Algorithms and Systems for Low Power Time-of-Flight Imaging

James Noraky

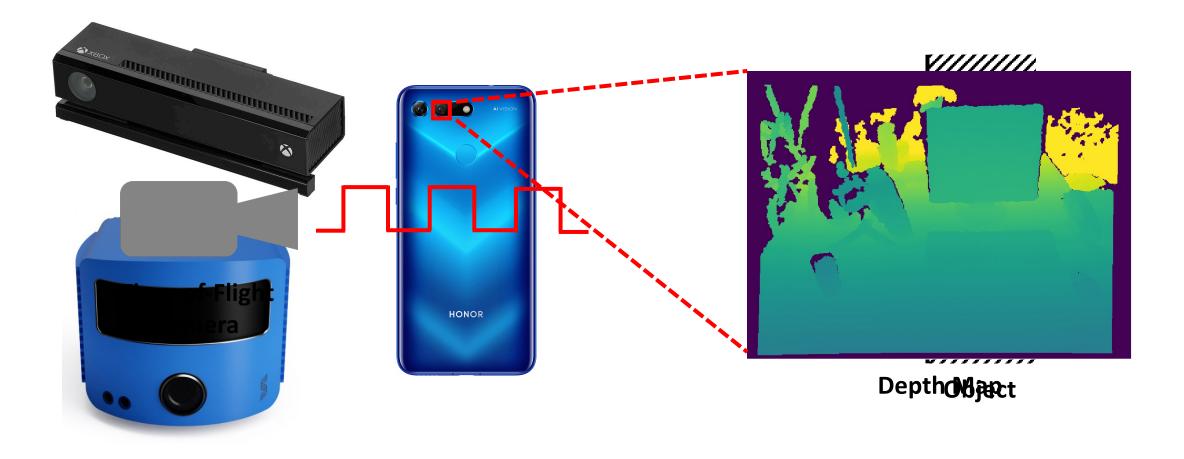
April 17, 2020

Thesis Advisor:Prof. Vivienne SzeThesis Committee:Prof. Berthold K.P. HornDr. Charles Mathy

Depth Sensors Enable Many Emerging Applications

Depth information enables safe navigation and interactive applications

Time-of-Flight Cameras Are Appealing Depth Sensors



Nobrainide prantsy connections, lightain denea solerinte insapsuvitthip trained Itianency

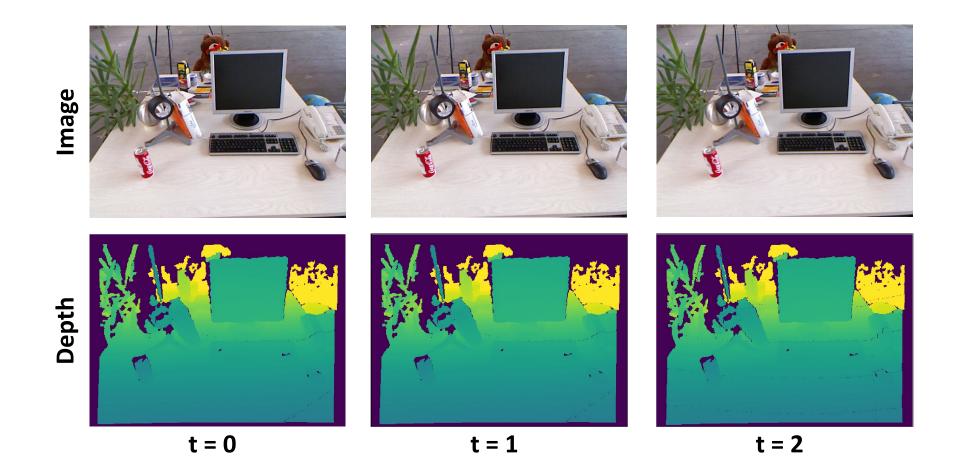
Time-of-Flight Cameras Are Power Hungry

- Active Sensor: For ranges up to 8 m, time-of-flight (ToF) cameras consume up to 20 W
- Reduced Battery Life: Especially for applications that need continuous depth
- Increased Heat Dissipation: Affects calibration and forces the addition of bulky heat sinks

Thesis Goals

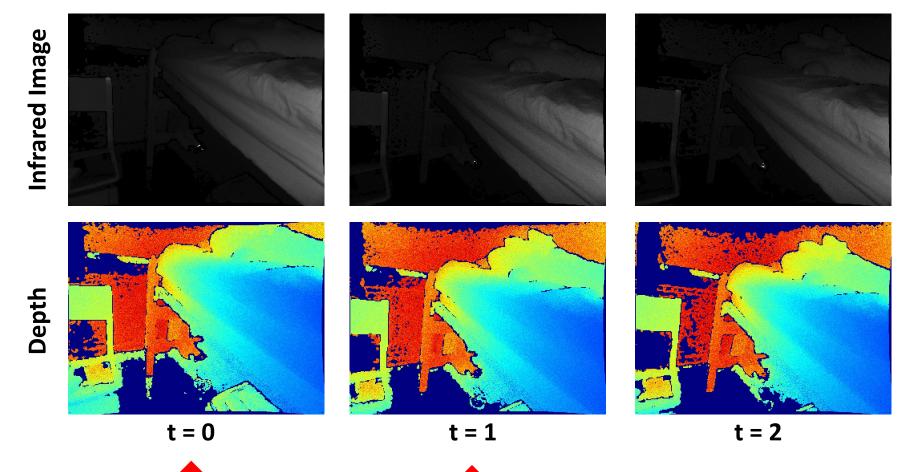
- Lower the sensor power of ToF cameras
- Obtain accurate and dense depth maps
- Minimize the latency of our approaches on low power processors

Reduce the Usage of the ToF Camera



Estimate depth maps using consecutive and concurrently collected RGB images

Reduce the Light the ToF Camera Emits

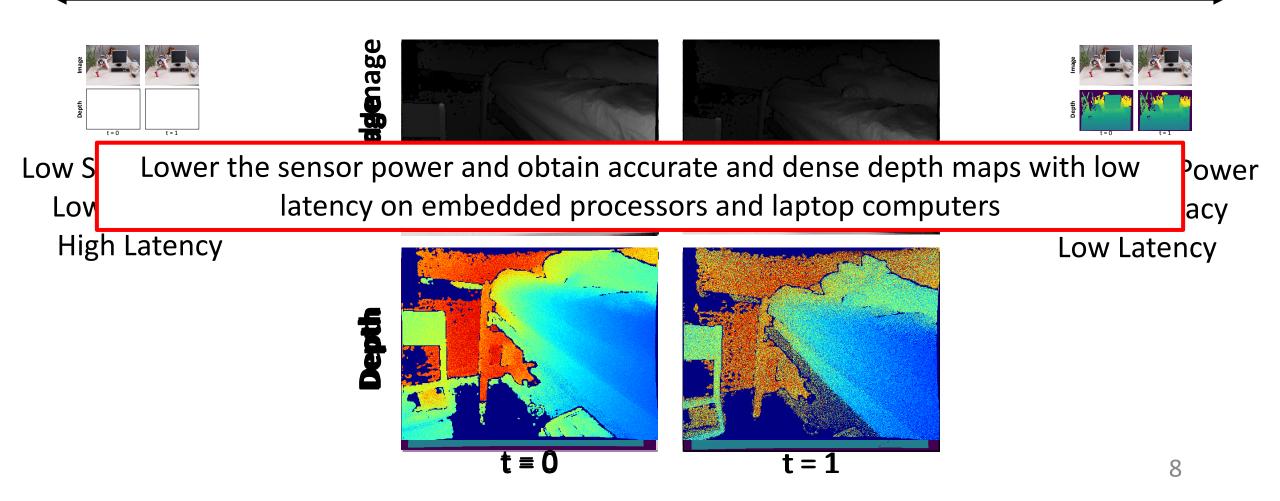


Denoise the lover depth maps across frames

Balance Sensor Power, Accuracy, and Latency

Strictly Computation

Strictly ToF Camera



The Metrics We Use to Evaluate Our Approaches

Sensor Power

- Duty Cycle: percentage of frames where the ToF camera is used
- Normalized Power: fraction of light emitted compared to a regular depth map

• Accuracy

- Mean Relative Error (MRE) = $\frac{100}{N} \sum_{i=1}^{N} \frac{|Z_i \hat{Z}_i|}{Z_i}$
- N is the total number of pixels, Z_i is the ground truth depth, \hat{Z}_i is the estimated depth

Latency

 Quantify the estimation frame rate (FPS) on a low power embedded processor and laptop computer

Estimating Accurate and Dense Depth Maps Is Hard

- Challenge: Problem is underdetermined and requires dense computation
- Assume that the scenes contain rigid motions and use them to estimate/denoise depth maps
- Rigid motion can be efficiently estimated using sparse operations and linear least squares

Publications That Went Into Thesis

• Conferences

- J. Noraky, V. Sze, "Low Power Depth Estimation for Time-of-Flight Imaging," ICIP, 2017.
- J. Noraky, V. Sze, "Depth Estimation of Non-Rigid Objects for Time-of-Flight Imaging," ICIP, 2018.
- J. Noraky, C. Mathy, A. Cheng, V. Sze, "Low Power Adaptive Time-of-Flight Imaging for Multiple Rigid Objects," ICIP, 2019.

• Journal Publications and Preprints

- J. Noraky, V. Sze, "Low Power Depth Estimation of Rigid Objects for Time-of-Flight Imaging," TCSVT, 2020.
- J. Noraky, V. Sze, "Depth Map Estimation of Dynamic Scenes Using Prior Depth Information," Under Review, 2020.
- J. Noraky, V. Sze, "Low Power Depth Map Denoising for Mobile Time-of-Flight Cameras," In Preparation, 2020.

Publications That Went Into Thesis

• Conferences

- J. Noraky, V. Sze, "Low Power Depth Estimation for Time-of-Flight Imaging," ICIP, 2017.
- J. Noraky, V. Sze, "Depth Estimation of Non-Rigid Objects for Time-of-Flight Imaging," ICIP, 2018.
- J. Noraky, C. Mathy, A. Cheng, V. Sze, "Low Power Adaptive Time-of-Flight Imaging for Multiple Rigid Objects," ICIP, 2019.

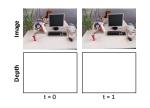
Journal Publications and Preprints

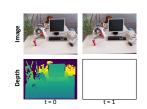
- J. Noraky, V. Sze, "Low Power Depth Estimation of Rigid Objects for Time-of-Flight Imaging," TCSVT, 2020.
- J. Noraky, V. Sze, "Depth Map Estimation of Dynamic Scenes Using Prior Depth Information," Under Review, 2020.
- J. Noraky, V. Sze, "Low Power Depth Map Denoising for Mobile Time-of-Flight Cameras," In Preparation, 2020.

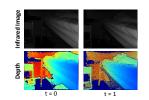
Outline

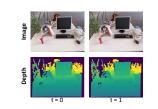
Strictly Computation

Strictly ToF Camera







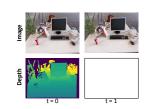


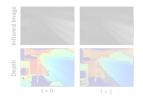
- Reduce the Usage of the ToF Camera
 - Depth Map Estimation for Rigid Scenes
 - Depth Map Estimation for Dynamic Scenes
- Reduce the Light the ToF Camera Emits
 - Adaptive Pulse Control
- Summary of Thesis Contributions

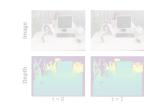
Outline

Strictly Computation

Strictly ToF Camera

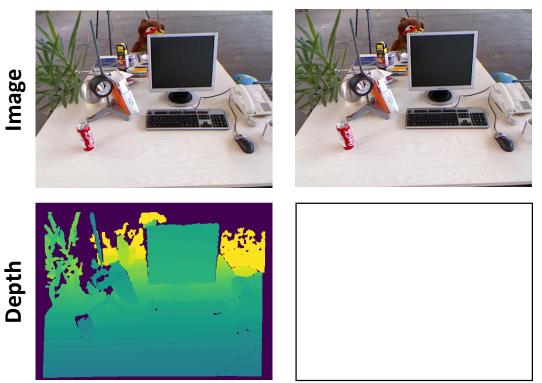






- Reduce the Usage of the ToF Camera
 - Depth Map Estimation for Rigid Scenes
 - Depth Map Estimation for Dynamic Scenes
- Reduce the Light the ToF Camera Emits
 - Adaptive Pulse Control
- Summary of Thesis Contributions

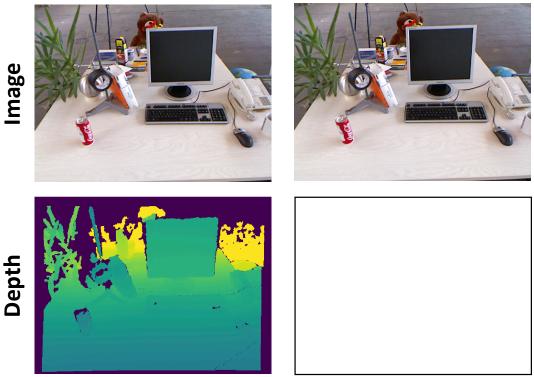
- Estimate the depth map in the current frame
- Between consecutive frames, there is not a lot of motion
- Update the previous depth map using motion cues from the images



Previous Frame

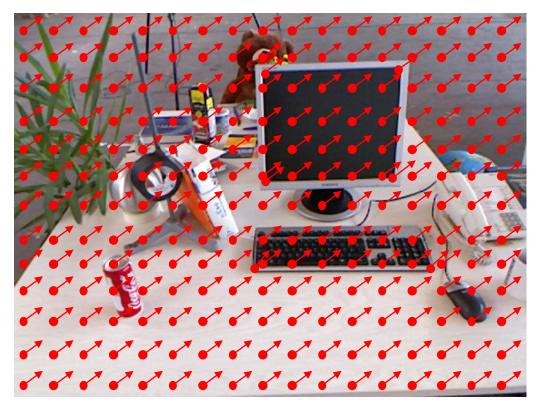
Current Frame

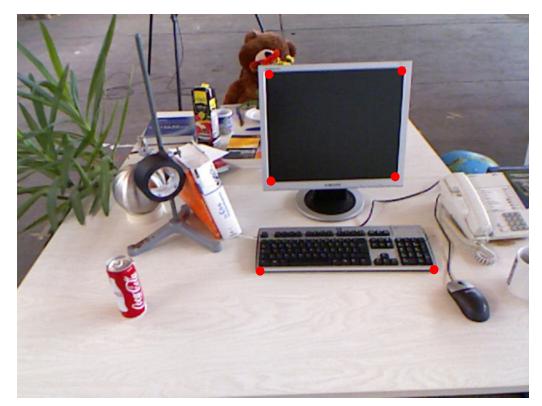
 Many approaches use the dense optical flow between the images to remap the pixels of the previous depth map



Previous Frame

Optical Flow Is the Apparent Pixel-Wise Motion



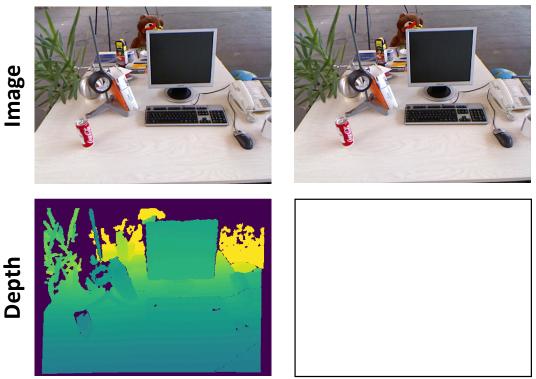


Previous Frame

Current Frame

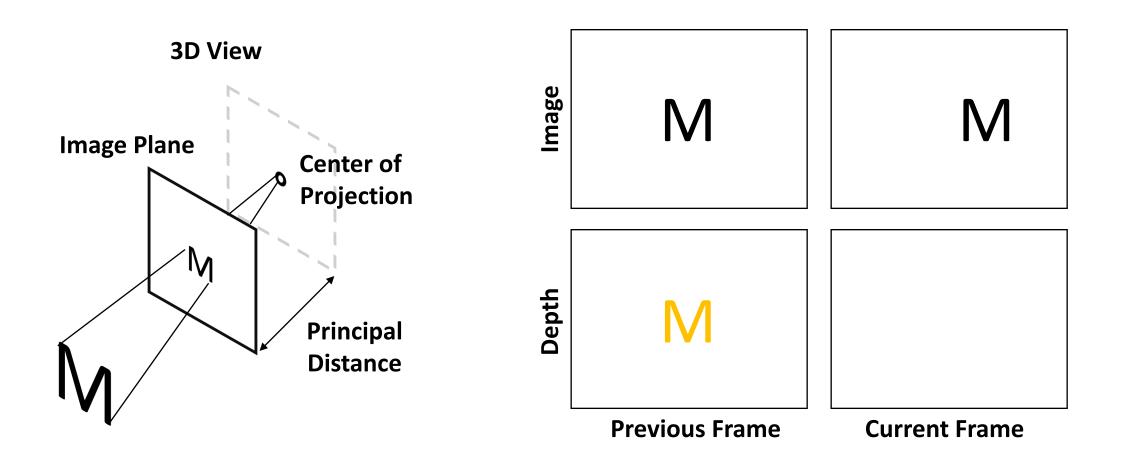
Estidsetthe dentice afford a courrade estite alisted svois the appretaiolion of the preasive

- Many approaches use the dense optical flow between the images to remap the pixels of the previous depth map
- Estimate the rigid motion using sparse optical flow and use it to reproject the previous depth map

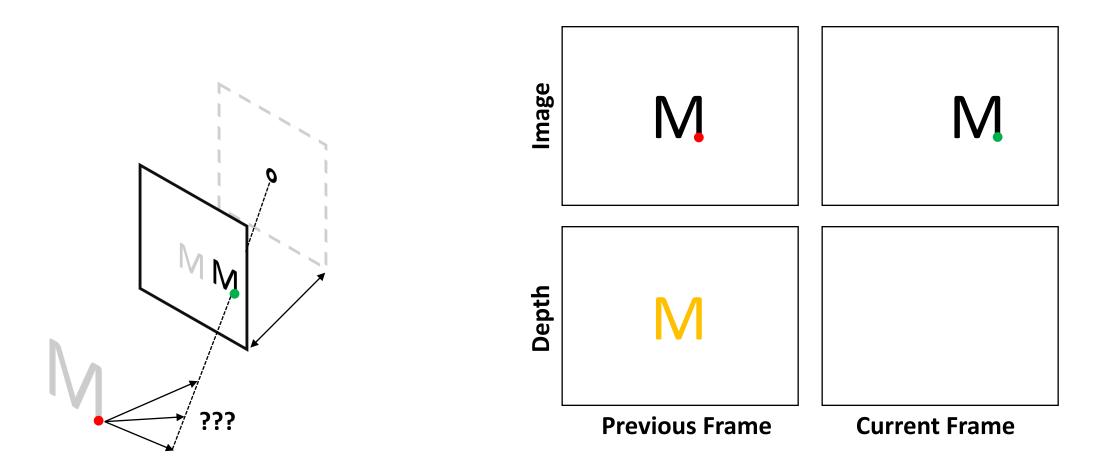


Previous Frame

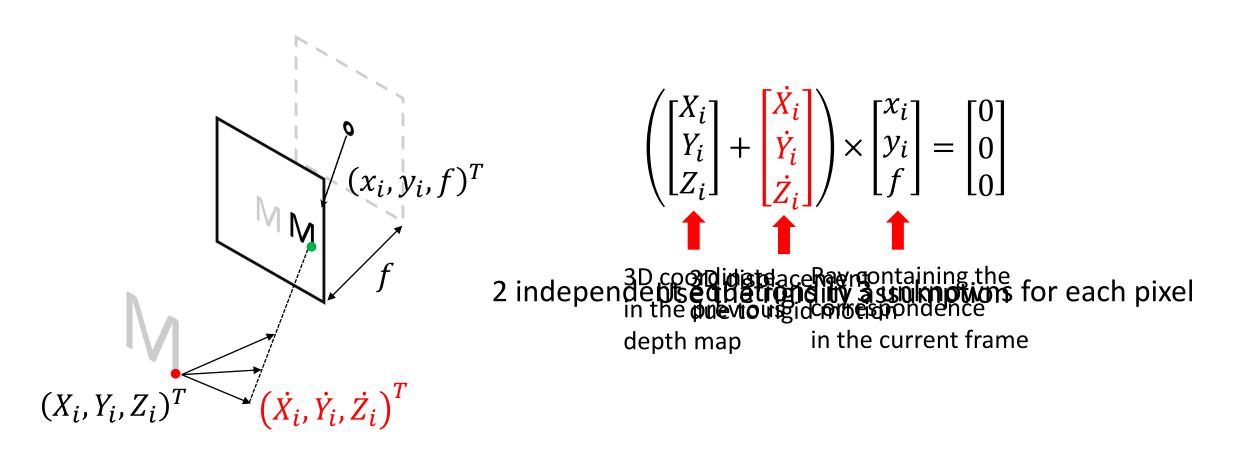
Current Frame

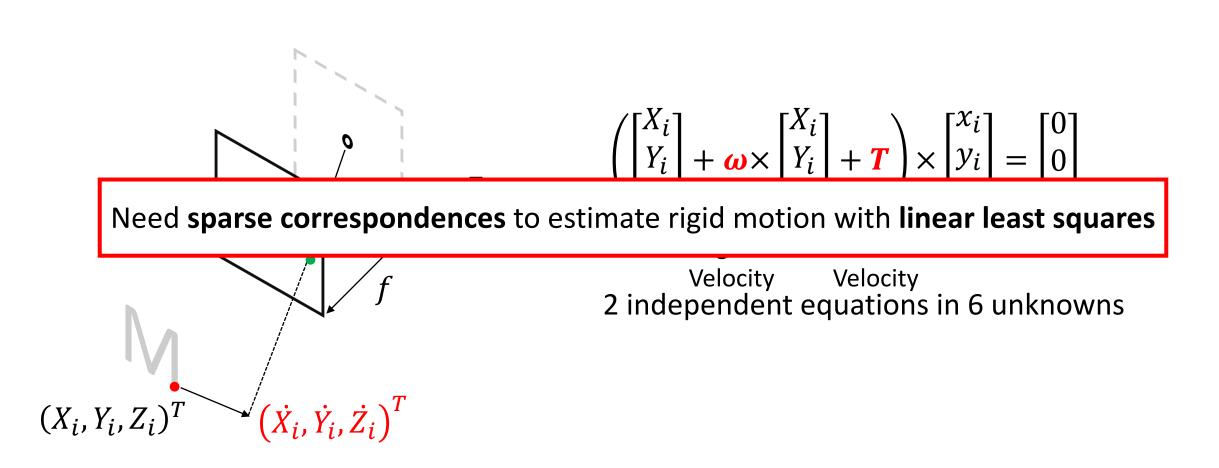


Given depth in the previous suframpe, rape caive ptojection BD location of each pixel

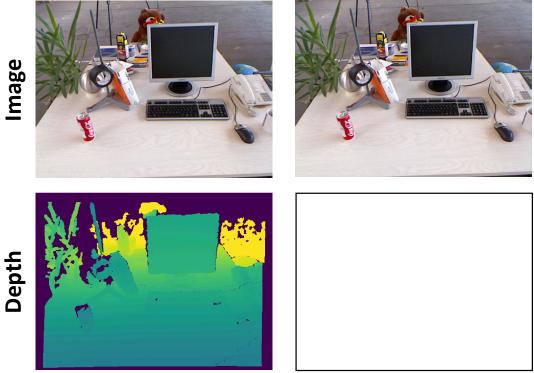


What House the electric with perception of the second seco



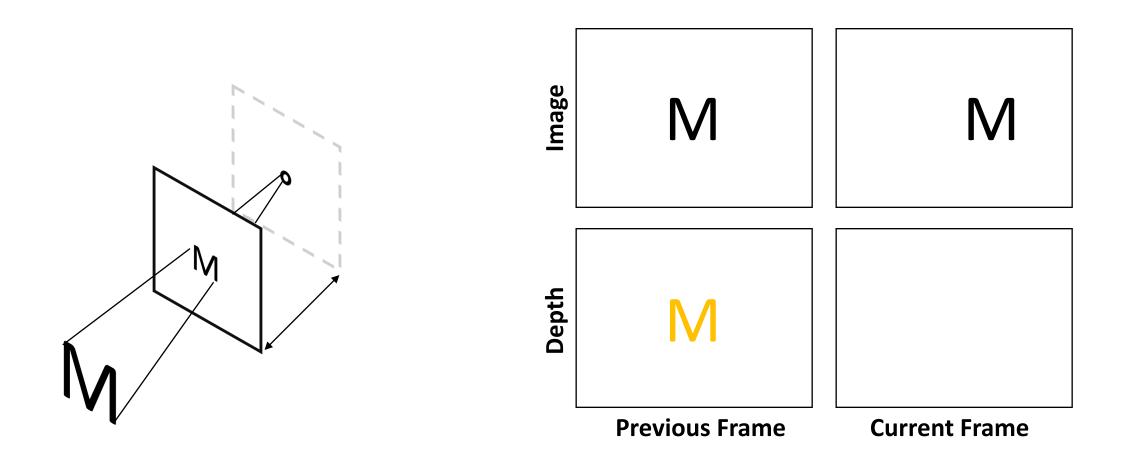


- Many approaches use the dense optical flow between the images to remap the pixels of the previous depth map
- Estimate the rigid motion using sparse optical flow and use it to reproject the previous depth map

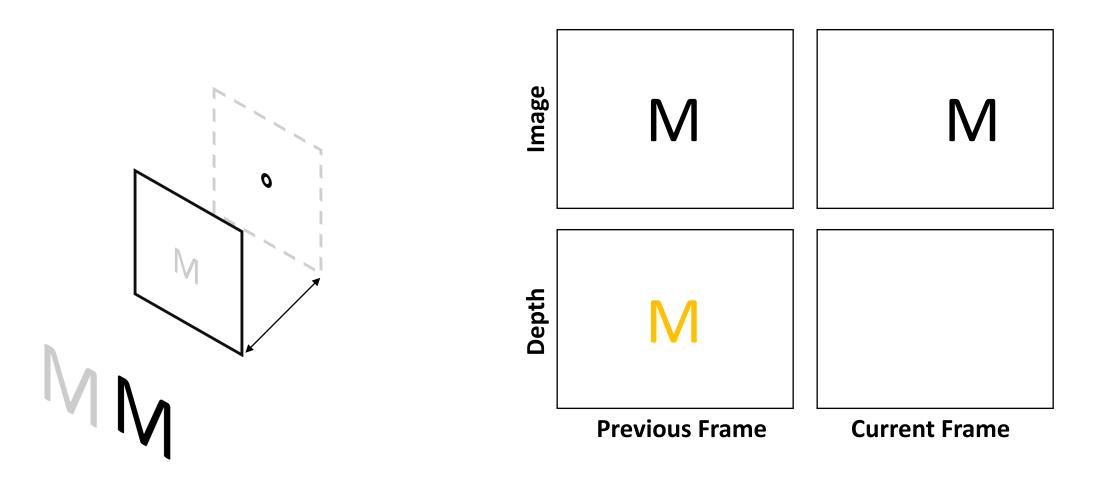


Previous Frame

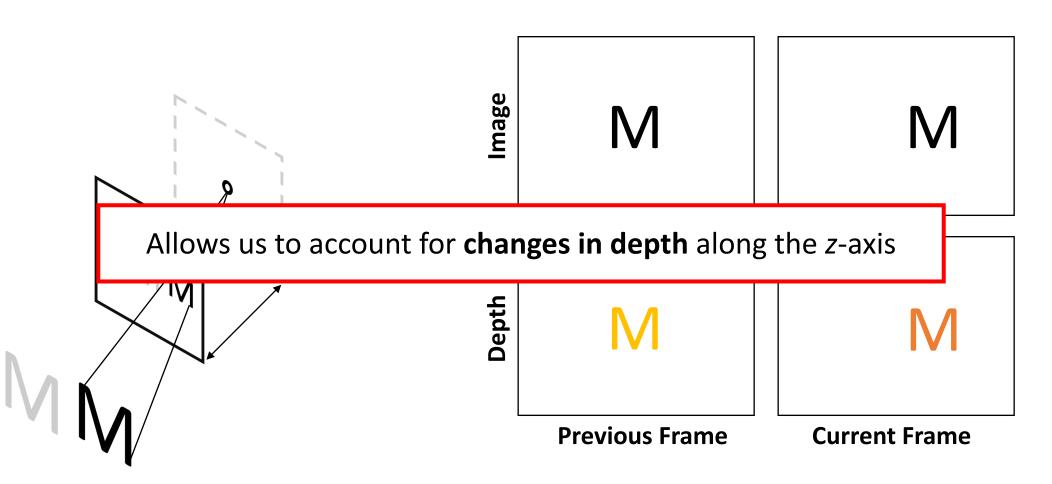
Current Frame



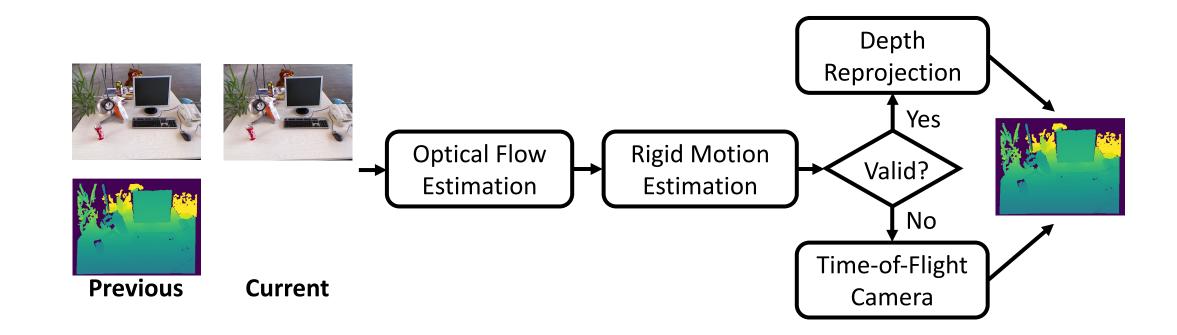
Get the 3D position of each point

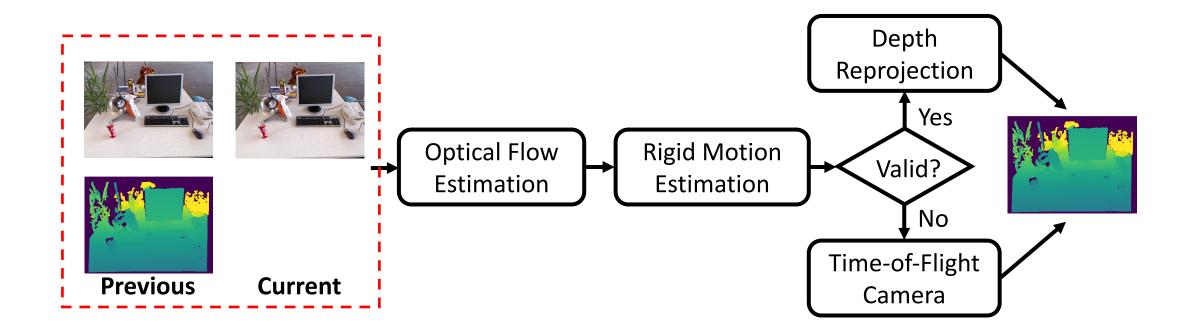


Apply the rigid motion to the 3D points

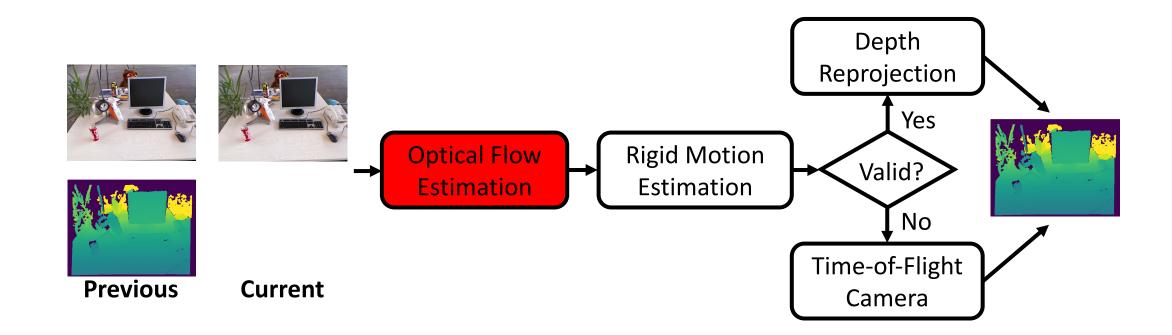


Project the **updated depth** to the image



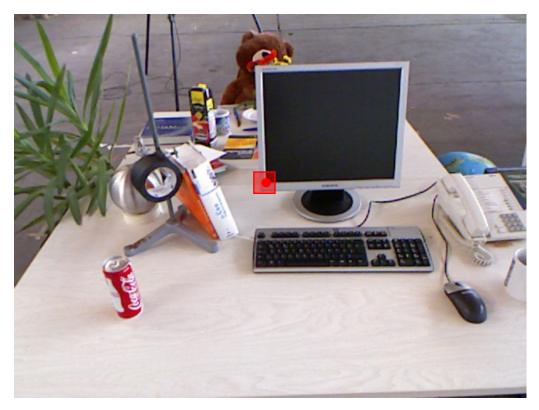


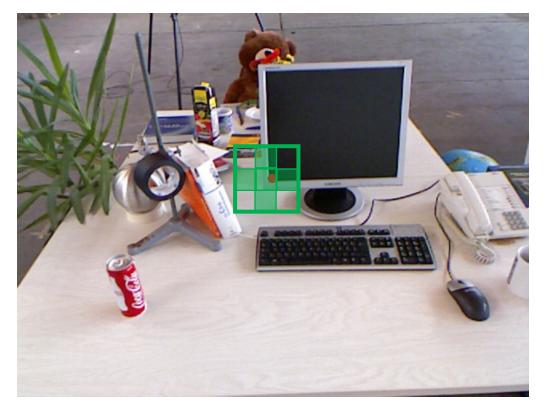
Our inputs are consecutive images and a previous depth map



Use block matching on the pixels on a sparse grid

Use Efficient Block Matching Heuristic

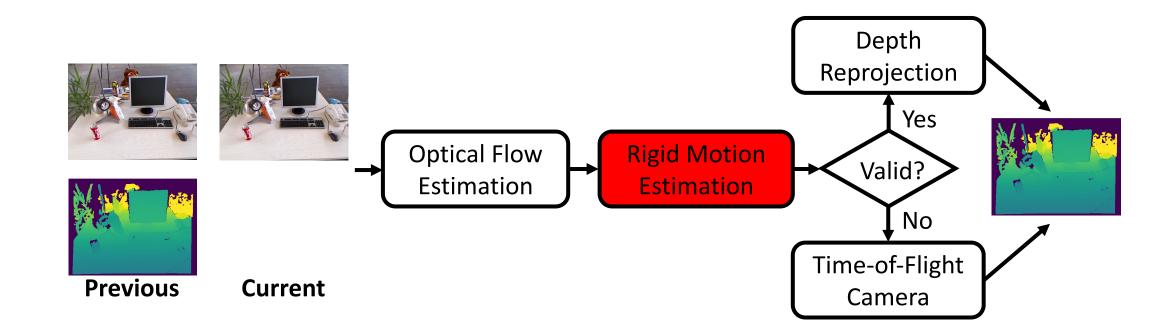




Previous Frame

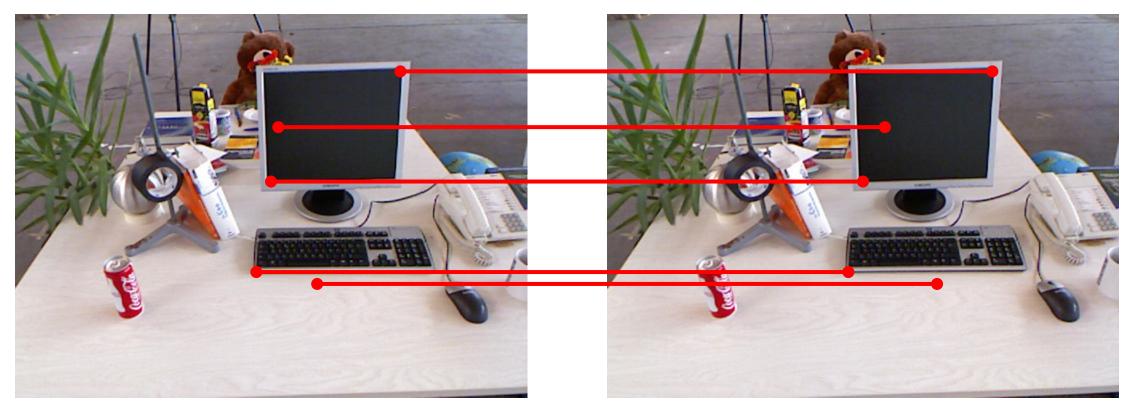
Current Frame

Reduce the number of positions used to determine the correspondence



Estimate the rigid motion robustly using RANSAC

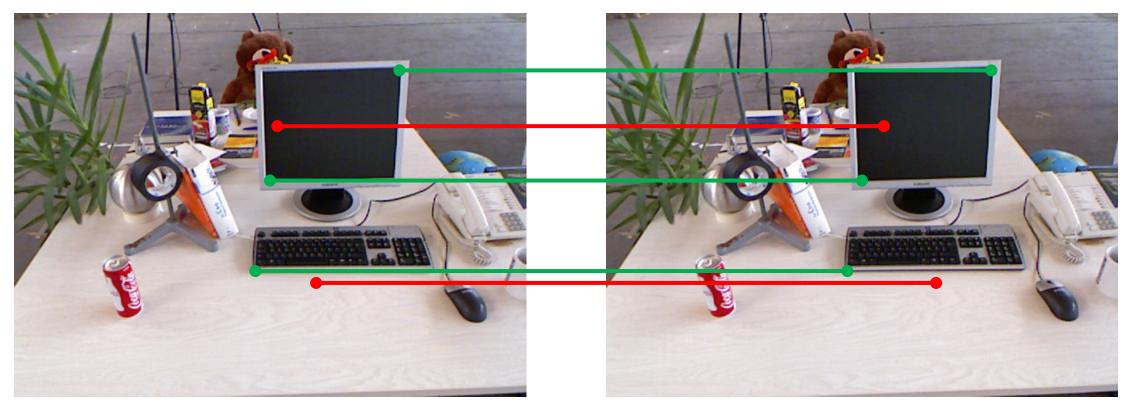
RANSAC Mitigates the Impact of Outliers



Previous Frame

Current Frame

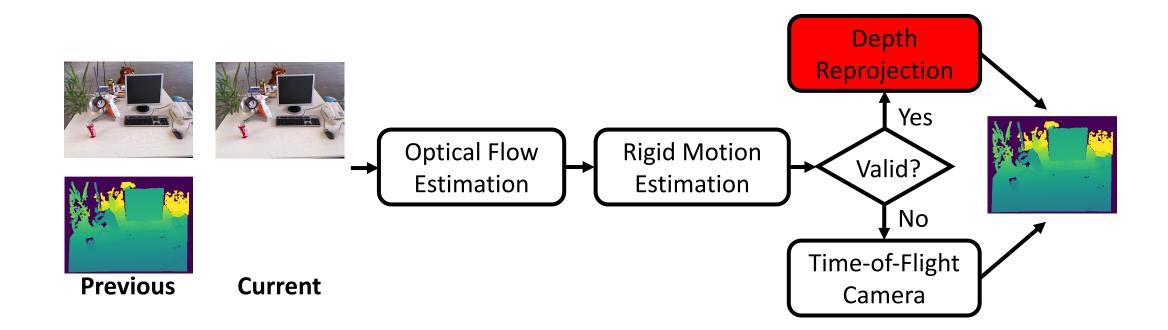
RANSAC Mitigates the Impact of Outliers



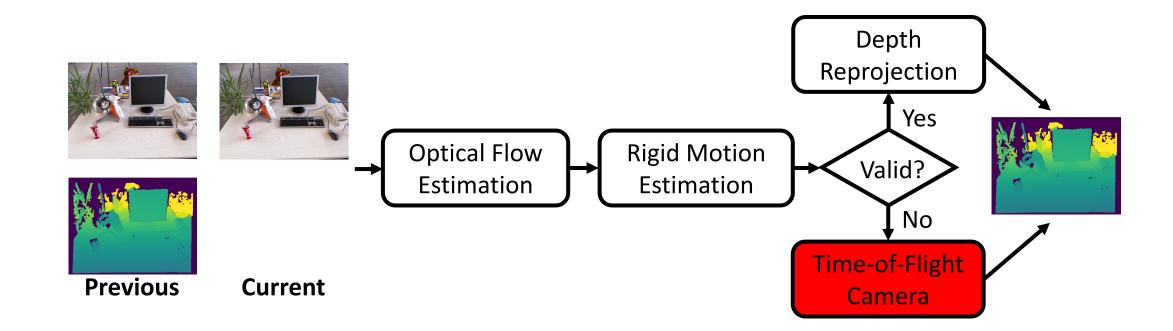
Previous Frame

Current Frame

Distinguish correct correspondences (inliers) from erroneous ones (outliers) 33



Obtain a new depth map by applying the rigid motion to the previous depth map



If RANSAC fails, use the time-of-flight camera

How Does Our Algorithm Perform?

- Evaluate our algorithm using RGB-D datasets: TUM RGB-D, NYU v2, Indoor RGB-D, CoRBS, and ICL-NUIM
- Estimate depth using the consecutive images and use the depth map in the dataset when the rigid motion cannot be estimated
- Quantify the duty cycle, mean relative error (MRE), and estimation frame rate on the ODROID-XU3 embedded processor

How Low Can We Reduce the Duty Cycle?

ApproachDuty Cycle (%)MRE (%)Frame Rate (FPS)

Find the lowest duty cycle at which we can maintain a mean relative error of 1%

How Low Can We Reduce the Duty Cycle?

Approach	Duty Cycle (%)	MRE (%)	Frame Rate (FPS)
This Work	15.0	0.96	30

Find the lowest duty cycle at which we can maintain a mean relative error of 1%

Approach	Duty Cycle (%)	MRE (%)	Frame Rate (FPS)
This Work	15.0	0.96	30

Compare to a variant of our approach that computes sub-pixel optical flow (This Work + Sub)

Approach	Duty Cycle (%)	MRE (%)	Frame Rate (FPS)
This Work	15.0	0.96	30
This Work + Sub	15.0	0.87	15

Approach	Duty Cycle (%)	MRE (%)	Frame Rate (FPS)
This Work	15.0	0.96	30
This Work + Sub	15.0	0.87	15

Using sub-pixel optical flow decreases the MRE but also halves the frame rate

Approach	Duty Cycle (%)	MRE (%)	Frame Rate (FPS)
This Work	15.0	0.96	30
This Work + Sub	15.0	0.87	15

Using sub-pixel optical flow decreases the MRE but also halves the frame rate

Balance Accuracy With Estimation Frame Rate

Approach	Duty Cycle (%)	MRE (%)	Frame Rate (FPS)
This Work	15.0	0.96	30
This Work + Sub	15.0	0.87	15

Using sub-pixel optical flow decreases the MRE but also halves the frame rate

What Is the Impact of Using Rigid Motion?

Approach	Duty Cycle (%)	MRE (%)	Frame Rate (FPS)
This Work	15.0	0.96	30
This Work + Sub	15.0	0.87	15

Compare to Wang et al.^{*}, which uses dense optical flow to remap the previous depth map

Using Rigid Motion Increases Accuracy and Efficiency

Approach	Duty Cycle (%)	MRE (%)	Frame Rate (FPS)
This Work	15.0	0.96	30
This Work + Sub	15.0	0.87	15
Wang <i>et al.</i>	15.0	3.20	0.83

Using Rigid Motion Increases Accuracy and Efficiency

Approach	Duty Cycle (%)	MRE (%)	Frame Rate (FPS)
This Work	15.0	0.96	30
This Work + Sub	15.0	0.87	15
Wang <i>et al.</i>	15.0	3.20	0.83

Reprojecting the previous depth map allows us to account for changes in depth

Using Rigid Motion Increases Accuracy and Efficiency

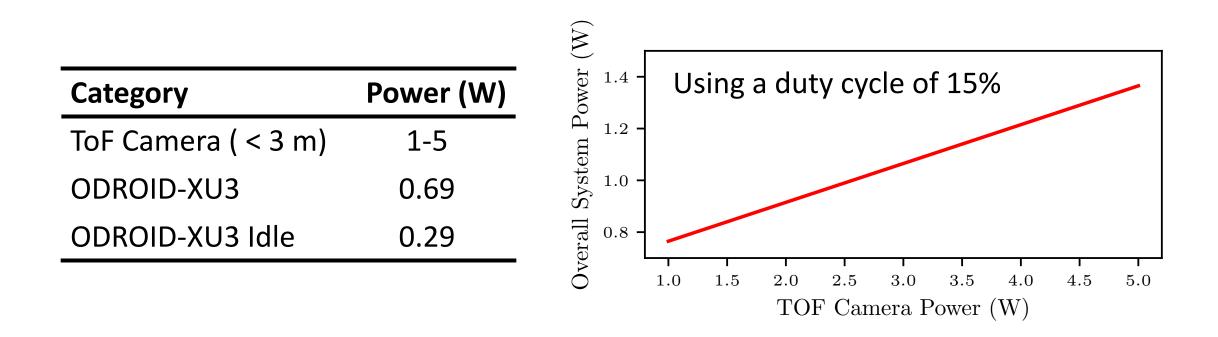
Approach	Duty Cycle (%)	MRE (%)	Frame Rate (FPS)
This Work	15.0	0.96	30
This Work + Sub	15.0	0.87	15
Wang <i>et al.</i>	15.0	3.20	0.83

Rigid motion can be estimated with sparse optical flow and linear least squares

What About the System Power?

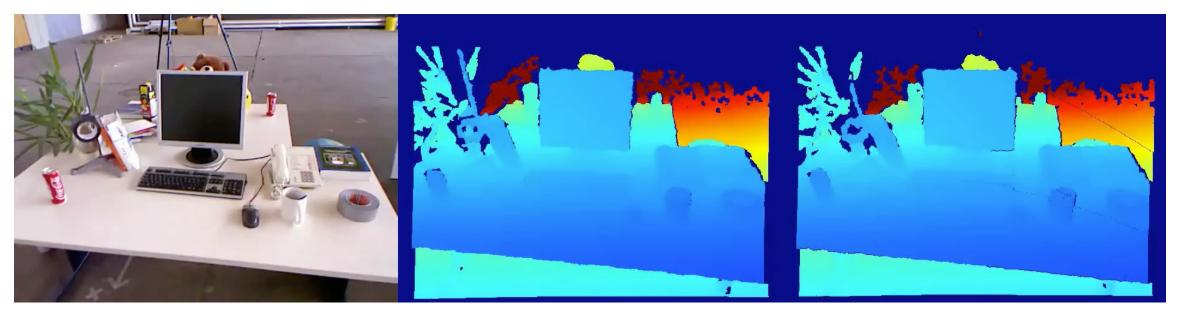
Category	Power (W)
ToF Camera (< 3 m)	1-5

What About the System Power?



Overall system power reduced by up to 73%

Example of Estimated Depth Maps

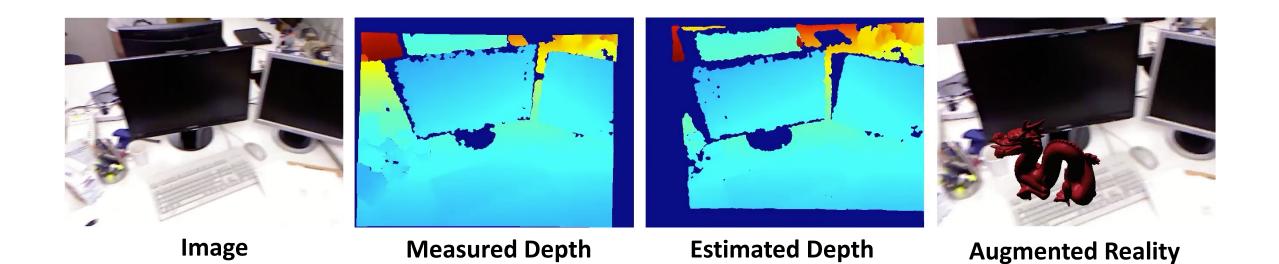


Image

Measured Depth

Estimated Depth

Our Depth Maps Can Be Used in Augmented Reality



Joint work with Alan Cheng (SuperUROP + MEng)

Summary of Contributions

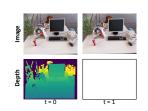
- **Key Insight:** We can estimate accurate and dense depth maps efficiently by reprojecting a previous one using the estimated rigid motion
- Using the rigid motion allows us to account for changes in depth, and it can be efficiently estimated using sparse block matching with RANSAC
- We can estimate depth maps in real-time on a low power embedded processor and adaptively control the ToF camera
- Reduce the usage of the ToF camera by up to 85% (and the system power by 73%) while estimating depth within 1% of the ground truth

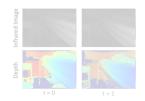
Our Publications: ICIP 2017, TCSVT 2020

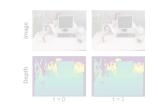
Outline

Strictly Computation

Strictly ToF Camera

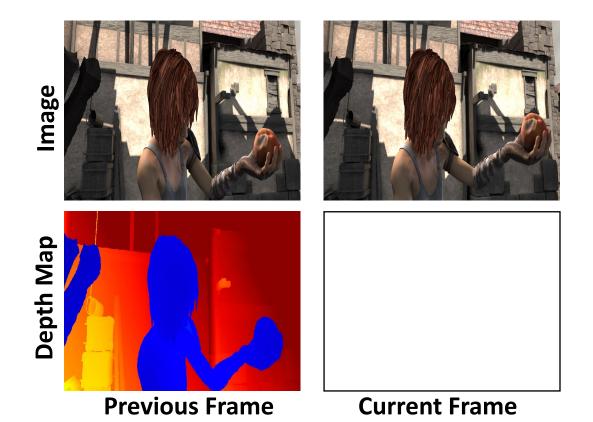




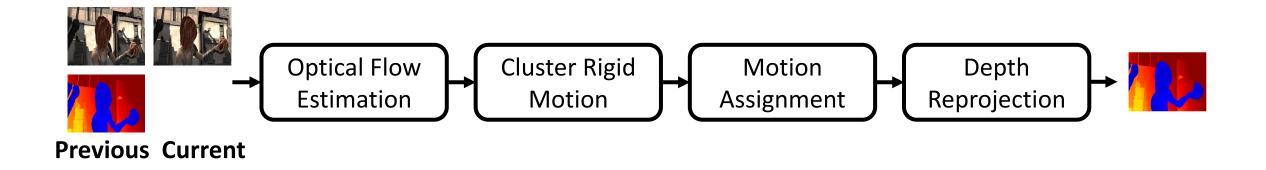


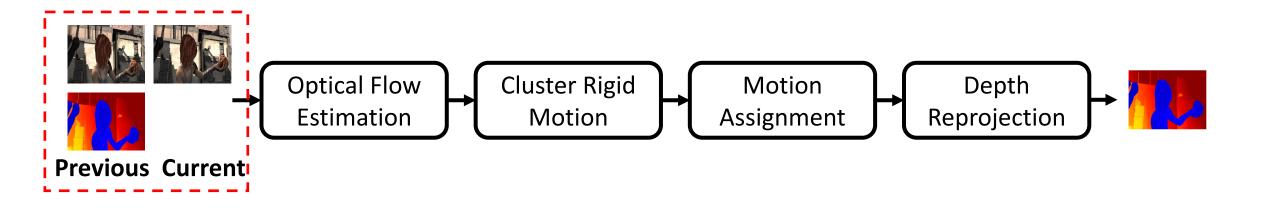
- Reduce the Usage of the ToF Camera
 - Depth Map Estimation for Rigid Scenes
 - Depth Map Estimation for Dynamic Scenes
- Reduce the Light the ToF Camera Emits
 - Adaptive Pulse Control
- Summary of Thesis Contributions

- Assume that the scene is locally rigid
- Many approaches first **segment** the scene into rigid regions and then estimate the depth in each region
- In our work, we cluster the rigid motions and use them to estimate a new depth map

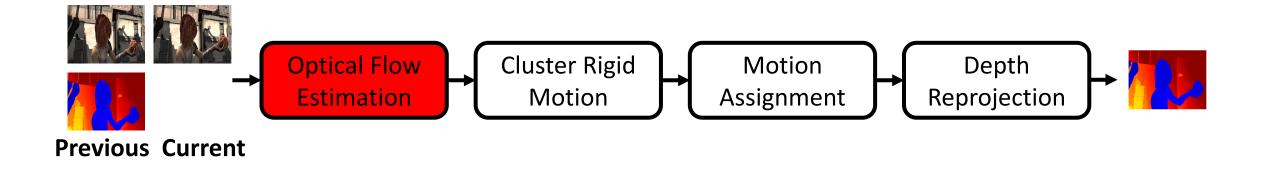


54

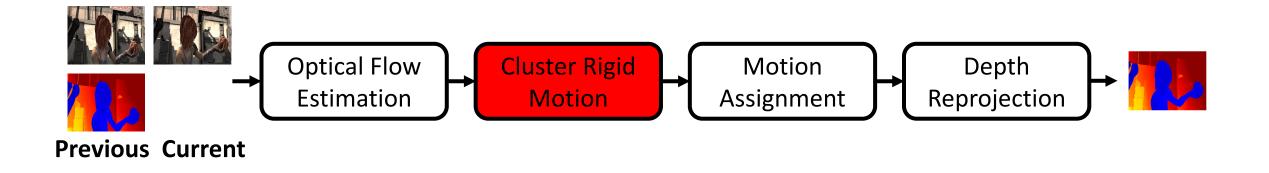




Our inputs are consecutive images and a previously measured depth map

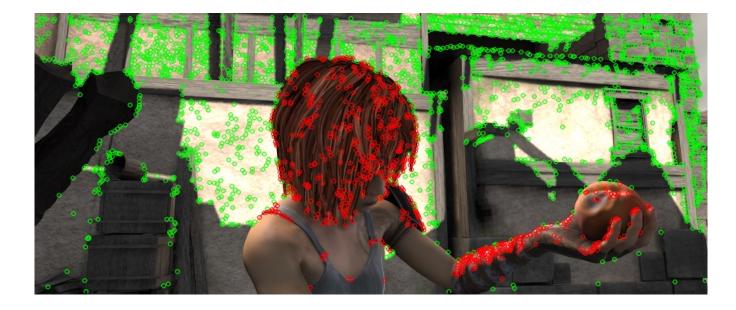


Estimate **sparse** subpixel optical flow at corners



Estimate the rigid motions in the scene by clustering them

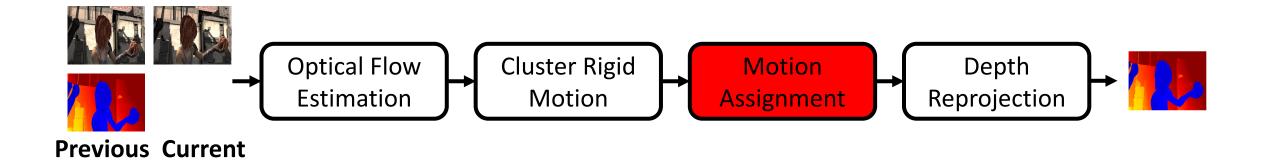
Corners where the optical flow is estimated



Use RANSAC to estimate the rigid motion and inliers

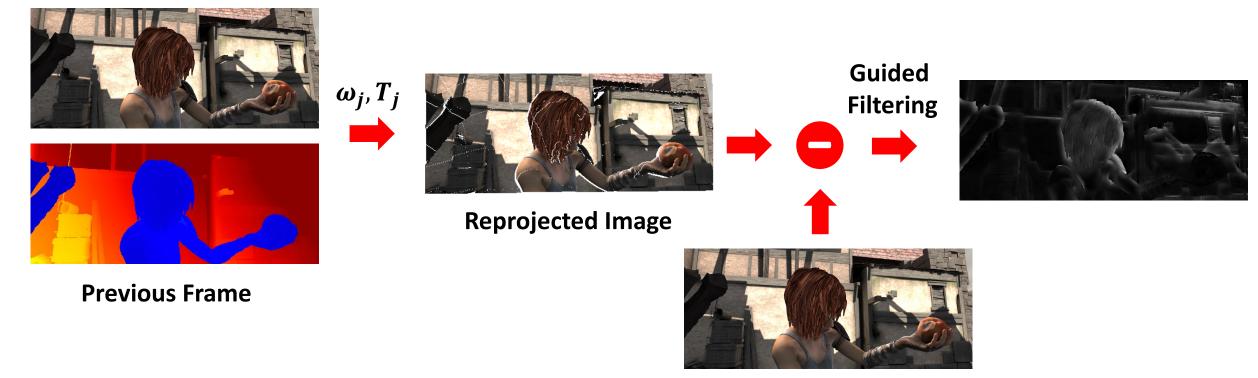
Remove the pixels that correspond to the largest inlier set

Repeat iteratively for the remaining pixels



Assign/htice pigielsoutithetestipiated of itginininontizers sitsophestpoonettic?error

Computing the Photometric Error



Current Image

Repeat this process for each of the estimated rigid motions

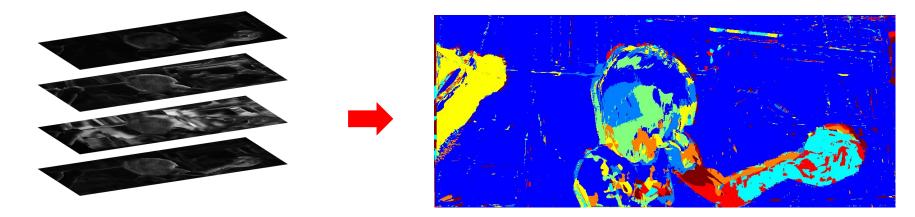
Use the Photometric Error to Assign the Rigid Motion

The background has low photometric error

Use the Photometric Error to Assign the Rigid Motion

The hand has low photometric error

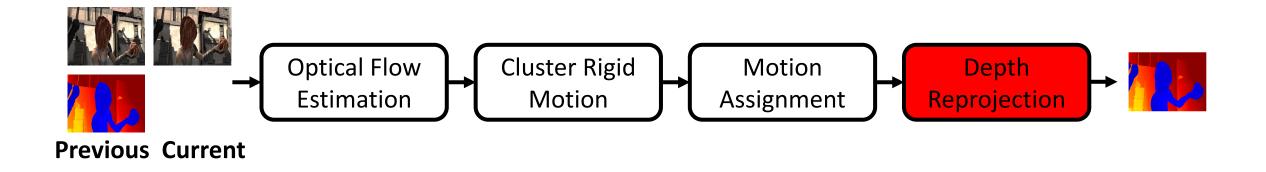
Use the Photometric Error to Assign the Rigid Motion



Cost Volume

Assigned Rigid Motion

For eachydexed nassigntheeriggid motion that maintiprizes sieg preothantine tric error



Use the assigned rigid motion to reproject the previous depth map

How Does Our Algorithm Perform?

- Evaluate our algorithm using RGB-D datasets: EPFL DS, MPI Sintel, TUM RGB-D, and VKITTI
- Estimate depth using the consecutive images and use the depth map in the dataset at regular intervals
- Quantify the duty cycle, mean relative error (MRE), and estimation frame rate on a laptop computer

How Low Can We Reduce the Duty Cycle?

Find the lowest duty cycle at which we can maintain a mean relative error of 1%

How Low Can We Reduce the Duty Cycle?

Approach	Duty Cycle (%)	MRE (%)
This Work	33.3	0.96

Find the lowest duty cycle at which we can maintain a mean relative error of 1%

Dynamic Scenes Are Challenging

Approach	Duty Cycle (%)	MRE (%)
This Work	33.3	0.96

We use the ToF camera more than **twice as much** as before (duty cycle of 33.3% vs 15.0%)

Dynamic Scenes Are Challenging

Approach	Duty Cycle (%)	MRE (%)
This Work	33.3	0.96
This Work	15.0	1.74

MRE increases by 81% when estimating at the same duty cycle (MRE of 1.74% vs 0.96%)

What Is the Impact of Using Rigid Motions?

Approach	Duty Cycle (%)	MRE (%)
This Work	33.3	0.96
This Work	15.0	1.74

Compare to Wang *et al.*^{*}, which uses dense optical flow to remap previous depth map

What Is the Impact of Using Rigid Motions?

Approach	Duty Cycle (%)	MRE (%)
This Work	33.3	0.96
This Work	15.0	1.74
Wang <i>et al.</i>	33.3	2.01
Wang <i>et al.</i>	15.0	5.14

Compare to Wang *et al.*^{*}, which uses dense optical flow to remap previous depth map

Accounting for Changes in Depth Increases Accuracy

Approach	Duty Cycle (%)	MRE (%)
This Work	33.3	0.96
This Work	15.0	1.74
Wang <i>et al.</i>	33.3	2.01
Wang <i>et al.</i>	15.0	5.14

Compare to Wang *et al.*^{*}, which uses dense optical flow to remap previous depth map

Accounting for Changes in Depth Increases Accuracy

Approach	Duty Cycle (%)	MRE (%)	
This Work	33.3	0.96	
This Work	15.0	1.74	
Wang <i>et al.</i>	33.3	2.01	
Wang <i>et al.</i>	15.0	5.14	

Compare to Wang *et al.*^{*}, which uses dense optical flow to remap previous depth map

Do We Need Previous Depth Maps to Begin With?

Duty Cycle (%)	MRE (%)
33.3	0.96
15.0	1.74
33.3	2.01
15.0	5.14
	33.3 15.0 33.3

Compare to Kumar *et al.**, which estimates depth maps using only RGB images

*Kumar *et al.,* "Monocular Dense 3D Reconstruction of a Complex Dynamic Scene from Two Perspective Frames," ICCV, 2017.

Using Previous Depth Map Increases Accuracy

Approach	Duty Cycle (%)	MRE (%)
This Work	33.3	0.96
This Work	15.0	1.74
Wang <i>et al.</i>	33.3	2.01
Wang <i>et al.</i>	15.0	5.14
Kumar <i>et al.</i>	0	10.65

Balancing the sensor usage with computation increases accuracy

*Kumar *et al.,* "Monocular Dense 3D Reconstruction of a Complex Dynamic Scene from Two Perspective Frames," ICCV, 2017.

We Estimate Dense Depth Maps in Near Real-Time

Resolution	This Work (FPS)	Wang <i>et al.</i> (FPS)	Kumar <i>et al.</i> (FPS)
640x480	33.0	7.0	
1024x436	12.0	4.3	< 0.0002
 alvetering the rigid resting and estimates are very sing the relations the			

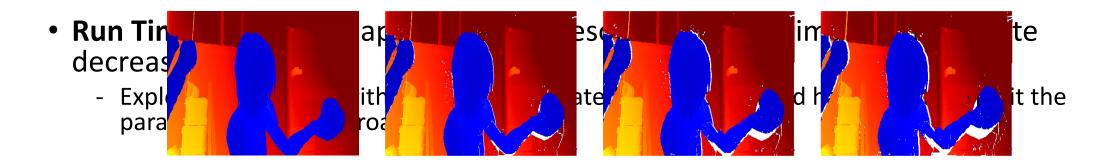
By clustering the rigid motion and assigning them using the photometric error, we increase the estimation frame rate and obtain accurate depth maps

Summary of Contributions

- **Key Insight**: We can obtain an accurate depth map efficiently by estimating and assigning the rigid motions in the scene without prior segmentation
- The rigid motions can be clustered using sparse optical flow, increasing the frame rate at which we estimate depth
- By reprojecting the previous image to obtain the photometric error, we can accurately and efficiently assign the rigid motion
- Reduce the usage of the ToF camera by 85% while still estimating dense depth maps within 1.74% of the ground truth in up to real-time

Future Directions

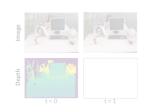
- Lack of Texture in the Scene: Need texture to estimate accurate optical flow
 - Explore how the photometric error can be used as a confidence map and to control the ToF camera
- Missing Depth: Regions that are uncovered do not have depth
 - Explore low cost infilling methods that can be used

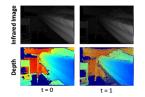


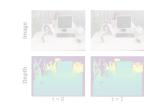
Outline

Strictly Computation

Strictly ToF Camera





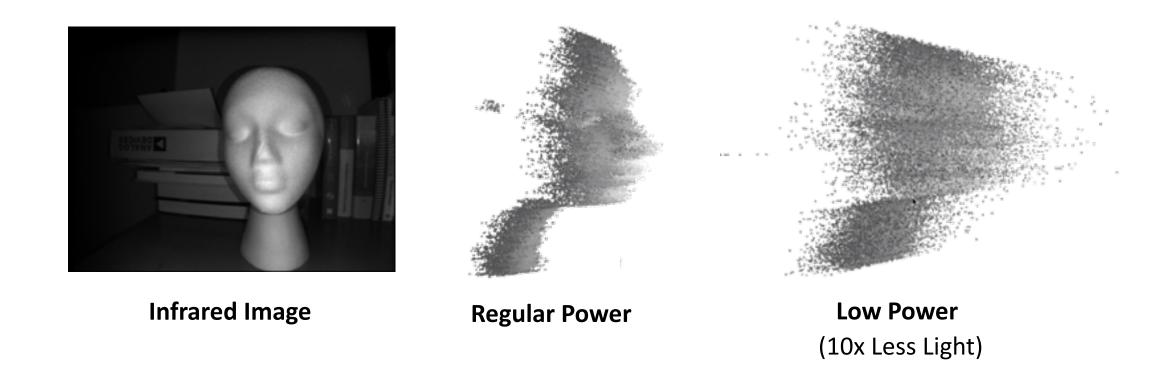


- Reduce the Usage of the ToF Camera
 - Depth Map Estimation for Rigid Scenes
 - Depth Map Estimation for Dynamic Scenes
- Reduce the Light the ToF Camera Emits
 - Adaptive Pulse Control
- Summary of Thesis Contributions

What If We Only Want to Use the ToF Camera?

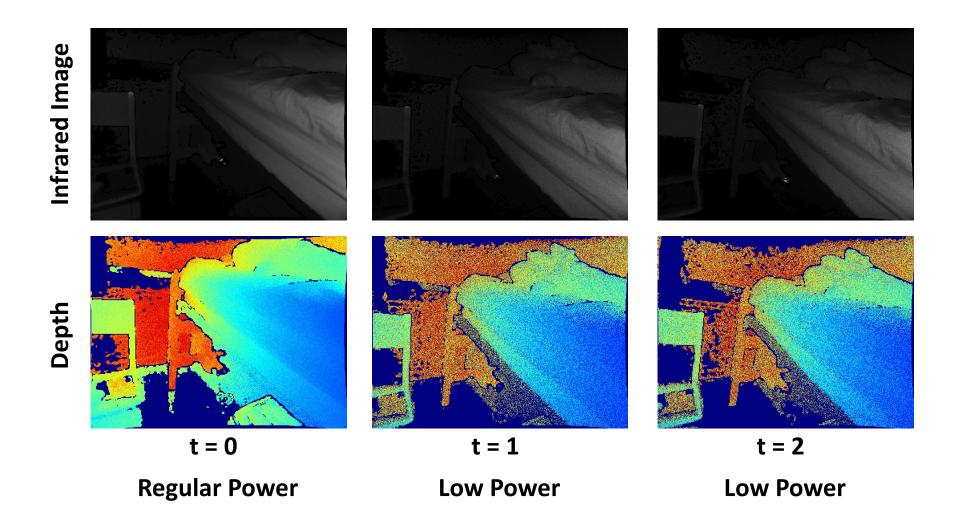
- Simple Solution: Reduce the pulses of light the ToF camera emits
- Reduced Range: Reflected light cannot be discerned from the ambient light
- Reduced Depth Resolution: Depth variance is inversely proportional to the reflected intensity

Noisy Depth Maps Obscure Features

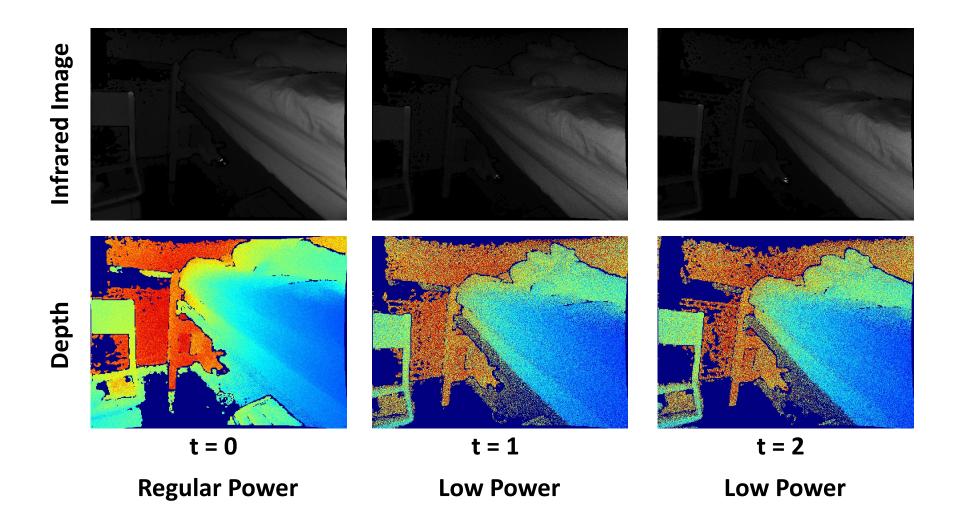


Real data captured using ADI ToF Camera^{*}

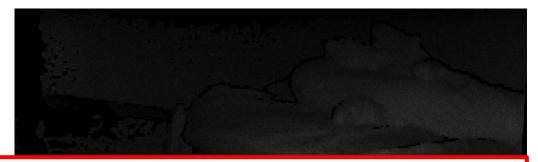
Noisy Depth Maps Obscure Features



Features in Infrared Images Are Preserved



Features in Infrared Images Are Preserved



We can compute the sparse optical flow between the infrared images and estimate the rigid motion

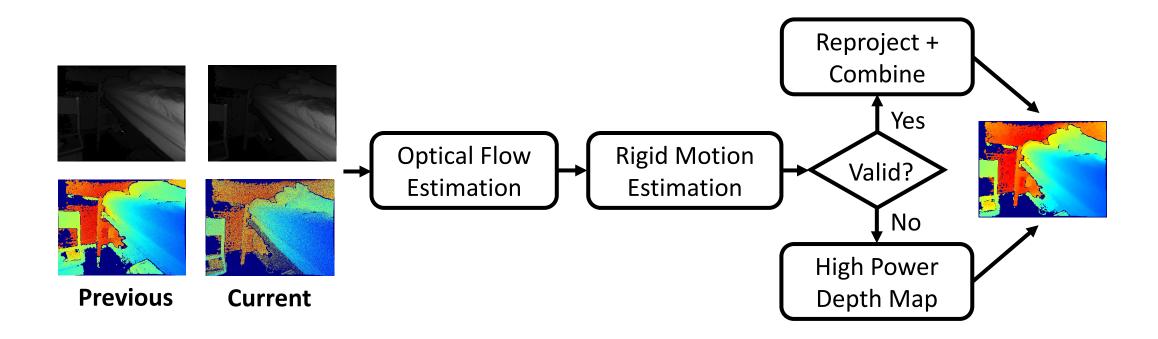
Regular Power

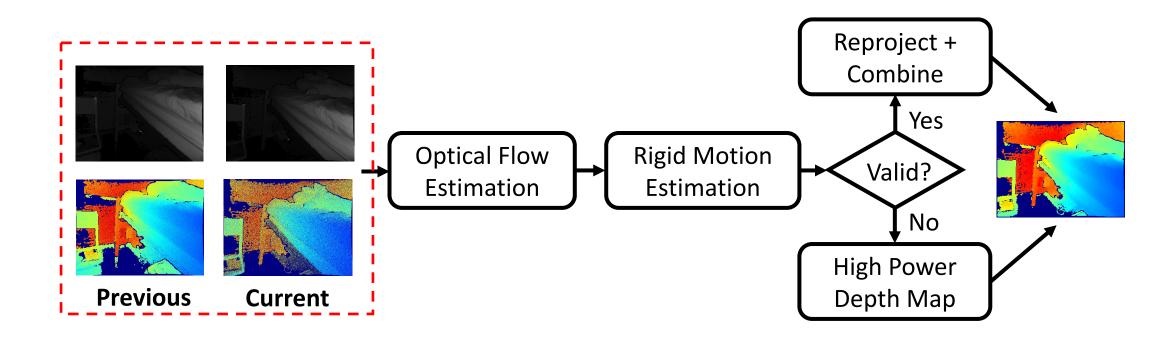
t = 1

Low Power

Estimate Rigid Motion With Infrared Images

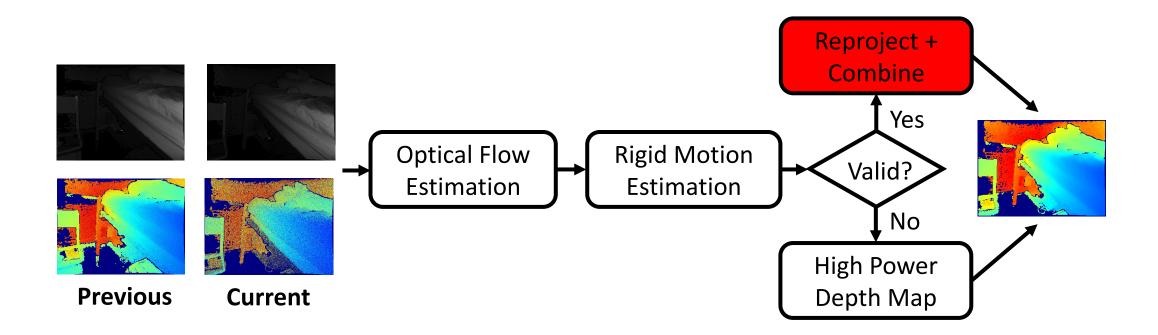
- Use the rigid motion to combine depth maps across frames
- Infrequently obtain regular power depth maps and use them to denoise subsequent low power depth maps
- Difference from Previous Approach:
 - ToF camera is always on, but less light is emitted Goal is to mitigate noise
 - Use only data from the ToF camera





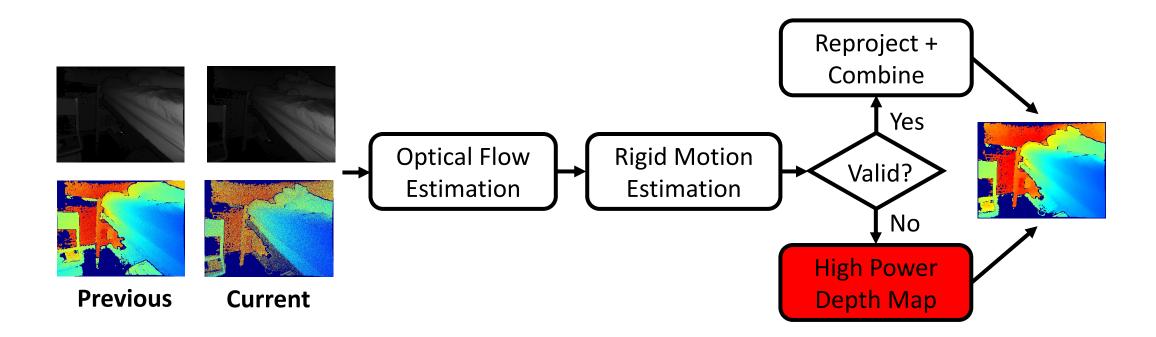
Inputs are the previously filtered frame and the current low power one

Noraky et al., "Low Power Adaptive Time-of-Flight Imaging For Multiple Rigid Objects," ICIP, 2019.



Combine the reprojected depth map with the low power one using a weighted average

Noraky et al., "Low Power Adaptive Time-of-Flight Imaging For Multiple Rigid Objects," ICIP, 2019.



Obtain a regular "high power" power depth map

Noraky *et al.*, "Low Power Adaptive Time-of-Flight Imaging For Multiple Rigid Objects," ICIP, 2019.

How Does Our Algorithm Perform?

- Collect dataset using the Pico Zense DCAM100 ToF camera of common scenes
- Add shot r Quantify tl e estimation

Baseline Results

Approach	Normalized Power	MRE (%)	Frame Rate (FPS)
Regular Power	1	2.6%	30

ToF cameras consume a lot of power but obtain accurate depth with low latency

Baseline Results

Approach	Normalized Power	MRE (%)	Frame Rate (FPS)
Regular Power	1	2.6%	30
Low Power	0.1	8.8%	30

Lowering the power increases the MRE significantly

Apply Bilateral Filter to the Depth Maps

Approach	Normalized Power	MRE (%)	Frame Rate (FPS)
Regular Power	1	2.6%	30
Low Power	0.1	8.8%	30

Apply Bilateral Filter to the Depth Maps

Approach	Normalized Power	MRE (%)	Frame Rate (FPS)
Regular Power	1	2.6%	30
Low Power	0.1	8.8%	30
Bilateral Filter	0.1	6.3%	8.6

At Low Powers, Bilateral Filters Are Ineffective

Approach	Normalized Power	MRE (%)	Frame Rate (FPS)
Regular Power	1	2.6%	30
Low Power	0.1	8.8%	30
Bilateral Filter	0.1	6.3%	8.6

At Low Powers, Bilateral Filters Are Ineffective

Approach	Normalized Power	MRE (%)	Frame Rate (FPS)
Regular Power	1	2.6%	30
Low Power	0.1	8.8%	30
Bilateral Filter	0.1	6.3%	8.6

The estimation frame rate also decreases

How Does Our Approach Perform?

Approach	Normalized Power	MRE (%)	Frame Rate (FPS)
Regular Power	1	2.6%	30
Low Power	0.1	8.8%	30
Bilateral Filter	0.1	6.3%	8.6

Using Regular Power Depth Maps Increases Accuracy

Approach	Normalized Power	MRE (%)	Frame Rate (FPS)
Regular Power	1	2.6%	30
Low Power	0.1	8.8%	30
Bilateral Filter	0.1	6.3%	8.6
This Work	0.19	3.2%	30

Using Regular Power Depth Maps Increases Accuracy

Approach	Normalized Power	MRE (%)	Frame Rate (FPS)
Regular Power	1	2.6%	30
Low Power	0.1	8.8%	30
Bilateral Filter	0.1	6.3%	8.6
This Work	0.19	3.2%	30

Lower the mean relative error of the low power depth maps by 64% in real-time

Can We Get the Same Accuracy by Increasing Power?

Approach	Normalized Power	MRE (%)	Frame Rate (FPS)
Regular Power	1	2.6%	30
Low Power	0.1	8.8%	30
Bilateral Filter	0.1	6.3%	8.6
This Work	0.19	3.2%	30

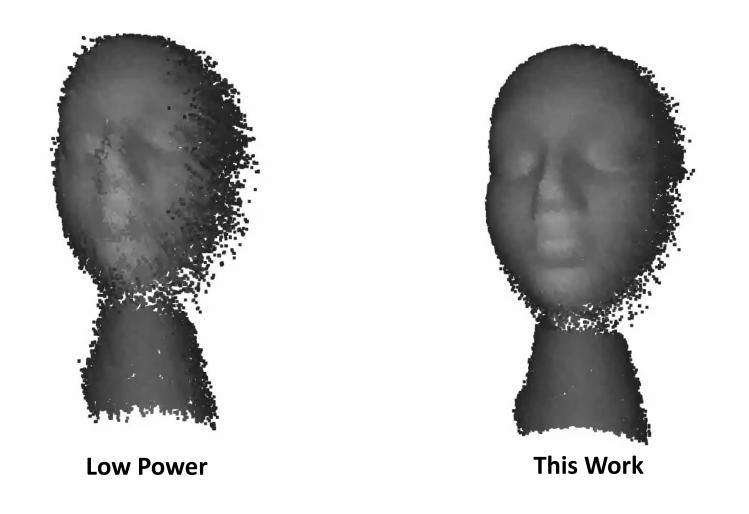
Increase the amount of light the ToF camera emits per frame

Equivalent Power Depth Map Has Higher MRE

Approach	Normalized Power	MRE (%)	Frame Rate (FPS)
Regular Power	1	2.6%	30
Low Power	0.1	8.8%	30
Bilateral Filter	0.1	6.3%	8.6
This Work	0.19	3.2%	30
Equivalent Power	0.19	6.2%	30

At low power, shot noise is especially pronounced

Visualizing the Impact of Our Algorithm



Real data captured using ADI ToF Camera^{*}

Summary of Contributions

- **Key Insight**: We can estimate the rigid motion using the sparse correspondences across the infrared images that a ToF camera collects
- Vary the amount of emitted light to infrequently obtain regular power depth maps and use them to denoise subsequent lower power ones
- Reduce the mean relative error of the low power depth maps by 64% in real-time on an embedded processor

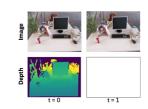
Future Directions

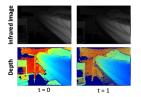
- Sensor Calibration: Varying the amount of emitted light affects the temperature calibration
- Saturation: Objects that are close to the ToF camera can saturate the sensor, and subsequent depth maps may not be denoised
- Other Noise Sources: How do issues like multi-path interference affect this approach?

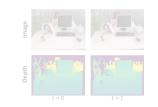
Outline

Strictly Computation

Strictly ToF Camera







- Reduce the Usage of the ToF Camera
 - Depth Map Estimation for Rigid Scenes
 - Depth Map Estimation for Dynamic Scenes
- Reduce the Light the ToF Camera Emits
 - Adaptive Pulse Control
- Summary of Thesis Contributions

Summary of Thesis Conclusions

- By balancing the usage of the ToF camera with computation, we can lower the power required to obtain accurate and dense depth maps
- By exploiting rigidity, we can use sparse optical flow and linear least squares to reduce computation
- We show that our algorithms can estimate depth maps at up to real-time on embedded processors and that they can be used for real applications

Publications That Went Into Thesis

• Conferences

- J. Noraky, V. Sze, "Low Power Depth Estimation for Time-of-Flight Imaging," ICIP, 2017.
- J. Noraky, V. Sze, "Depth Estimation of Non-Rigid Objects for Time-of-Flight Imaging," ICIP, 2018.
- J. Noraky, C. Mathy, A. Cheng, V. Sze, "Low Power Adaptive Time-of-Flight Imaging for Multiple Rigid Objects," ICIP, 2019.

• Journal Publications and Preprints

- J. Noraky, V. Sze, "Low Power Depth Estimation of Rigid Objects for Time-of-Flight Imaging," TCSVT, 2020.
- J. Noraky, V. Sze, "Depth Map Estimation of Dynamic Scenes Using Prior Depth Information," Under Review, 2020.
- J. Noraky, V. Sze, "Low Power Depth Map Denoising for Mobile Time-of-Flight Cameras," In Preparation, 2020.

Acknowledgements

• Thesis Committee: Vivienne Sze, Berthold K.P. Horn, Charles Mathy

Analog Devices

- Thank you for your generous funding and support!
- Patrick Coady, Sefa Demirtas, Nicolas Le Dortz, Charles Mathy, Kaushal Sanghai, Daniel Schmidt, Jonathan Yedidia, Atulya Yellepeddi, Tao Yu
- MIT Faculty and Staff: Janice Balzer, Thomas Heldt, Gim Hom, Al Oppenheim, Terry Orlando, George Verghese

Acknowledgements

- **EEMS Group:** Alan, Amr, Diana, Gladynel, Hsin-Yu, Mehul, Nellie, Peter, Robert, Soumya, Tien-Ju, Theia, Yi-Lun, Yu-Hsin, Zhengdong
- **MIT Grad School**: Albert, Ali, Anne, Anuran, Ashwin, Austin, Curtis, Chai, Danielle, David, Eren, Ganesh, HanByul, Haoyang, Hoon, Isaak, Lehka, Lucas, Mary, Marek, Mohammed, Nirav, Orhan, Tuhin, Victor...
- Family: My mother, sister, and grandparents