NetAdaptV2: Efficient Neural
Architecture Search with Fast
Super-Network Training and
Architecture Optimization

Tien-Ju Yang, Yi-Lun Liao, Vivienne Sze

Massachusetts Institute of Technology
CVPR 2021

III. ﬂ
II JUNE 19-25




Introduction

* NetAdaptV2 is a neural architecture search (NAS) algorithm that can
discover high-performance networks in a short time

» Up to 5.8x search time reduction with better accuracy on ImageNet

* NetAdaptVz2

* balances and minimizes the time of each NAS step to improve speed

» supports non-differentiable search metrics to improve network
performance
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Algorithm Overview

* 1) Train a super-network by jointly training networks in the search space
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* 1) Train a super-network by jointly training networks in the search space

Algorithm Overview

« 2) Search for the optimal network using the proposed optimizer

It samples networks and evaluates them without further training
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* 1) Train a super-network by jointly training networks in the search space

Algorithm Overview

» 2) Search for the optimal network using the proposed optimizer

It samples networks and evaluates them without further training

» 3) Fine-tune the discovered network until convergence
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Proposed Techniques

* 1) Train a super-network by jointly training networks in the search space
* Ordered dropout (OD): reduce the time for training a super-network
» 2) Search for the optimal network using the proposed optimizer

 Channel-level bypass connections (CBCs): reduce the time for
evaluating samples

* Multi-layer coordinate descent (MCD): reduce the time for
evaluating samples while supporting non-differentiable search
metrics

» 3) Fine-tune the discovered network until convergence
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Ordered Dropout

* Train multiple networks in a single pass to speed up super-network training
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* Train multiple networks in a single pass to speed up super-network training
* Architecture simulation: zero out different channels for different input images

Ordered Dropout

* Always zero out the last channels to avoid the training-evaluation mismatch
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Channel-Level Bypass Connections

* NetAdaptV2 searches layer width, network depth, and kernel size

# of input # of filters
channels
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Channel-Level Bypass Connections

* NetAdaptV2 searches layer width, network depth, and kernel size

# of input # of filters
channels

W/o CBCs
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Channel-Level Bypass Connections

* NetAdaptV2 searches layer width, network depth, and kernel size

 CBCs merge network depth and layer width into a single search
dimension and allow searching only layer width

* High-level idea: when a filter is removed, an input channel is bypassed
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Multi-Layer Coordinate Descent

 MCD gradually and iteratively shrinks an initial network until
the given constraints are satisfied
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Multi-Layer Coordinate Descent

* |In each iteration, MCD

* (Generates J coordinate directions by randomly shrinking L layers

* Finds the optimal network along them
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Multi-Layer Coordinate Descent

* This process continues until the given constraints are satisfied
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Multi-Layer Coordinate Descent

* This process continues until the given constraints are satisfied

MCD does not require

the search metrics to be
differentiable
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NetAdaptV2 Results

NetAdaptV2 achieves better accuracy-latency or accuracy-MAC

trade-offs than related works with much lower search time
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NAS Methods

MnasNet
ProxylessNAS
Single-Path NAS
AutoSlim
MobileNetV3
FairNAS
Once-for-All
NetAdaptV2

» Latency measured on a Pixel 1 CPU
« Search time (GPU-Hours) measured on V100s (BigNAS on TPU V3s)

Top-1 MAC | Search
Method Accuracy (M) Time
NSGA:GWZ' 783% | 312 | 1674
EfficientNet- 27 39, 390 _
BO
MixNet-M 77.0% 360 -
NetAdaptV2 78.5% 314 656

A MAC-Guided Search
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Thank You for Watching

Project website: http://netadapt.mit.edu
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