm guided by per-layer energy

min
!"#

𝐸𝑛𝑒𝑟𝑔𝑦 𝑁𝑒𝑡 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑐𝑐 𝑁𝑒𝑡 ≥ 𝑇𝑎𝑟𝑔𝑒𝑡

Determine Pruning Order

Prune Weights

Quickly Fine-tune Weights

Fine-tune Weights

Initial Network

Pruned Network

Next Layer

L1L2L3

Energy

L2 L1 L3

…

min
!"#

𝐸𝑛𝑒𝑟𝑔𝑦 𝑁𝑒𝑡

A
cc

ur
ac

y

Training Iteration

𝐴𝑐𝑐 𝑁𝑒𝑡Increase

Accu.

Prune
Ratio

82% 81%
(Target)

80%

0% 10% 20%

22

Energy-Aware Pruning (EAP)

• The two main questions to answer:

Determine Pruning Order

Prune Weights

Quickly Fine-tune Weights

Fine-tune Weights

Next Layer

Q1) Which weights to prune?
A: Use the proposed feature-map-based
pruning

Q2) How to speed up fine-tuning?
A: Use the proposed local fine-tuning

Initial Network

Pruned Network

23

Which Weights to Prune?
If a pruned layer can generate the same feature map as that

before pruning, the accuracy will be maintained

CONV

CONV

CONV

1 … M …
…

CONV

CONV

CONV

1 … M …
…

=

Feature Map Error = 0

Same Accuracy

Initial Network Pruned Network

24

Filter-Based Method

Prior work (filter-based): minimize filter error

-1 1 1
-1 1 1
-1 1 1

2 1 1
2 1 1
2 1 1

Fmap

∗

The filter-based method focuses on minimizing the error in the
filters by pruning small magnitude weights

= 0

Filter

25

Filter-Based Method

Prior work (filter-based): minimize filter error

-1 1 1
-1 1 1
-1 1 1

2 1 1
2 1 1
2 1 1

2 0 0
2 1 1
2 1 1

Fmap

∗ Prune

The filter-based method focuses on minimizing the error in the
filters by pruning small magnitude weights

Fmap Error: 2

-2

Filter (Error = 2)

= 0

26

Feature-Map-Based Method

-1 1 1
-1 1 1
-1 1 1

2 1 1
2 1 1
2 1 1

Fmap Filter

∗

The proposed feature-map-based method focuses on minimizing
the error in the output feature maps

Our method (feature-map-based): minimize feature map error

Prior work (filter-based): minimize filter error

-1 1 1
-1 1 1
-1 1 1

2 1 1
2 1 1
2 1 1

2 0 0
2 1 1
2 1 1

Fmap

∗ Prune

Fmap Error: 2Filter (Error = 2)

=

= 0

-20

27

Feature-Map-Based Method

-1 1 1
-1 1 1
-1 1 1

2 1 1
2 1 1
2 1 1

0 0 1
2 1 1
2 1 1

Fmap Filter (Error = 3)

∗ Prune

The proposed feature-map-based method focuses on minimizing
the error in the output feature maps

Our method (feature-map-based): minimize feature map error

Prior work (filter-based): minimize filter error

-1 1 1
-1 1 1
-1 1 1

2 1 1
2 1 1
2 1 1

2 0 0
2 1 1
2 1 1

Fmap

∗ Prune

Fmap Error: 2Filter (Error = 2)

=

Fmap Error: 1

1= 0

-20

28

Energy-Aware Pruning (EAP)

• The two main questions to answer:

Determine Pruning Order

Prune Weights

Quickly Fine-tune Weights

Fine-tune Weights

Next Layer

Q1) How to determine which weights to prune?
A: Use the proposed feature-map-based
pruning

Q2) How to speed up fine-tuning?
A: Use the proposed local fine-tuning

Initial Network

Pruned Network

29

Local Fine-Tuning (LFT)
LFT minimizes the feature map error by fine-tuning the non-
pruned weights, which has a closed-form solution and is fast

After Local Fine-Tuning

After Pruning

-1 1 1
-1 1 1
-1 1 1

2 1 1
2 1 1
2 1 1

0 0 1
2 1 1
2 1 1

fmap filter

∗ Prune
= 0

-1 1 1
-1 1 1
-1 1 1

0 0 1
2 1 1
2 1 1

0 0 1
2 1 1
3 1 1

fmap filter

∗ Fine-tune
=

1
Fmap Error: 1

Fmap Error: 0
1 0

30

0

1

2

3

4

Results of EAP
• EAP achieves 3.7x (1.6x) energy reduction for AlexNet

(GoogLeNet) with comparable accuracy

• EAP outperforms the filter-based method by 1.7x with
comparable accuracy

Dataset: ImageNet

AlexNet GoogLeNet

2.1x 3.7x

x109

Normalized Energy

Initial Filter-
based

EAP
3

5

7

9
x109

1.6x

Initial EAP

1.7x

31

Two Classes of Approaches
Network Pruning
(Change Weights)

Neural Architecture Search (NAS)
(Change Architecture)

CONV

CONV

CONV

CONV

CONV

CONV

1 … M … 1 … M …
… …

Energy-Aware Pruning NetAdapt V1

32

The Proposed Methods

1) Energy-Aware Pruning [CVPR 2017]

2) NetAdapt V1 [ECCV 2018]

• A hardware-aware neural architecture search method
guided by latency

33

DNN Design with Resource Constraints

3x3? 5x5?

128 Filters?

Pool? CONV?

Latency ≤ 30ms Latency ≤ 60ms

Energy ≤ 1 joule

30 ms 60 ms

1 joule

34

Automatic Design with NetAdapt V1

Latency ≤ 30ms Latency ≤ 60ms

Energy ≤ 1 joule

NetAdapt V1

Initial Network

30 ms 60 ms

1 joule

35

Formulation of NetAdapt V1

max
!"#

𝐴𝑐𝑐 𝑁𝑒𝑡 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑅𝑒𝑠$ 𝑁𝑒𝑡 ≤ 𝐵𝑢𝑑$, 𝑗 = 1,⋯ ,𝑚

max
!"#!

𝐴𝑐𝑐 𝑁𝑒𝑡% 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑅𝑒𝑠$ 𝑁𝑒𝑡% ≤ 𝑅𝑒𝑠$ 𝑁𝑒𝑡%&' − ∆𝑅%,$, 𝑗 = 1,⋯ ,𝑚

• Break into a set of simpler problems and solve iteratively
• Remove filters from a single layer per iteration

*Acc: accuracy function, Res: resource evaluation function,
ΔR: resource reduction, Bud: given budget

36

Simplified Example of One Iteration

Latency: 100ms
Budget: 80ms

(Latency reduction: 20ms)

100ms 90ms 80ms

100ms 80ms

Sampled Network

Sampled Network

Layer 1

Layer 4

…

Accuracy: 60%

Accuracy: 40%

…

Selected

2) Meet Budget

Latency: 80ms
Budget: 60ms

1) Input 4) Output3) Maximize
Accuracy

Initial Network
from Previous

Iteration
Network for

Next Iteration

Layer 1
Layer 2
Layer 3
Layer 4

37

Single-Layer Coordinate Descent

of Filters in CONV Layer 1

of

 F
ilt

er
s

in
 C

O
N

V
La

ye
r 2

CONV2
(32 Filters)

CONV1
(16 Filters)

Output
(Fixed # Filters)

Initial Network
(latency: 100ms)

32

16

Search Space of
2-Layer Networks

30ms

100ms

?

Same
Accuracy-latency

Trade-off

• We can view this process as performing single-layer coordinate descent

38

Single-Layer Coordinate Descent

of Filters in CONV Layer 1

of

 F
ilt

er
s

in
 C

O
N

V
La

ye
r 2

New Search Space

32

16

• Two constraints of this iterative optimizer:
• Remove filters from a single layer per iteration

39

• Two constraints of this iterative optimizer:
• Remove filters from a single layer per iteration
• Take a small step per iteration

Single-Layer Coordinate Descent

of Filters in CONV Layer 1

of

 F
ilt

er
s

in
 C

O
N

V
La

ye
r 2

CONV2
(32 Filters)

CONV1
(12 Filters)

Output
(Fixed # Filters)

Sampled
Network 1

(latency: 95ms)
(accuracy: 80%)

CONV2
(30 Filters)

CONV1
(16 Filters)

Output
(Fixed # Filters)

Sampled
Network 2

(latency: 95ms)
(accuracy: 90%)-5ms

-5ms

16

32
30

12

40

Single-Layer Coordinate Descent
• Move to the next location in the search space and

perform the same process again

of Filters in CONV Layer 1

of

 F
ilt

er
s

in
 C

O
N

V
La

ye
r 2

-5ms
-5ms

41

Single-Layer Coordinate Descent
• This process continues until the given resource budget

(30 ms in this example) is satisfied

of Filters in CONV Layer 1

of

 F
ilt

er
s

in
 C

O
N

V
La

ye
r 2

42

NetAdapt V1
• Advantages of NetAdapt V1

• Supports non-differentiable metrics
• Supports multiple resource budgets at the same time
• Guarantees that the budgets will be satisfied because the

resource consumption decreases monotonically
• Generates a family of networks (from each iteration) with

different accuracy versus resource trade-offs
• Adds only a few extra hyper-parameters

43

0%

10%

20%

30%

40%

50%

60%

0 5 10 15

To
p-

1
Ac

cu
ra

cy

Latency (ms)

Short-Term Fine-Tuning
• NetAdapt V1 also fine-tunes every sampled network for a few

epochs (i.e., short-term) to restore the accuracy
• Otherwise, the accuracy will quickly drop to zero and lead to wrong

network selection
NetAdapt V1 Iterations

W/o Fine-Tuning

W/ Fine-Tuning
(4 Epochs)

44

Results on Image Classification

• Initial network: MobileNet V1
• Dataset: ImageNet
• Multipliers: [Howard, arXiv 2017]; MorphNet: [Gordon, CVPR 2018]
• Single large core of Pixel 1 CPU

NetAdapt V1 achieves up to 1.7x faster with comparable
accuracy than previous works

41%

43%

45%

47%

49%

51%

53%

55%

57%

59%

3 5 7 9 11 13

To
p-

1
A

cc
ur

ac
y

Latency (ms)

Multipliers

MorphNet

NetAdapt

1.7x Faster
Comparable Accuracy

1.6x Faster
Comparable Accuracy

V1

Better

45

Using Hardware Metrics is Critical
• If NetAdapt V1 was guided by the number of MACs, it

would also achieve a better accuracy-MAC trade-off

Network Top-1 Accuracy # of MACs (M)

MobileNet V1 45.1% (+0%) 13.6 (100%)

NetAdapt V1 46.3% (+1.2%) 11.0 (81%)

46

• If NetAdapt V1 was guided by the number of MACs, it
would also achieve a better accuracy-MAC trade-off

• However, it does not mean lower latency

• It is important to incorporate hardware metrics rather
than proxy metrics into the design of DNNs

Network Top-1 Accuracy # of MACs (M) Latency (ms)

MobileNet V1 45.1% (+0%) 13.6 (100%) 4.65 (100%)

NetAdapt V1 46.3% (+1.2%) 11.0 (81%) 6.01 (129%)

Using Hardware Metrics is Critical

47

Results on Depth Estimation
NetAdapt V1 reduces the latency of FastDepth by 1.8x on

Jetson TX2 CPU and 1.5x on Jetson TX2 GPU

0

20

40

60

80 Latency (TX2 CPU)

1.8x

FastDepth NetAdapt V1
0

5

10

1.5x

FastDepth

Input Image Depth Map

Latency (TX2 GPU)

NetAdapt V1

FastDepth: [Wofk*, Ma* ICRA 2019]

48

Results on Depth Estimation

NetAdapt V1 preserves the
sharpness and visual clarity

of the output depth maps

Input Before
NetAdapt V1

After
NetAdapt V1

49

Summary
• Using hardware metrics is the key to obtaining better

accuracy-efficiency trade-off

• We proposed two methods guided by hardware metrics to
significantly improve the efficiency of DNNs
– Energy-aware pruning

• A network pruning method guided by energy
• It targets at minimizing the difference in the feature maps rather

than that in filters to improve accuracy-efficiency trade-off
– NetAdapt V1

• A NAS method guided by latency
• It uses the simple-yet-effective coordinate descent optimizer to

automatically and progressively search for networks with better
accuracy-efficiency trade-off

50

Efficient Methods for
Estimating Hardware Metrics

51

Metric Evaluation can be Slow

Image sources: atozkidsstuff.com

Only a few

Estimation

52

Two Use Cases

Know how the target hardware processes DNNs?

1) Yes: energy estimation methodology [CVPR 2017, Asilomar 2017]

• Can be used for hardware that is still in the early design phase and
has not been fabricated yet

2) No: lookup-table approximation [ECCV 2018]

• Can be used for proprietary, off-the-shelf hardware

53

Energy Estimation Methodology
• Estimate the energy consumption of each layer separately

• For each layer, 𝐸9:;<= = 𝐸>?@A+𝐸B:C:

Computation energy only
depends on the # of MACs[Collaborate with Yu-Hsin Chen]

54

Energy Estimation Methodology
• Estimate the energy consumption of each layer separately

• For each layer, 𝐸9:;<= = 𝐸>?@A+𝐸B:C:

Computation energy only
depends on the # of MACs

Minimize energy consumption
under the hardware constraints

55

Factor in Sparsity

9 -1 -3
1 -5 5
-2 6 -1

ReLU
9 0 0
1 0 5
0 6 0

Apply Non-Linearity ReLU on Feature Maps

Pruned Network Filters

-1 1 1
-1 1 1
-1 1 1

2 1 1
2 1 1
2 1 1

0 0 1
2 1 1
2 1 1

Fmap Fmap

Fmap Filter

∗ Prune
= 1

56

Factor in Sparsity

Skip the MAC when at least one
input is zero

0

In2
0

Skipped!

• Use data compression to reduce the # of bits accessed
• Consider sparsity in the memory access optimization

57

Factor in Bitwidth

Computation energy scales linearly
with the bitwidth of each input

• Scale # of bits accessed linearly with the bitwidth
• Consider bitwidths in the memory access optimization

weight

pixel
Out

58

Estimated Energy

Output Activations
43%

Input Activations
25%

Weights
22%

Computation
10%

• Data movement, not computation, dominates the energy

• The movement of activations needs to be considered

On Eyeriss V1 [ISSCC 2016]
GoogLeNet

59

Two Use Cases

Know how the target hardware processes DNNs?

1) Yes: energy estimation methodology [CVPR 2017, Asilomar 2017]

• Can be used for hardware that is still in the early design phase and
has not been fabricated yet

2) No: lookup-table approximation [ECCV 2018]

• A common case when using proprietary, off-the-shelf hardware

60

Lookup-Table Approximation
• We propose using per-layer lookup tables
• Estimate the network latency by the sum of per-layer latency
• The lookup tables only need to be built once and can be used multiple times
• Why per-layer instead of per-network?

• The size of the per-network table grows exponentially with # of layers
• 10 layers + 10 shapes/layer à per-network: 1010 entries, per-layer: 100 entries

• The layers with the same shape only need to be measured once

3ms, 5ms

Target
Hardware

2 4 6 8

2 1 2 3 4

4 2 3 4 5

6 3 4 5 6

8 4 5 6 7

Fi

lte
rs

1 2 3

2 1 3 5

4 2 4 6

6 3 5 7

8 4 6 8

Fi

lte
rs

Layer 1
Channels

Latency
5 + 2 = 7 ms

2 Filters

4 Filters

Layer 1

Layer 2

Cat
Layer 2

Channels

Image sources: favpng.com

61

Results of Per-Layer Lookup Table

• Real latency vs. estimated latency on Google Pixel 1 CPU
• The proposed per-layer lookup table has been widely used in

various works for neural architecture search

MobileNet V1 MobileNet V3

62

Summary
• Proxy metrics may not well approximate hardware metrics

because they fail to capture some important factors, such as
memory hierarchy and data movement

• We proposed two efficient methods for estimating hardware
metrics for two use cases
– With knowledge of hardware: energy estimation methodology

• Considers the two main sources of energy: computation and data movement
• Provides insights for improving the system

– Without knowledge of hardware: lookup-table approximation
• Uses pre-layer lookup tables that capture the properties of hardware
• Builds the tables once and uses them multiple times

63

Beyond Current Digital
Accelerators

64

Processing-in-Memory (PIM) Accelerators

• Emerging approach for
processing DNNs

input
activations

DAC

AD
C

psum/
output activations

Analog logic
(mult/add/shift)

Columns in Array (A)

Rows in
Array (B)

Storage Element

[Collaborated with IBM]

Processing Element

• Reduce weight data movement by
moving compute into the memory
(i.e., weight-stationary dataflow)

• Implement as matrix-vector multiply
in the analog domain

65

Data Movement of Activations

• Weight-stationary dataflow trades
the movement of weights for the
movement of activations

• Movement of activations can
dominate energy consumption of
PIM accelerators due to the
costly peripheral circuits

input
activations

DAC

AD
C

psum/
output activations

Analog logic
(mult/add/shift)

Columns in Array (A)

Rows in
Array (B)

Storage ElementProcessing Element

66

Data Movement of Activations
• Recent DNN design for digital accelerators tends to make network

deeper with smaller layers
• Achieves higher accuracy with fewer weights and MACs

• However, the decrease in MACs and weights can be accompanied
by an increase in the number of activations
• Activations are much more expensive than weights and MACs in PIM!

Fewer Weights Fewer MACs More Activations

Early DNNs Recent DNNs

67

Impact of Array Size on Utilization

• PIM accelerators often have a large array size
to amortize the cost of the peripheral circuits
• Digital: 16x16 à 128x128
• PIM: 128x128 à 4096x4096

• Array utilization depends on filter size
• Recent DNNs have smaller filters
• However, smaller filter causes lower

utilization!
• Lower utilization means

• Fewer MACs are processed in parallel à
Increased latency

• Reduced data reuse of activations à
Increased energy consumption

68

Hardware Efficiency – Trade-Off
• Shallower DNNs with larger layers may benefit more from PIM

accelerators, going against the design approach for digital hardware
• Examples with comparable accuracy:

• Deep network with small layers: ResNet152 [He, CVPR 2016]

• Shallow network with large layers: Wide ResNet [Zagoruyko, BMVC 2017]

Estimated Energy Estimated Latency

69

Summary

Design approaches that achieve high efficiency on digital
accelerators do NOT necessarily translate to PIM accelerators

Important to consider the hardware while
designing DNNs

70

Conclusion

71

Conclusion

Considering hardware is the key to achieving
efficient DNN design

• Designing DNN architecture with hardware metrics can
improve the accuracy-efficiency trade-off

• Efficient methods for estimating hardware metrics provide
insights into the bottleneck of the system and accelerate
hardware-aware DNN design

• Different hardware may require different design
approaches because of the distinct hardware properties

72

Solution to High Complexity
FinanciallyEnvironmentally Functionally

Image sources: solarschools.net, 123rf.com

73

Acknowledgment
• Advisor:

• Prof. Vivienne Sze
• Thesis Committee:

• Prof. Joel Emer
• Prof. Sertac Karaman

• EEMS Group:
• Yu-Hsin Chen, Amr Suleiman, Mehul

Tikekar, Zhengdong Zhang, James
Noraky, Hsin-Yu Lai, Gladynel Peña ,
Yannan Wu, Peter Li, Soumya
Sudhakar, Yi-Lun Liao, Diana Wofk

• Collaborators:
• Google Mobile Vision: Hartwig Adam,

Andrew Howard, Liang-Chieh Chen, Bo
Chen, Xiao Zhang

• IBM: Tayfun Gokmen, Wilfried Haensch

• My family
• Friends

74

Thanks!

