

http://netadapt.mit.edu

NetAdaptV2: Efficient Neural Architecture Search with Fast Super-Network Training and Architecture Optimization

Tien-Ju Yang, Yi-Lun Liao, Vivienne Sze Massachusetts Institute of Technology

Neural Architecture Search (NAS)

- Two important metrics of NAS: network performance and search time.
- The search time mainly accounts for three steps: train, evaluate, fine-tune.
- NetAdaptV2 can discover high-performance networks in a short time by
 - Balancing and minimizing the time for each step (speed).
 - Supporting non-differentiable metrics (network performance).

Algorithm Flow of NetAdaptV2

- Efficiently train the super-network using ordered dropout.
- Efficiently find highperformance networks using channel-level bypass connections and multi-layer coordinate descent.

Technique: Channel-Level Bypass Connection (CBC)

- NetAdaptV2 searches layer width, network depth, and kernel size to improve network performance.
- CBC reduces the time for evaluating networks: merge layer width and network depth into a single search dimension and search only layer width.
- Remove a layer when no filters inside.
- Idea: bypass an input channel when a filter is removed.
- Generalizing a network depth to a continuous value, e.g., 16.3 layers.

Technique: Ordered Dropout (OD)

- OD reduces the time for training the super-network: train multiple neural networks in a single forward-backward pass.
- Architecture simulation: zero out different channels for different input images.
- To avoid the training-evaluation mismatch, OD always drops the last channels.

Technique: Multi-layer Coordinate Descent (MCD)

- MCD 1) reduces the time for evaluating networks and 2) supports nondifferentiable metrics.
- Idea: gradually and iteratively shrink a network until the constraints are satisfied.
- In each iteration, MCD generates *J* networks with similar metric values (e.g., 30ms) by randomly shrinking *L* layers in the network from the previous iteration and chooses the most accurate one for the next iteration.

Ablation Study of Proposed Techniques

- CBC and MCD improve the accuracy by 0.3% and 0.4%, respectively.
- Super-network + OD reduces the search time by 3.3x.

SN + OD	Top-1 Acc. (%)	Latency (ms)	Search Time (GPU-Hours)
	71.0 (+0)	43.9 (100%)	721 (100%)
✓	71.1 (+0.1)	44.4 (101%)	221 (31%)

Methods		Top-1 Acc.
СВС	MCD	(%)
		75.9 (+0)
✓		76.2 (+0.3)
✓	✓	76.6 (+0.7)

Search Result – Image Classification

- Adopt a MobileNet-V3-based search space.
- Latency-guided search result
 - Up to 5.8x lower search time with better accuracy-latency/-MAC trade-off.
 - NetAdaptV2 outperforms methods with hundreds of GPU-hours without sacrificing the support of non-differentiable search metrics.

- MAC-guided search result
- Up to 2.6x lower search time with comparable accuracy-MAC trade-off.
- Up to 1.5% higher top-1 accuracy with fewer MACs.

Method	Top-1 Acc.	MAC(M)	Search Time ¹
NSGANetV2-m	78.3%	312	1674
EfficientNet-B0	77.3%	390	_
MixNet-M	77.0%	360	_
NetAdaptV2	78.5%	314	656

- 1. The unit of the search time is GPU-hours on Nvidia V100s.
- 2. The search time on Google TPU V3s.
- 3. The latency is measured on a Pixel 1 CPU.

Search Result – Depth Estimation

- Adopt the sub-networks of the FastDepth* network as the search space.
- 2.4x lower search time on NYU Depth with better accuracy-latency trade-off.

Method	RMSE (m)	Delta-1 Accuracy (%)	Latency (ms)	Search Time (GPU-Hours)	
				ImageNet	NYU Depth
NetAdaptV1	0.583	77.4	87.6	96	65
NetAdaptV2	0.576	77.9	86.7		27

* D. Wofk et al., "FastDepth: Fast Monocular Depth Estimation on Embedded Systems", ICRA 2019.