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Depth Sensors Enable Many Emerging Applications

Depth information enables safe navigation and interactive applications
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Time-of-Flight Cameras Are Appealing Depth Sensors

Obtain depth by emitting light and measuring its roundtrip travel time
3

Time-of-Flight
Camera

Object

No moving parts, compact, obtain dense depth maps with minimal latency

Depth Map



Time-of-Flight Cameras Are Power Hungry

• Active Sensor: For ranges up to 8 m, 
time-of-flight (ToF) cameras consume 
up to 20 W

• Reduced Battery Life: Especially for 
applications that need continuous 
depth

• Increased Heat Dissipation: Affects 
calibration and forces the addition of 
bulky heat sinks
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Thesis Goals

• Lower the sensor power of ToF cameras

• Obtain accurate and dense depth maps 

• Minimize the latency of our approaches on low power processors
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Reduce the Usage of the ToF Camera
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Estimate depth maps using consecutive and concurrently collected RGB images 
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Reduce the Light the ToF Camera Emits
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Denoise the low power depth maps by combining depth maps across frames
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Balance Sensor Power, Accuracy, and Latency
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Strictly Computation Strictly ToF Camera
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Low Sensor Power
Low Accuracy
High Latency

High Sensor Power
High Accuracy
Low Latency

Lower the sensor power and obtain accurate and dense depth maps with low 
latency on embedded processors and laptop computers



The Metrics We Use to Evaluate Our Approaches 

• Sensor Power
- Duty Cycle: percentage of frames where the ToF camera is used
- Normalized Power: fraction of light emitted compared to a regular depth map

• Accuracy
- Mean RelaGve Error (MRE) = !""

#
∑$%!# &!' (&!

&!
- 𝑁 is the total number of pixels, 𝑍$ is the ground truth depth, &𝑍$ is the estimated depth

• Latency
- Quantify the estimation frame rate (FPS) on a low power embedded processor and laptop 

computer
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Estimating Accurate and Dense Depth Maps Is Hard
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• Challenge: Problem is underdetermined and requires dense computation

• Assume that the scenes contain rigid motions and use them to estimate/denoise 
depth maps

• Rigid motion can be efficiently estimated using sparse operations and linear least 
squares



Publications That Went Into Thesis

• Conferences
- J. Noraky, V. Sze, "Low Power Depth Estimation for Time-of-Flight Imaging," ICIP, 2017.
- J. Noraky, V. Sze, "Depth Estimation of Non-Rigid Objects for Time-of-Flight Imaging," ICIP, 

2018.
- J. Noraky, C. Mathy, A. Cheng, V. Sze, "Low Power Adaptive Time-of-Flight Imaging for 

Multiple Rigid Objects," ICIP, 2019.

• Journal Publications and Preprints
- J. Noraky, V. Sze, "Low Power Depth Estimation of Rigid Objects for Time-of-Flight Imaging," 

TCSVT, 2020.
- J. Noraky, V. Sze, "Depth Map Estimation of Dynamic Scenes Using Prior Depth Information," 

Under Review, 2020. 
- J. Noraky, V. Sze, “Low Power Depth Map Denoising for Mobile Time-of-Flight Cameras,” In 

Preparation, 2020.
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Publications That Went Into Thesis
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Outline

• Reduce the Usage of the ToF Camera
- Depth Map Estimation for Rigid Scenes
- Depth Map Estimation for Dynamic Scenes

• Reduce the Light the ToF Camera Emits
- Adaptive Pulse Control

• Summary of Thesis Contributions
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Strictly Computation
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Depth Map Estimation for Rigid Scenes

• Estimate the depth map in the current 
frame

• Between consecutive frames, there is 
not a lot of motion

• Update the previous depth map using 
motion cues from the images
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Depth Map Estimation for Rigid Scenes

• Many approaches use the dense 
optical flow between the images to 
remap the pixels of the previous 
depth map
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Optical Flow Is the Apparent Pixel-Wise Motion
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Previous Frame Current Frame

Estimating dense and accurate optical flow is computationally expensive Use the optical flow to move the pixels of the previous depth map



Depth Map Estimation for Rigid Scenes

• Many approaches use the dense
optical flow between the images to 
remap the pixels of the previous 
depth map

• Estimate the rigid motion using 
sparse optical flow and use it to 
reproject the previous depth map
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Estimating the Rigid Motion
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3D View

Center of  
Projection

Image Plane

Principal
Distance

Assume perspective projectionGiven depth in the previous frame, we can obtain the 3D location of each pixel 
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Estimating the Rigid Motion

Current FramePrevious Frame
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How does the “M” move in 3D?What does perspective projection tell us?

???

But the location is ambiguous!
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Estimating the Rigid Motion

𝑋!
𝑌!
𝑍!

+
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×
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=
0
0
0

𝑋!, 𝑌!, 𝑍! "

3D coordinate
in the previous
depth map

�̇�!, �̇�!, �̇�!
"

3D displacement
due to rigid motion

𝑥!, 𝑦!, 𝑓 "

Ray containing the
correspondence
in the current frame

2 independent equations in 3 unknowns for each pixel𝑓 Use the rigidity assumption
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Estimating the Rigid Motion
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Angular 
Velocity

Translational 
Velocity

2 independent equations in 6 unknowns

Need sparse correspondences to estimate rigid motion with linear least squares



Depth Map Estimation for Rigid Scenes

• Many approaches use the dense 
optical flow between the images to 
remap the pixels of the previous 
depth map

• Estimate the rigid motion using sparse
optical flow and use it to reproject the 
previous depth map
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Estimating the Rigid Motion
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Get the 3D position of each point
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Estimating the Rigid Motion
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Apply the rigid motion to the 3D points
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Estimating the Rigid Motion
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Project the updated depth to the image

Allows us to account for changes in depth along the z-axis

M



Depth Map Estimation for Rigid Scenes

Optical Flow 
Estimation

Rigid Motion 
Estimation

Depth 
Reprojection

Time-of-Flight 
Camera

Valid?

Yes

No

27Noraky et al., "Low Power Depth Estimation for Time-of-Flight Imaging," ICIP, 2017.
Noraky et al., "Low Power Depth Estimation of Rigid Objects for Time-of-Flight Imaging," TCSVT, 2020.

Previous Current



Depth Map Estimation for Rigid Scenes
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Estimation
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c

Our inputs are consecutive images and a previous depth map

Previous Current

Noraky et al., "Low Power Depth Estimation for Time-of-Flight Imaging," ICIP, 2017.
Noraky et al., "Low Power Depth Estimation of Rigid Objects for Time-of-Flight Imaging," TCSVT, 2020.



Depth Map Estimation for Rigid Scenes
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Use block matching on the pixels on a sparse grid

Previous Current

Noraky et al., "Low Power Depth Estimation for Time-of-Flight Imaging," ICIP, 2017.
Noraky et al., "Low Power Depth Estimation of Rigid Objects for Time-of-Flight Imaging," TCSVT, 2020.



Use Efficient Block Matching Heuristic

30

Previous Frame Current Frame

Reduce the number of positions used to determine the correspondence



Depth Map Estimation for Rigid Scenes
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Estimate the rigid motion robustly using RANSAC

Previous Current

Noraky et al., "Low Power Depth Estimation for Time-of-Flight Imaging," ICIP, 2017.
Noraky et al., "Low Power Depth Estimation of Rigid Objects for Time-of-Flight Imaging," TCSVT, 2020.



RANSAC Mitigates the Impact of Outliers

32

Previous Frame Current Frame



RANSAC Mitigates the Impact of Outliers

33

Previous Frame Current Frame

Distinguish correct correspondences (inliers) from erroneous ones (outliers)



Depth Map Estimation for Rigid Scenes
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Obtain a new depth map by applying the rigid motion to the previous depth map

Previous Current

Noraky et al., "Low Power Depth Estimation for Time-of-Flight Imaging," ICIP, 2017.
Noraky et al., "Low Power Depth Estimation of Rigid Objects for Time-of-Flight Imaging," TCSVT, 2020.



Depth Map Estimation for Rigid Scenes
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If RANSAC fails, use the time-of-flight camera

Previous Current

Noraky et al., "Low Power Depth Estimation for Time-of-Flight Imaging," ICIP, 2017.
Noraky et al., "Low Power Depth Estimation of Rigid Objects for Time-of-Flight Imaging," TCSVT, 2020.



How Does Our Algorithm Perform?

• Evaluate our algorithm using RGB-D datasets: TUM RGB-D, NYU v2, Indoor RGB-
D, CoRBS, and ICL-NUIM

• Estimate depth using the consecutive images and use the depth map in the 
dataset when the rigid motion cannot be estimated

• Quantify the duty cycle, mean relative error (MRE), and estimation frame rate on 
the ODROID-XU3 embedded processor

36



How Low Can We Reduce the Duty Cycle?

37

Approach Duty Cycle (%) MRE (%) Frame Rate (FPS)

15.0 0.87 15
Wang et al. 15.0 3.20 0.83

Find the lowest duty cycle at which we can maintain a mean relative error of 1%



How Low Can We Reduce the Duty Cycle?

38

Approach Duty Cycle (%) MRE (%) Frame Rate (FPS)
This Work 15.0 0.96 30

15.0 0.87 15
Wang et al. 15.0 3.20 0.83

Find the lowest duty cycle at which we can maintain a mean relative error of 1%



What Is the Impact of Using Block Matching?

39

Compare to a variant of our approach that computes sub-pixel optical flow (This Work + Sub)

Approach Duty Cycle (%) MRE (%) Frame Rate (FPS)
This Work 15.0 0.96 30

Wang et al. 15.0 3.20 0.83



What Is the Impact of Using Block Matching?

40

Approach Duty Cycle (%) MRE (%) Frame Rate (FPS)
This Work 15.0 0.96 30
This Work + Sub 15.0 0.87 15
Wang et al. 15.0 3.20 0.83



What Is the Impact of Using Block Matching?

41

Approach MRE (%) 
This Work 0.96
This Work + Sub 0.87

Using sub-pixel optical flow decreases the MRE but also halves the frame rate



What Is the Impact of Using Block Matching?

42

Approach Frame Rate (FPS)
This Work 30
This Work + Sub 15

Using sub-pixel optical flow decreases the MRE but also halves the frame rate



Balance Accuracy With Estimation Frame Rate

43

Approach Duty Cycle (%) MRE (%) Frame Rate (FPS)
This Work 15.0 0.96 30
This Work + Sub 15.0 0.87 15

Using sub-pixel optical flow decreases the MRE but also halves the frame rate



What Is the Impact of Using Rigid Motion?

44

Approach Duty Cycle (%) MRE (%) Frame Rate (FPS)
This Work 15.0 0.96 30
This Work + Sub 15.0 0.87 15
Wang et al. 15.0 3.20 0.83

Compare to Wang et al.*, which uses dense optical flow to remap the previous depth map

*Wang et al., “Depth Maps Interpolation from Existing Pairs of Keyframes and Depth Maps for 3D Video Generation,” ISCAS, 2010. 



Using Rigid Motion Increases Accuracy and Efficiency
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Approach Duty Cycle (%) MRE (%) Frame Rate (FPS)
This Work 15.0 0.96 30

Wang et al. 15.0 3.20 0.83

*Wang et al., “Depth Maps Interpolation from Existing Pairs of Keyframes and Depth Maps for 3D Video Generation,” ISCAS, 2010. 



Using Rigid Motion Increases Accuracy and Efficiency
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Approach MRE (%) 
This Work 0.96

Wang et al. 3.20

Reprojecting the previous depth map allows us to account for changes in depth

*Wang et al., “Depth Maps Interpolation from Existing Pairs of Keyframes and Depth Maps for 3D Video Generation,” ISCAS, 2010. 



Using Rigid Motion Increases Accuracy and Efficiency

47

Approach Frame Rate (FPS)
This Work 30

Wang et al. 0.83

Rigid motion can be estimated with sparse optical flow and linear least squares

*Wang et al., “Depth Maps Interpolation from Existing Pairs of Keyframes and Depth Maps for 3D Video Generation,” ISCAS, 2010. 



What About the System Power?

Category Power (W)
ToF Camera ( < 3 m) 1-5

48



What About the System Power?

Category Power (W)
ToF Camera ( < 3 m) 1-5
ODROID-XU3 0.69
ODROID-XU3 Idle 0.29

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

TOF Camera Power (W)
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Using a duty cycle of 15%
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Overall system power reduced by up to 73%



Example of Estimated Depth Maps 
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Image Measured Depth Estimated Depth



Our Depth Maps Can Be Used in Augmented Reality

Image Measured Depth Estimated Depth Augmented Reality

51

Joint work with Alan Cheng (SuperUROP + MEng)



Summary of Contributions

• Key Insight: We can estimate accurate and dense depth maps efficiently by 
reprojecting a previous one using the estimated rigid motion

• Using the rigid motion allows us to account for changes in depth, and it can be 
efficiently estimated using sparse block matching with RANSAC

• We can estimate depth maps in real-time on a low power embedded processor 
and adaptively control the ToF camera

• Reduce the usage of the ToF camera by up to 85% (and the system power by 73%) 
while estimating depth within 1% of the ground truth

52Our Publications: ICIP 2017, TCSVT 2020



Outline

• Reduce the Usage of the ToF Camera
- Depth Map Estimation for Rigid Scenes
- Depth Map Estimation for Dynamic Scenes

• Reduce the Light the ToF Camera Emits
- Adaptive Pulse Control

• Summary of Thesis Contributions
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Depth Map Estimation for Dynamic Scenes

• Assume that the scene is locally rigid

• Many approaches first segment the 
scene into rigid regions and then 
estimate the depth in each region

• In our work, we cluster the rigid 
motions and use them to estimate a 
new depth map

54
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Depth Map Estimation for Dynamic Scenes

55

Optical Flow 
Estimation

Cluster Rigid 
Motion

Motion 
Assignment

Depth 
Reprojection

Noraky et al., "Depth Map Estimation of Dynamic Scenes Using Prior Depth Information," Under Review, 2020. 

Previous Current



Depth Map Estimation for Dynamic Scenes

56

Optical Flow 
Estimation

Cluster Rigid 
Motion

Motion 
Assignment

Depth 
Reprojection

Our inputs are consecutive images and a previously measured depth map

Noraky et al., "Depth Map Estimation of Dynamic Scenes Using Prior Depth Information," Under Review, 2020. 

Previous Current



Depth Map Estimation for Dynamic Scenes

57

Optical Flow 
Estimation

Cluster Rigid 
Motion

Motion 
Assignment

Depth 
Reprojection

Estimate sparse subpixel optical flow at corners

Noraky et al., "Depth Map Estimation of Dynamic Scenes Using Prior Depth Information," Under Review, 2020. 

Previous Current



Depth Map Estimation for Dynamic Scenes

58

Optical Flow 
Estimation

Cluster Rigid 
Motion

Motion 
Assignment

Depth 
Reprojection

Estimate the rigid motions in the scene by clustering them

Noraky et al., "Depth Map Estimation of Dynamic Scenes Using Prior Depth Information," Under Review, 2020. 

Previous Current



Cluster Rigid Motion

59

Corners where the optical flow is estimated



Cluster Rigid Motion

60

Use RANSAC to estimate the rigid motion and inliers



Cluster Rigid Motion

61

Remove the pixels that correspond to the largest inlier set



Cluster Rigid Motion

62

Repeat iteratively for the remaining pixels



Depth Map Estimation for Dynamic Scenes

63

Optical Flow 
Estimation

Cluster Rigid 
Motion

Motion 
Assignment

Depth 
Reprojection

Assign the rigid motion to a pixel if it minimizes its photometric error

Noraky et al., "Depth Map Estimation of Dynamic Scenes Using Prior Depth Information," Under Review, 2020. 

Previous Current

Which pixels do the estimated rigid motions correspond to?



Computing the Photometric Error

64

𝝎𝒋, 𝑻𝒋

Previous Frame

Reprojected Image

-
Guided 
Filtering

Current Image

Repeat this process for each of the estimated rigid motions



Use the Photometric Error to Assign the Rigid Motion 

65

The background has low photometric error 
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The hand has low photometric error 

Use the Photometric Error to Assign the Rigid Motion 
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Cost Volume Assigned Rigid Motion

We can assign the rigid motion without prior segmentation

Use the Photometric Error to Assign the Rigid Motion 

For each pixel, assign the rigid motion that minimizes its photometric error



Depth Map Estimation for Dynamic Scenes

68

Optical Flow 
Estimation

Cluster Rigid 
Motion

Motion 
Assignment

Depth 
Reprojection

Use the assigned rigid motion to reproject the previous depth map

Noraky et al., "Depth Map Estimation of Dynamic Scenes Using Prior Depth Information," Under Review, 2020. 

Previous Current



How Does Our Algorithm Perform?

• Evaluate our algorithm using RGB-D datasets: EPFL DS, MPI Sintel, TUM RGB-D, 
and VKITTI

• Estimate depth using the consecutive images and use the depth map in the 
dataset at regular intervals

• Quantify the duty cycle, mean relative error (MRE), and estimation frame rate on 
a laptop computer

69



How Low Can We Reduce the Duty Cycle?

70

Approach Duty Cycle (%) MRE (%) 

This Work 15.0 1.74
Wang et al. 33.3 2.01
Wang et al. 15.0 5.14
Kumar et al.* -- 10.65

Find the lowest duty cycle at which we can maintain a mean relative error of 1%



How Low Can We Reduce the Duty Cycle?

71

Approach Duty Cycle (%) MRE (%) 
This Work 33.3 0.96
This Work 15.0 1.74
Wang et al. 33.3 2.01
Wang et al. 15.0 5.14
Kumar et al.* -- 10.65

Find the lowest duty cycle at which we can maintain a mean relative error of 1%



Dynamic Scenes Are Challenging

72

Approach Duty Cycle (%) MRE (%) 
This Work 33.3 0.96
This Work 15.0 1.74
Wang et al. 33.3 2.01
Wang et al. 15.0 5.14
Kumar et al.* -- 10.65

We use the ToF camera more than twice as much as before (duty cycle of 33.3% vs 15.0%)



Dynamic Scenes Are Challenging

73

Approach Duty Cycle (%) MRE (%) 
This Work 33.3 0.96
This Work 15.0 1.74
Wang et al. 33.3 2.01
Wang et al. 15.0 5.14
Kumar et al.* -- 10.65

MRE increases by 81% when estimating at the same duty cycle (MRE of 1.74% vs 0.96%)



What Is the Impact of Using Rigid Motions?

74

Approach Duty Cycle (%) MRE (%) 
This Work 33.3 0.96
This Work 15.0 1.74
Wang et al. 33.3 2.01
Wang et al. 15.0 5.14
Kumar et al.* -- 10.65

Compare to Wang et al.*, which uses dense optical flow to remap previous depth map

*Wang et al., “Depth Maps Interpolation from Existing Pairs of Keyframes and Depth Maps for 3D Video Generation,” ISCAS, 2010. 



What Is the Impact of Using Rigid Motions?

75

Approach Duty Cycle (%) MRE (%) 
This Work 33.3 0.96
This Work 15.0 1.74
Wang et al. 33.3 2.01
Wang et al. 15.0 5.14
Kumar et al.* -- 10.65

Compare to Wang et al.*, which uses dense optical flow to remap previous depth map

*Wang et al., “Depth Maps Interpolation from Existing Pairs of Keyframes and Depth Maps for 3D Video Generation,” ISCAS, 2010. 



Accounting for Changes in Depth Increases Accuracy

76

Approach Duty Cycle (%) MRE (%) 
This Work 33.3 0.96

Wang et al. 33.3 2.01

Kumar et al.* -- 10.65

Compare to Wang et al.*, which uses dense optical flow to remap previous depth map

*Wang et al., “Depth Maps Interpolation from Existing Pairs of Keyframes and Depth Maps for 3D Video Generation,” ISCAS, 2010. 



Accounting for Changes in Depth Increases Accuracy
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Approach Duty Cycle (%) MRE (%) 

This Work 15.0 1.74

Wang et al. 15.0 5.14
Kumar et al.* -- 10.65

Compare to Wang et al.*, which uses dense optical flow to remap previous depth map

*Wang et al., “Depth Maps Interpolation from Existing Pairs of Keyframes and Depth Maps for 3D Video Generation,” ISCAS, 2010. 



Do We Need Previous Depth Maps to Begin With?
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Approach Duty Cycle (%) MRE (%) 
This Work 33.3 0.96
This Work 15.0 1.74
Wang et al. 33.3 2.01
Wang et al. 15.0 5.14
Kumar et al.* -- 10.65

Compare to Kumar et al.*, which estimates depth maps using only RGB images

*Kumar et al., “Monocular Dense 3D Reconstruction of a Complex Dynamic Scene from Two Perspective Frames,” ICCV, 2017. 



Using Previous Depth Map Increases Accuracy

79

Approach Duty Cycle (%) MRE (%) 
This Work 33.3 0.96
This Work 15.0 1.74

Kumar et al. 0 10.65

Balancing the sensor usage with computation increases accuracy

*Kumar et al., “Monocular Dense 3D Reconstruction of a Complex Dynamic Scene from Two Perspective Frames,” ICCV, 2017. 



We Estimate Dense Depth Maps in Near Real-Time

80

Resolution This Work (FPS) Wang et al. (FPS) Kumar et al. (FPS)
640x480 33.0 7.0 --
1024x436 12.0 4.3 < 0.0002
1242x375 14.0 5.1 --By clustering the rigid motion and assigning them using the photometric error, we 

increase the estimation frame rate and obtain accurate depth maps



Summary of Contributions

• Key Insight: We can obtain an accurate depth map efficiently by estimating and 
assigning the rigid motions in the scene without prior segmentation

• The rigid motions can be clustered using sparse optical flow, increasing the frame 
rate at which we estimate depth

• By reprojecting the previous image to obtain the photometric error, we can 
accurately and efficiently assign the rigid motion

• Reduce the usage of the ToF camera by 85% while still estimating dense depth 
maps within 1.74% of the ground truth in up to real-time

81Our Publication: Under Review, 2020 



Future Directions

• Lack of Texture in the Scene: Need texture to estimate accurate optical flow
- Explore how the photometric error can be used as a confidence map and to control the ToF

camera

• Missing Depth: Regions that are uncovered do not have depth
- Explore low cost infilling methods that can be used 

• Run Time: As depth maps increase in resolution, the estimation frame rate 
decreases

- Explore how this algorithm can be accelerated using specialized hardware to exploit the 
parallelism in this approach

82



Outline

• Reduce the Usage of the ToF Camera
- Depth Map Estimation for Rigid Scenes
- Depth Map Estimation for Dynamic Scenes

• Reduce the Light the ToF Camera Emits
- Adaptive Pulse Control

• Summary of Thesis Contributions

83

Strictly Computation Strictly ToF Camera



What If We Only Want to Use the ToF Camera?

• Simple Solution: Reduce the pulses of light the ToF camera emits

• Reduced Range: Reflected light cannot be discerned from the ambient light

• Reduced Depth Resolution: Depth variance is inversely proportional to the 
reflected intensity

84



Noisy Depth Maps Obscure Features

85

Infrared Image Regular Power Low Power
(10x Less Light)

Real data captured using ADI ToF Camera*

*AD-96TOF1-EBZ



Noisy Depth Maps Obscure Features
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Regular Power Low Power Low Power



Features in Infrared Images Are Preserved
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Regular Power Low Power Low Power



Features in Infrared Images Are Preserved

88

t = 0 t = 1
Regular Power Low Power

We can compute the sparse optical flow between the infrared images and estimate 
the rigid motion



Estimate Rigid Motion With Infrared Images

• Use the rigid motion to combine depth maps across frames

• Infrequently obtain regular power depth maps and use them to denoise 
subsequent low power depth maps

• Difference from Previous Approach:
- ToF camera is always on, but less light is emitted – Goal is to mitigate noise
- Use only data from the ToF camera
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Adaptive Pulse Control
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Adaptive Pulse Control
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Adaptive Pulse Control
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Combine the reprojected depth map with the low power one using a weighted average

Noraky et al., ”Low Power Adaptive Time-of-Flight Imaging For Multiple Rigid Objects," ICIP, 2019. 
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Adaptive Pulse Control
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Obtain a regular “high power” power depth map
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How Does Our Algorithm Perform?

• Collect dataset using the Pico Zense DCAM100 ToF camera of common scenes

• Add shot noise to the depth maps in the dataset

• Quantify the normalized power, the mean relative error (MRE), and the 
estimation frame rate on the ODROID XU-3 board
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Baseline Results
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Approach Normalized Power MRE (%) Frame Rate (FPS)
Regular Power 1 2.6% 30

Low Power + BF 0.1 6.3% 8.6
This Work 0.19 3.2% 30
Equivalent Power 0.19 6.2% 30

ToF cameras consume a lot of power but obtain accurate depth with low latency



Baseline Results
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Approach Normalized Power MRE (%) Frame Rate (FPS)
Regular Power 1 2.6% 30
Low Power 0.1 8.8% 30
Low Power + BF 0.1 6.3% 8.6
This Work 0.19 3.2% 30
Equivalent Power 0.19 6.2% 30

Lowering the power increases the MRE significantly



Apply Bilateral Filter to the Depth Maps
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Approach Normalized Power MRE (%) Frame Rate (FPS)
Regular Power 1 2.6% 30
Low Power 0.1 8.8% 30
Low Power + BF 0.1 6.3% 8.6
This Work 0.19 3.2% 30
Equivalent Power 0.19 6.2% 30



Apply Bilateral Filter to the Depth Maps

98

Approach Normalized Power MRE (%) Frame Rate (FPS)
Regular Power 1 2.6% 30
Low Power 0.1 8.8% 30
Bilateral Filter 0.1 6.3% 8.6
This Work 0.19 3.2% 30
Equivalent Power 0.19 6.2% 30



At Low Powers, Bilateral Filters Are Ineffective
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Approach MRE (%) 
Regular Power 2.6%
Low Power 8.8%
Bilateral Filter 6.3%



At Low Powers, Bilateral Filters Are Ineffective
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Approach Frame Rate (FPS)
Regular Power 30
Low Power 30
Bilateral Filter 8.6
This Work 30
Equivalent Power 30

The estimation frame rate also decreases



How Does Our Approach Perform?
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Approach Normalized Power MRE (%) Frame Rate (FPS)
Regular Power 1 2.6% 30
Low Power 0.1 8.8% 30
Bilateral Filter 0.1 6.3% 8.6
This Work 0.19 3.2% 30
Equivalent Power 0.19 6.2% 30



Using Regular Power Depth Maps Increases Accuracy
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Approach Normalized Power MRE (%) Frame Rate (FPS)
Regular Power 1 2.6% 30
Low Power 0.1 8.8% 30
Bilateral Filter 0.1 6.3% 8.6
This Work 0.19 3.2% 30
Equivalent Power 0.19 6.2% 30



Using Regular Power Depth Maps Increases Accuracy
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Approach Normalized Power MRE (%) Frame Rate (FPS)

Low Power 0.1 8.8% 30

This Work 0.19 3.2% 30
Equivalent Power 0.19 6.2% 30

Lower the mean relative error of the low power depth maps by 64% in real-time



Can We Get the Same Accuracy by Increasing Power?
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Approach Normalized Power MRE (%) Frame Rate (FPS)

Low Power 0.1 8.8% 30

This Work 0.19 3.2% 30
Equivalent Power 0.19 6.2% 30

Increase the amount of light the ToF camera emits per frame



Equivalent Power Depth Map Has Higher MRE
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Approach Normalized Power MRE (%) Frame Rate (FPS)

This Work 0.19 3.2% 30
Equivalent Power 0.19 6.2% 30

At low power, shot noise is especially pronounced



Visualizing the Impact of Our Algorithm
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Real data captured using ADI ToF Camera*

*AD-96TOF1-EBZ

Low Power This Work



Summary of Contributions

• Key Insight: We can estimate the rigid motion using the sparse correspondences 
across the infrared images that a ToF camera collects

• Vary the amount of emitted light to infrequently obtain regular power depth 
maps and use them to denoise subsequent lower power ones

• Reduce the mean relative error of the low power depth maps by 64% in real-time 
on an embedded processor
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Future Directions

• Sensor Calibration: Varying the amount of emitted light affects the temperature 
calibration

• Saturation: Objects that are close to the ToF camera can saturate the sensor, and 
subsequent depth maps may not be denoised

• Other Noise Sources: How do issues like multi-path interference affect this 
approach?
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Outline

• Reduce the Usage of the ToF Camera
- Depth Map Estimation for Rigid Scenes
- Depth Map Estimation for Dynamic Scenes

• Reduce the Light the ToF Camera Emits
- Adaptive Pulse Control

• Summary of Thesis Contributions
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Strictly Computation Strictly ToF Camera



Summary of Thesis Conclusions

• By balancing the usage of the ToF camera with computation, we can lower the 
power required to obtain accurate and dense depth maps

• By exploiting rigidity, we can use sparse optical flow and linear least squares to 
reduce computation

• We show that our algorithms can estimate depth maps at up to real-time on 
embedded processors and that they can be used for real applications
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