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Processing at “Edge” instead of the “Cloud”

J A 4

Communication | Privacy Latency
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Existing Processors Consume Too Much Power

< 1 Watt > 10 Watts
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Efficient Computing with Cross-Layer Design
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Energy Dominated by Data Movement

Operation: Energy | Relative Energy Cost
(pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9 Memory access is orders
8b Multiply 0.2 of magnitude higher
32b Multiply 31 energy than compute
16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) | 5
32b DRAM Read 640

1 10 102 103 104
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Il Autonomous Navigation Uses a Lot of Data

Semantic Understanding Geometric Understanding

* High frame rate  Growing map size
* Large resolutions

* Data expansion

2mi||ionpixe| o 10x-100x more pixels

Vivienne Sze @ http://sze.mit.edu/ % @eems_mit [Pire, RAS 2017] Mir
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Visual-Inertial Localization

Determines location/orientation of robot from images and IMU
(also used by headset in Augmented Reality and Virtual Reality)

Localization

4 )
Image sequence —| Visual-Inertial
Odometry
IMU - (VIO)*
Inertial Measurement Unit \_ J

"T...Y/:\
[\
7$12_

*Subset of SLAM algorithm
(Simultaneous Localization And Mapping) Mapping
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Bl Localization at Under 25 mW

First chip that performs
complete Visual-Inertial Odometry

Front-End for camera
(Feature detection, tracking, and outlier
elimination)

Front-End for IMU
(pre-integration of accelerometer and
gyroscope data)

Back-End Optimization of Pose Graph

Consumes 684x and 1582x less energy
than mobile and desktop CPUs,
respectively

Navion

-
»

Technology

65nm CMOS

Supply

1V

Chip area (mm?)

40x5.0

Resolution

752x480

Core area (mm?)

3.54x454

Camera rate

28 -171 fps

Logic gates

2,043 kgates

Keyframe rate

16 - 90 fps

SRAM

854KB

Average Power

24 mW

VFE Frequency

62.5 MHz

GOPS

105-59.1

BE Frequency

83.3 MHz

GFLOPS

1-5.7
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[Joint work with Sertac Karaman (AeroAstro)]

[Zhang, RSS 2017], [Suleiman, VLSI-C 2018]
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Il Key Methods to Reduce Data Size

Navion: Fully integrated system — no off-chip processing or storage

Previous

R4 Frame
g T y
{' “ | Exploit
TYeTE || .- Sparsity in
Apply Low T ]
ngst Right — Graph and
ig :
R | e Frame Linear Solver
Frame
Compression . «
1

¥

Use compression and exploit sparsity to reduce memory down to 854kB

Navion Project Website: http://navion.mit.edu
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Understanding the Environment

Depth Estimation

output layer
input layer
hidden layer

State-of-the-art approaches use

Deep Neural Networks, which

require up to several hundred
millions of operations and
building weights to compute!

& >100x more complex than video

body road airplane compression

‘F"sky

tree

grass grass
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Deep Neural Networks

Deep Neural Networks (DNNs) have become a cornerstone of Al

Computer Vision Speech Recognition
U, RN | 202

Vivienne Sze & http://sze.mit.edu/ % @eems_mit Mir
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Book on Efficient Processing of DNNs

aVA Y MORGAN &CLAYPOOL PUBLISHERS

Efficient Processing
of Deep Neurdl
Networks S

Vivienne Sze, Yu-Hsin Chen,
Tien-Ju Yang, Joel Emer

SYNTHESIS LECTURES ON
COMPUTER ARCHITECTURE

Vivienne Sze @ http://sze.mit.edu/

@eems_mit

Part | Understanding Deep Neural Networks
Introduction
Overview of Deep Neural Networks

Part Il Design of Hardware for Processing DNNs
Key Metrics and Design Objectives
Kernel Computation
Designing DNN Accelerators
Operation Mapping on Specialized Hardware

Part lll Co-Design of DNN Hardware and Algorithms
Reducing Precision
Exploiting Sparsity
Designing Efficient DNN Models
Advanced Technologies

https://tinyurl.com/EfficientDNNBook

Free download for institutional subscribers ir
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Properties We Can Leverage

* Operations exhibit high parallelism

— high throughput possible

* Memory Access is the Bottleneck

DRAM

Memory Read : MAC" Memory Write
filter weighté A ALU
fmgp act ® updated
partial sum ( Sartial sum >
200x 1x

Worst Case: all memory R/W are DRAM accesses

Vivienne Sze @ http://sze.mit.edu/

Example:

@eems_mit

* multiply-and-accumulate

AlexNet has 724M MACs
- 2896M DRAM accesses required
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Properties We Can Leverage

* Operations exhibit high parallelism
— high throughput possible

* Input data reuse opportunities (up to 500x)

Filter Input Fmap

0. I 0. :
C
|

Convolutional Reuse
(Activations, Weights)

CONYV layers only
(sliding window)

Vivienne Sze & http://sze.mit.edu/ % @eems_mit

Filters

Input Fmap

1

=
\
y

Fmap Reuse
(Activations)
CONV and FC layers

Input Fmaps

Filter

- .
*
‘\“

Filter Reuse
(Weights)
CONV and FC layers
(batch size > 1)
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Exploit Data Reuse at Low-Cost Memories

Specialized
Global Al H PE Reg File hardware with
Buff small (< 1kB)
— PE P4 ALU low cost memory
Control near compute

Normalized Enerqy Cost’

ALU 1% (Reference)
0.5-1.0 kB m—» ALU 1% Farther and larger
NoC: 200 - 1000 PEs | PE > ALU 2% memories consume
more power
> ALU 6x
»[ALU ( 200x

* measured from a commercial 65nm process

Vivienne Sze & http://sze.mit.edu/ % @eems_mit i
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Energy-Efficient Dataflow for Deep Neural Networks

Eyeriss: Row-Stationary Dataflow

Link Clock; Core Clock
G=)-

DCNN Accelerator

Filter

14%x12 PE Array

Input Image

IlI Comp pa RelU

I Decomp
Output Imag

. 108KB

Off-Chip DRAM
64 bits

dmm

4dmm

[Chen, ISSCC 2016]

Exploits data reuse for 100x reduction in memory accesses from global
buffer and 1400x reduction in memory accesses from off-chip DRAM

Overall >10x energy reduction compared to a mobile GPU (Nvidia TK1) |

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit

Results for AlexNet

Eyeriss Project Website: http://eyeriss.mit.edu

[Joint work with Joel Emer] i
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Features: Energy vs. Accuracy

Exponential
10000
*VGG162
1000
Energy/ 100 + AlexNet?
Pixel (nJ)
10 .
Measured in 65nm* Video
1 ComEression
i *+HOG!
Linear
s 0.1 . . . .
0 20 40 60 80
@ (suleiman, VLS 2016] @) [Chen, ISSCC 2016] .
Accuracy (Average Precision)
* Only feature extraction. Does Measured in on VOC 2007 Dataset
not include data, classification 1. DPM V5 [Girshick 2012]

energy, augmentation and
ensemble, etc.

2. Fast R-CNN [Girshick, CVPR 2015]

Vivienne Sze @ http://sze.mit.edu/ % @eems [Suleiman, ISCAS 2017] i
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Energy-Efficient Processing of DNNs

A significant amount of algorithm and hardware research
on energy-efficient processing of DNNs

Proceedings IEEE

Hardware Architectures for
Deep Neural Networks

V. Sze, Y.-H. Chen,
T-J. Yang, J. Emer,
“Efficient Processing of
Deep Neural Networks:
A Tutorial and Survey,”
Proceedings of the IEEE,
Dec. 2017

ISCA Tutorial
June 24, 2017

Website: http://eyeriss.mit.edu/tutorial.html

http://eyeriss.mit.edu/tutorial.html

We identified various limitations to existing approaches

Vivienne Sze & http://sze.mit.edu/ % @eems_mit i
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Design of Efficient DNN Algorithms

Popular efficient DNN algorithm approaches

Network Pruning

before pruning after pruning

pruning
synapses

-->

pruning .
neurons

Efficient Network Architectures

Channel
Groups G

«— 0 —

R
. &,
'C s 18c
«~— g —
Convolutional Depth-Wise Point-Wise
Layer Layer Layer

Examples: SqueezeNet, MobileNet

... also reduced precision

* Focus on reducing number of MACs and weights
* Does it translate to energy savings and reduced latency?

Vivienne Sze & http://sze.mit.edu/ % @eems_mit

[Chen*, Yang*, SysML 2018]
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Number of MACs and Weights are Not Good Proxies

# of operations (MACs) does not approximate

latency well
30
o .. Similar latency, 3x range in # MACs
D e e e =
. S SN . ¥ e
/ .\
= 20 o I' : e o
E 019
> @ ! ®
o i
2 L.
- 10 1 @ !
€ ooo ! Similar # MACs,
® " .0 - 2xrange in latency
4
0
25 50 75 100 125 150 175

# MACs (Million)

Source: Google
(https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit

# of weights alone is not a good metric for energy

(All data types should be considered)

Computation
10% Input Feature Map

25%

Weights

22%
Energy breakdown of

GooglLeNet

https://energyestimation.mit.edu/
[Yang, CVPR 2017]
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Energy-Aware Pruning

Directly target energy
and incorporate it into the
optimization of DNNs to provide
greater energy savings

« Sort layers based on energy and prune layers
that consume the most energy first

* Energy-aware pruning reduces AlexNet
energy by 3.7x w/ similar accuracy
« Outperforms magnitude-based pruning by 1.7x

[Yang, CVPR 2017]

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit

4.5
4
3.5
3
2.5
2
1.5
1
0.5
0

x10°

Normalized Energy (AlexNet)

2.1x

Ori. Magnitude Energy Aware

Based Pruning Pruning

Pruned models available at
http://eyeriss.mit.edu/energy.html



http://sze.mit.edu/
http://eyeriss.mit.edu/energy.html

NetAdapt: Platform-Aware DNN Adaptation

Network e Budger Empirical Measurements

. Automatically adapt DNNtoa  Prerained Budget Platform

mobile platform to reach a oy |9 =
target latency or energy budget %_‘ o | e [ e

l Energy 41. 46 I
 Use empirical measurements NetAdapt | Measure
to guide optimization (avoid ) N;twmkcpmp";a's )
modeling of tool chain or B S S S—" - i
. A A L) A
platform architecture) ENEREmES | Em
L ] ] |
=& == =
. Adapted ' '
Few hyperparameters to Network

reduce tuning effort Code available at

http://netadapt.mit.edu

« >1.7x speed up on MobileNet

w/ similar accuracy
[In collaboration with Google’s Mobile Vision Team]

Vivienne Sze @ http://sze.mit.edu/ % @eems_mit [Yang, ECCV 2018] i
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FastDepth: Fast Monocular Depth Estimation

RGB Prediction

Depth estimation from a single RGB image
desirable, due to the relatively low cost
and size of monocular cameras.

0.80 - S 10x
‘ <€ >
. ® *
§ 0.75 4
a‘ * This Work
© | » Eigen'l4 ~
0.70
é . @® Eigen'l5 (AlexNet) 4(.)fps on
b ® Eigen'l5 (VGG) an iPhone
0.65 A ® Laina'lé (UpConv)
: Laina'l6 (UpProj) Model bl ,
a ® Xian'ls odels avallable a
0.60 : — : http://fastdepth.mit.edu

0 25 50 75 100 125 150 175
Frames per second (on Jetson TX2 GPU)

Configuration: Batch size of one (32-bit float) [Joint work with Sertac Karaman]

Vivienne Sze & http://sze.mit.edu/ % @eems_mit [Wofk*, Ma*, ICRA 2019] i
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NetAdapt v2: Reduce Adaption Time

Reduce time to find efficient DNN that adapts to hardware by up to 5.8x

Typical Steps in Neural Architecture Search (NAS):
1) Train super-network (search space of DNNs)
2) Sample and evaluate different DNNs

Total Search Time

78
3) Fine tune the final DNN This Work A Unknown
2\"577 {g 2 @ 400 GPU-Hours
Contributions §' .' A ‘ 1300 GPU-Hours
* Ordered dropout: train multiple DNNs in single 3 76- o NAS Mothods
forward pass (reduce step 1) < A MnasNet
Y P lessNAS
- Channel-level bypass: merge layer depth and 5| A A il
channel width into a single search dimension 2 A © : TGRS,
oplieNe
(reduce step 2) al | | | A FairNAS
* Multi-layer coordinate descent optimizer: 50 60 70 80 90 @ Once-for-All
Y P Latency (ms) @® NetAdaptV2

consider joint effect of multiple layers (reduce step 2
& support non-differentiable metrics, e.g., latency)

More info at http://netadapt.mit.edu

Vivienne Sze @ http://sze.mit.edu/ % @eems_mit [Yang, CVPR 2021] i
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Many Efficient DNN Design Approaches

Network Pruning Compact Network Architectures

before pruning after pruning

Channel
Groups G
pruning ___
synapses

R
pruning l R ?
neurons
< y  1EFC
S 1
«~— g —
Convolutional Depth-Wise Point-Wise
Layer Layer Layer

Reduce Precision

Y 0110011010000000001011/0000000001 00

8-bit fixed [JIHINHIHR No guarantee that DNN algorithm
designer will use a given approach.
Need flexible hardware!

Binary E

Vivienne Sze @ http://sze.mit.edu/ ¥ @eems_mit [Chen*, Yang*, SysML 2018] i
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Need Flexible Dataflow & Mapping

* Use flexible dataflow (Row Stationary) to exploit reuse in any dimension of DNN to
increase energy efficiency and array utilization

Spatial Accumulation Array Temporal Accumulation Array Eyeriss

ExF

Example: Depth-wise layer

Vivienne Sze @ http://sze.mit.edu/ % @eems_mit [Chen, JETCAS 2019] Mir
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Need Flexible NoC for Varying Reuse

* When reuse available, need multicast to exploit spatial data reuse for energy
efficiency and high array utilization

 When reuse not available, need unicast for high BW for weights for FC and weights
& activations for high PE utilization

* An all-to-all satisfies above but too expensive and not scalable

High Bandwidth, Low Spatial Reuse Low Bandwidth, High Spatial Reuse
_ i o e B s
=| PE [=2| PE |5 PE | |PE| > PE |5 PE |->| PE [>[PE | |PE| [PE| [PE] |PE] [PE] [PE] [PE] [PE]
s g gl g |
3 =| PE |22| PE |>| PE | | PE 5 | PE |>{ PE || PE || PE | 5 [PE] [PE| [PE] [PE] 5 [Pe] [PE] [PE] [PE]
= > = 3 E// i' — \t - i - J’ = ‘i i ...... i' »l/
3 PE |2| PE |»{ PE | | PE Sf—PE{PE>PE>PE| |8 [PE] |PE| |PE| |PE| (3| ||[PE| [PE| [PE| [PE]
of - - |o | :
| E=[PE|2|PE|»|PE| [PE| | |—[PE|>[PE>{PE|>[PE] ' [pe] [PE] [PE] [pe] | | [Pe] [pE] [PE] [PE]
Unicast Networks 1D Systolic Networks 1D Multicast Networks Broadcast Network

Vivienne Sze @ http://sze.mit.edu/ % @eems_mit [Chen, JETCAS 2019] Mir
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Hierarchical Mesh

GLB
Cluster

Network

Rout
Mesh P -] All-to-All
R
PE All-to-all
Cluster\ ) Network L )
High Bandwidth High Reuse Grouped Multicast Interleaved Multicast
| ! !
[] L_rl E | ITI lI___I |I___I L]
! | l
é) I 1 O @) I ] (!3
é) ('R | | O O
! | !
] | \O ]
O O ! 1 O 1O O

Vivienne Sze @ http://sze.mit.edu/ % @eems_mit [Chen, JETCAS 2019] Mir
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Eyeriss v2: Balancing Flexibility and Efficiency

¢ Uses a fIEXibIe hierarChicaI mESh ® v1.5 & MobileNet = v2 & MobileNet = v2 & sparse MobileNet
on-chip network to efficiently X II i
|““d“|| “ﬂ

pat
o O

Speedup (times)

support
— Wide range of filter shapes &

— Different layers

— Wide ra nge of SPa I"Slty Speed up over Eyeriss v1 scales with number of PEs
# of PEs 256 1024 16384

-

Aq’ %
Q@‘ o S

AlexNet 17.9x 71.5x 1086.7x

e Scalable architecture
GoogLeNet 10.4x 37.8x 448.8x

57 .9x 873.0x

Over an order of magnitude faster and MobileNet | 15.7x
more energy efficient than Eyeriss vl

[Joint work with Joel Emer]

[Chen, JETCAS 2019] i
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DNN Accelerator Evaluation Tools

* Require systematic way to

— Evaluate and compare DNN accelerators

— Rapidly explore design space

* Accelergy wu, iccap 2019]

— Early-stage estimation tool at the architecture level

« Estimate energy based on architecture level components
. . (GLB)
(e.g., # of PEs, memory size, on-chip network)

— Evaluate architecture level impact of emerging devices

» Plug-ins for different technologies

* Timeloop [parashar, 1sPAss 2019]

— DNN mapping tool

DNN Shape

1
=t
=
]
<

< —> -
a
-4
v \V’
—
z

SRAM

\ 4

Timeloop
Architecture Description [/S'DASS 2019]
i PEO p— PE1 i
Global ! !
oo | LD
i PE2 M PE3 E Acce|ergy
"""""""""" [ICCAD 2019]
Component Descriptions |$
GLB PE 1 ?

\ 4

@<

ctrl

ctrl

— Performance Simulator = Action counts

* Bridge architecture, circuit, and device research

Vivienne Sze @ http://sze.mit.edu/

@eems_mit

[Joint work with Joel Emer]

65nm
CMOS
Plug-in

Memory
Plug-in

Open-source code available at:

http://accelergy.mit.edu

Speed
Energy
Area
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Accelergy Estimation Validation

 Validation on Eyeriss [chen, isscc 2016]

— Achieves 95% accuracy compared to post-layout simulations
— Can accurately captures energy breakdown at different granularities

PsumRdNoC  sparedBuffer PsumRdNOC g}, e qBuffer
PsumWrNoC 1 39 3.6% PsumWrNoC  1.2% 3.9%
0 ’ ’
60 WeightsBuffer 0.6% WeightsBuff
0.2%  WeightsNoC e ;(yu =
0.1% 02%

IfmapN
0.5%

Ground Truth Energy Breakdown Accelergy Energy Breakdown
*Total energy might not add up to exact 100.0% due to rounding

Open-source code available at: http://accelergy.mit.edu

Vivienne Sze @ http:/sze.mit.edu/ % @eems_mit [Wu, ICCAD 2019] i
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Plug-ins for Fine-Grain Action Energy Estimation

* External energy/area models that accurately reflect the properties of a macro

— e.g., multiplier with zero-gating

PnR simulations
Energy characterizations of the zero-gated multiplier /
(normalized to idle) = ground truth m Accelergy
0.25
23.0 3
g 0.20
16.8 =
5 015
~ S
20X % 0.10
5
1.3 &L 0.05
I
Random Reused Gated 0.00

mu|tip|y mu|tip|y muItipIy PEO PE1 PE2 PE3 PE4 PE5 PE6 PE7 PES8
PEs that process data of different sparsity

With the characterization provided in the plug-in,
we can capture the energy savings for sparse workloads

Vivienne Sze @ http://sze.mit.edu/ % @eems_mit [Wu, ICCAD 2019] i
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* a.k.a. Processing In Memory (PIM)

In-Memory Computing (IMC*)

" Acrt]i;/?tion .iStinput Vdoltige (Vi)G - Reduce data movement by moving compute
eight is resistor conductance (G,) into memory

« Compute MAC with memory storage element

« Analog Compute
— Activations, weights and/or partial sums are encoded

I, = V,xG, with analog voltage, current, or resistance
— Increased sensitivity to circuit non-idealities
Psum =L +| — A/D and D/A circuits to interface with digital domain
is output  _ 12
current = V1%¥Gy + VpxGy

« Leverage emerging memory device technology
Image Source: [Shafiee, ISCA 2016]

Vivienne Sze & http://sze.mit.edu/ % @eems_mit i
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Accelergy for IMC

Energy breakdown across layers

= 1.E+4
=  9.E+3
S 8.E+3
g 7.E+3
% 6.E+3
S 5E+3
O 4 E+3
S  3.E+3

Q 2.E+3 . .
L 1.E+3

OE"‘O g — S I I I |

1 2 3 4 5 §) V4 8

VGG Layers
m A2D Conver. Sys. = Digital Accu. 1D2A Conver. Sys.

OPE Array Input Buffer

Vivienne Sze & http://sze.mit.edu/ % @eems_mit

[Wu, ISPASS 2020]

Open-source code available at:
http://accelergy.mit.edu

Achieves ~95% accuracy

0.037J
0.035J
66.9% 67.9%
J,12. 6% J,11.4%
JJ 7.7% 17.4%
m—3'0% FFri —3 1%
This Work 01%  Cascade
[MICRO 2019]
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Accelergy + Timeloop Tutorial

Tutorial material available at http://accelergy.mit.edu/tutorial.html
Includes videos and hands-on exercises

Timeloop
Accelergy
Angshuman Parashar NVIDIA
Yannan Nellie Wu MIT z
Po-An Tsai NVIDIA ISCA Tutorial
Vivienne Sze MIT
Joel S. Emer NVIDIA, MIT May 2020
mmm Massachusetts 4T‘
Mir == <% NVIDIA.
Vivienne Sze & http://sze.mit.edu/ % @eems_mit

Timeloop
Accelergy
e e ISCA Tutorial
kot Te MRIA Hands-on session
Vivienne Sze MIT
Joel S. Emer NVIDIA, MIT May 2020
mmm  Massachusetts /;,T‘(’
Mii === <7 NVIDIA.
<3
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Designing DNNs for IMC

X 801

* Designing DNNs for IMC may differ from gﬁo'
DNNs for digital processors cﬁé f 40

E 4,0l

* Highest accuracy DNN on digital processor  * 0

may be different on IMC
— Accuracy drops based on robustness to non-
idealities

* Reducing number of weights is less
desirable

— Since IMC is weight stationary, may be better to
reduce number of activations

— IMC tend to have larger arrays = fewer weights
may lead to low utilization on IMC

Vivienne Sze @ http://sze.mit.edu/ % @eems_mit [Yang, I[EDM 2019]

o

-@= alexnet
== vggl6
=®= vggl9
== inceptionv4
== inceptionresnetv2
== resnetl8

b= resnetl52
== resnextl01_32x4d

resnextl01_64x4d

=§- squeezenetl_0
== squeezenetl 1
=@~ densenet121

0.0 0.1 0.2 0.3 |=#= mobilenetv2

Noise Std

Storage Element

«— RXxSxC —
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Book Chapter on In-Memory Computing

CHAPTER 10 |

Advanced Technologies Many Design Considerations for In-Memory Computing

As highlighted throughout the previous chapters, data movement dominates energy consump
tion. The energy is consumed both in the access to the memory as well as the transfer of the

.
data. The associated physical factors also limit the bandwidth available to deliver data between L N u m be r Of Sto ra g e E I e m e n tS pe r We I g ht
memory and compute, and thus limits the xlunughlnn of the overall system. This is commonly
referred to by computer architects as the “memory wall."! ° A S :

To address the challenges associated with data movement, there have been various efforts rray |Ze
to bring compute and memory closer together. Chapters 5 and 6 primarily focus on how to . .
dc.\i;:n sp;uml archirectures that distribute the on dlip memory closer to the computation (e.g., ° N u m be r Of ROWS ACtlvate d I n P a ra I I el
scratch pad memory in the PE). This chapter will describe various other architectures that usc
advanced memory, process, and fabrication technologies to bring the compute and memory together.

 Number of Columns Activated in Parallel

closer to the computation. These approaches are often referred to as processing near memory Of
near-data processing, and include memory technologies such as embedded DRAM and 3-D

Tl » Time to Deliver Input

Next, we will describe efforts to integrate the computation infe the memory itself. These
tng in memary OF in-memory computs

and include .
Memories (SRAM), Dy 1]')': Rla:n:)m ® TI m e to CO m p u te MAC

Access Memories (DRAM), and emerging non-volatile memory (NVM). Since these ap

First, we will deseribe efforts to bring the off-chip high-density memory (

approaches are often referred to as proce

memory technologics such as Static Random Access

proaches rely on mixed-signal circuit design to enable processing in the analog domain, we will
also discuss the design challenges related to handling the increased sensitivity to circuit and de
vice non-idealities (e.g., nonlinearity, process and temperature variations), as well as the impact

area density, which is critical £ 2 . ?
L e e e Tradeoffs between energy efficiency, throughput, area
DNN processor. The same principles that are used to bring compute near the memory, where . . . .
o Tewre e il o g ot 0 g e o e conie st density, and accuracy, which reduce the achievable gains
Finally, since photons travel much faster than electrons and the cost of moving a photon

over conventional architectures

cant improvements in energy efficiency and throughput over the clectrical domain. Accordingly,

can be independent of distance, processing in the optical domain using

we will conclude this chaprer by discussing the recent work that performs DNN processing in

the .)pfiul domain, referred to as ()Ih/.'.n,v' Newural Netwvorks.

Available on DNN tutorial website
http://eyeriss.mit.edu/tutorial.html

Vivienne Sze & http://sze.mit.edu/ % @eems_mit Mir
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Applications that use Sparse Tensor

Sparse neural Dense linear algebra
networks Dense neural networks
Density: 0% 10 % 50 % 100 %

Density: >10 5 % 10°% 107 % 102% .01 % 1% 1%

(o9 scale) gp—————————————+>

Finite Element Methods

Recommendation Computational Fluid Problems in
systems Chemistry Dynamics  statistics
Internet & Circuit Electromagnetics
Social media Simulation Proteins

Vivienne Sze @ http:/sze.mit.edu/ % @eems_mit [Hedge, MICRO 201 9] i
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Sparseloop: Design Space Exploration for Sparse Tensor Accelerators

* An analytical design exploration framework that comprehends a wide range of
— Sparse optimizations (e.g., zero-gating, zero-skipping, zero-compression)
— Data representations (e.g., uncompressed, run length coding, bitmask)

Energy impact of sparse optimizations at different levels of

Propose modularized three-step evaluation process the memory hierarchy in Eyeriss-based topology

Architecture Sparseloop Incept._3a-1x1 Incept._3b-1x1  AlexNet_conv4_N1 AlexNet_conv4_N4
Specification - ——— — g —prn
tep1: Dense Modeling 8 o g
P : ) £08 VA Y 0 opobodos i A G E®®3 MACs
Sparse Optimization - : a2 Eﬂﬁﬁ EIII e ' 774 GLB
Feature L | Dense traffic stats " Mapping § 0.6 EEE DRAM
S id ? >
Specification . Valid ? 5
P Step2: Sparse Modeling 7 g%
Q
— 02
Wo.rlfloaq - Applied features g
Specification Sparse traffic stats Energy 00 oo Upss CLLLUEE3 YLLLVGEZEZ YvoLGEE
- > Efficiency £2I3I590 £3TI590 £232:06 5232100
Workload ,| | Step3: Micro-Architectural 8333383 #3335Fs £33335% §333333
i : 000228 000729 00229 500229
0903 ‘-’uuoc'> qué uuoé
5= Gz 53 52
(@) o (@] (U]

Tutorial at ISCA 2021 (June 19): http://accelergy.mit.edu/sparse_tutorial.html

Vivienne Sze @ http://sze.mit.edu/ ¥ @eems_mit [Wu, ISPASS 2021] In collaboration with Joel Emer i
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Book Chapter on Sparse Computations
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CHAPTER 38
Exploiting Sparsity

A salicnt characteristic of the data used in DNN computations is that it is (or can be made to
be) sparse. By saying that the data is sparse, we are referring to the fact that there are many
repeated values in the data. Much of the time the repeated value is zero, which is what we will
assume unless explicitly noted. Thus, we will talk about the sparsity or density of the data as .
the percentage of zeros or non-zeros, respectively in the data. The existence of sparse data leads [ S O u rce S Of S a rS It
broadly to two potential architectural benefits: (1) sparsity can reduce the footprint of the data, p y
which provides an opportunity to reduce storage requirements and data movement. This is be-
cause sparse data is amenable to being compressed, as described in Section 8.2;" and (2) sparsity
presents an opportunity for a reduction in MAC operations. The reduction in MAC operations
results from the fact that 0 x anything is 0. This can result in either savings in energy or time or
both. In Section 8.3, we will discuss how the dataflows for sparse data can translate sparsity into ° C : T R 1
improvements in energy-efficiency and throughput. However, first in Section 8.1 we discuss the O m p re SS I O n a n p a rS e e n S O r e p re S e n tatl O n

origins and ways that one can increase sparsity in the data used in DNN computations.

8.1 SOURCES OF SPARSITY

Efficient processing of feature map activations becomes increasingly important as the size of
the input to the DNN model grows (e.g., increased image resolution), while efficient processing ® S a rS e D a t afl OW S
of filter weights becomes increasingly important as the size of the DNN model grows (e.g., p
increased number of layers).

This section will discuss various approaches that can exploit properties such as redundancy
and correlation in the feature maps and filters to increase their activation sparsity (Section 8.1.1)
and weight sparsity (Section 8.1.2), respectively. The requirements for these approaches may dif-
fer as activation sparsity is often data dependent and not known a priori, while weight sparsity
can be known a priori. As a result, methods to increasc sparsity for weights can be performed of-
fline (as opposed to during inference) and can be more computationally complex than methods
applied to increase activation sparsity. For instance, increasing weight sparsity can be incorpo-
rated into training.

TNote: We usc the words sparsity or density to refer to a statistical property of the data, while we use the wards compressed
or uncompressed to describe the characteristics of a representation of the (typically sparsc) data.

https://tinyurl.com/EfficientDNNBook

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit i
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Where to Go Next: Planning and Mapping

Robot Exploration

Vivienne Sze &) http://sze.mit.edu/ ¥ @eems_mit Mir
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Where to Go Next: Planning and Mapping

Robot Exploration: Decide where to go by computing Shannon Mutual Information

| Select candidate scan | Compute Shannon M| and choose ) Mqve to Update
> : > : » location and |— Occupancy
locations best location
scan Map
Where to scan? Mutual Information Updated Map

it
T
T

xxxxxx
1111111

||||||
111111

Vivienne Sze @ http://sze.mit.edu/ % @eems_mit [Joint work with Sertac Karaman] Mir
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Experimental Results (4x Real Time)

I—

Occupancy map with
planned path using RRT*
(compute Ml on all possible paths)

“ I Ml surface

Exploration with a mini race car using motion capture for localization

Vivienne Sze & http://sze.mit.edu/ % @eems_mit [Zhang, ICRA 2019] Mir
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Building Hardware Accelerator to Compute MI

Motivation: Compute MI faster for faster exploration!

n

J+A

Fast Shannon
I(M;Z) = 2 z P(ej)Cka’j Mutual Information (FSMI)
=5 [Zhang, ICRA 2019]

Algorithm is embarrassingly parallel!
High throughput should be possible with multiple processing elements (PE)

PEC |

Vivienne Sze @ http://sze.mit.edu/

@eems_mit

Process sensor beams in parallel with multiple PEs

PE1

Occupancy .
Map s
PEC

» [(M; Z)
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Challenge is Data Delivery to All PEs

Power consumption of memory scales with number of ports.

Low power SRAM limited to two-ports!

Read Port 1 .| PE 1
J
Occupancy e | PE2
Map rbiter
Read Port 2
1 | PEC

Data delivery, specifically memory bandwidth,
limits the throughput (not compute)

Vivienne Sze & http://sze.mit.edu/ % @eems_mit
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Optimized Memory Banking Pattern

Memory Access Pattern

PEs read the map at the same row
or column every cycle

Vivienne Sze @ http://sze.mit.edu/

@eems_mit

Diagonal Banking Pattern
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Reduced conflicts across banks

[Li, RSS 2019]

Bank 0
Bank 1

Bank 2

Bank 5
Bank 6
Bank 7
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Experimental Results

x10* e
85_ —O— Baseline (1 bank)
7 || = 16 banks,vertical banking,1x1 packing Specialized banking efficient
6 - 16 banks,diagonal banking,1x1 packing . ! .
| —B— 16 banks,diagonal banking,2x2 packing _ memory arbiter and packlng
- | =====Unlimited bandwidth 1 .
51 e A : multiple values at each address
L4t ] results in throughput within
= | ! 94% of theoretical limit
£3} : (unlimited bandwidth)
o —x
E - / 1
5| : | Compute MI for an entire map of 20m x 20m
- at 0.1m resolution in under a second
on a ZC706 FPGA
(100x faster than CPU at 10x lower power)
o o — 0
2 4 6 8 10 12 14 16
Number of PEs

Vivienne Sze & http://sze.mit.edu/ % @eems_mit [Li, RSS 2019] i
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Generalize to a Class of Banking Patterns

 Latin-square banking tile: cells in each column and row is assigned to different banks

) H ‘ ) B )
A - - R ——— A R = ]
5] B : 8 8 Bank 0
Z NEE BN B 7 Bank 1
. 3) Bank 2

3 3 9 Bank 5
. 3 Bank 6
- ‘, 3 | 4 L Bank 7

Latin-square Banking Tile (B x B)

We rigorously proved that Latin-square tiles usage minimizes read conflicts between PEs

Vivienne Sze @ http://sze.mit.edu/ ¥ @eems_mit Gold Medal at ACM Student Research Competition Mir
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Low Power 3D Time of Flight Imaging

* Pulsed Time of Flight: Measure distance using round trip time of laser light for each
image pixel
— Illlumination + Imager Power: 2.5 - 20 W for range from 1-8 m

* Use computer vision techniques and passive images to estimate changes in depth

without turning on laser
— CMOS Imaging Sensor Power: < 350 mW

r: & 2
\ L\ b Y

Estimated Depth Maps

\5__—_——

Real-time Performance on Embedded Processor
VGA @ 30 fps on Cortex-A7 (< 0.5W active power)

Vivienne Sze @ http://sze.mit.edu/ % @eems_mit [Noraky, TCSVT 2020] Mir



http://sze.mit.edu/

Results of Low Power Depth ToF Imaging

RGB Image Depth Map Depth Map
Ground Truth Estimated

Mean Relative Error: 0.7%
Duty Cycle (on-time of laser): 11%

Vivienne Sze @ http://sze.mit.edu/ % @eems_mit [Noraky, TCSVT 2020] Mir
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Summary

* Efficient computing is critical for advancing the progress of Al & autonomous robots
—> Critical step to making Al & autonomy ubiquitous!

* |[n order to meet computing demands in terms of power and speed, need to redesign
computing hardware from the ground up - Focus on data movement!

* Specialized hardware creates new opportunities for the co-design of algorithms and
hardware = Innovation opportunities for the future of Al & robotics!

.

Algorithms Hardware

A

Vivienne Sze & http://sze.mit.edu/ % @eems_mit i
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Low-Energy Autonomy and Navigation (LEAN) Group

| EAN HOME ~ TEAM  RESEARCH  PUBLICATIONS ~ PRESS  RECOGNITION

A broad range of next-generation applications will be enabled by low-energy, miniature mobile robotics including insect-size flapping wing robots that
can help with search and rescue, chip-size satellites that can explore nearby stars, and blimps that can stay in the air for years to provide
communication services in remote locations. While the low-energy, miniature actuation, and sensing systems have already been developed in many of
these cases, the processors currently used to run the algorithms for autonomous navigation are still energy-hungry. Our research addresses this
challenge as well as brings together the robotics and hardware design communities,

We enable efficient computing on various key modules of other autonomous navigation systems including perception, localization, exploration and
planning. We also consider the overall system by considering the energy cost of computing in conjunction with actuation and sensing.

Motion Planning

Many motion planning and control algorithms aim to design trajectories and controllers that minimize actuation energy.
However, in low-energy robotics, computing such trajectories and controls themselves may consume a large amount of
energy. We develop algorithms that optimize this trade-off.

Mutual Information for Exploration

Computing mutual information between the map and future measurements is critical to efficient exploration. Unfortunately,
mutual information computation is computationally very challenging. We develop new algorithms and hardware for efficient
computation of mutual information, and demonstrate real-time computation for the whole map in a reasonably-sized map.

Depth Sensing and Perception

Depth sensing is a critical function for robotic tasks such as localization, mapping and obstacle detection. State-of-the-art
single-view depth estimation algorithms are based on fairly complex deep neural networks that are too slow for real-time
inference on an embedded platform, for instance, mounted on a micro aerial vehicle. We address the problem of fast depth
estimation on embedded systems.

Group Website: http://lean.mit.edu

Localization and Mapping

Autonomous navigation of miniaturized robots (e.g., nano/pico aerial vehicles) is currently a grand challenge for robotics
research, due to the need for processing a large amount of sensor data (e.g., camera frames) with limited on-board
computational resources, We focus on the design of a visual-inertial odometry (VIO) system in which the robot estimates
its ego-motion (and a landmark-based map) from on-board camera and IMU data.

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit Mir



http://sze.mit.edu/
http://lean.mit.edu/

Resources on Efficient Processing of DNNs

/A MORGAN & CLAYPOOL PUBLISHERS
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Vivienne Sze, Yu-Hsin Chen,
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COMPUTER ARCHITECTURE

http://eyeriss.mit.edu/tutorial.html
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Excerpts of Boo
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CHAPTER 3

Key Metrics and Design
Objectives

Over the past few years, there has been a significant amount of research on efficient process-
ing of DNNs. Accordingly, it is important to discuss the key metrics that one should consider
when comparing and evaluating the strengths and weaknesses of different designs and proposed
techniques and that should be incorporated into design considerations. While efficiency is often
only associated with the number of operations per second per Watt (e.g., floating-point opera-
tions per second per Watt as FLOPS/W or tera-operations per second per Watt as TOPS/W),
it is actually composed of many more metrics including accuracy, throughput, latency, energy
consumption, power consumption, cost, flexibility, and scalability. Reporting a comprehensive
set of these metrics is important in order to provide a complete picture of the trade-offs made
by a proposed design or technique.
In this chapter, we will

* discuss the importance of each of these metrics;

* breakdown the factors that affect each metric. When feasible, present equations that de-
scribe the relationship between the factors and the metrics;

* describe how these metrics can be incorporated into design considerations for both the
DNN hardware and the DNN model (i.e., workload); and

« specify what should be reported for a given metric to enable proper evaluation.

Finally, we will provide a case study on how one might bring all these metrics together for a
holistic evaluation of a given approach. But first, we will discuss each of the metrics.

3.1 ACCURACY

253

CHAPTER 10

Advanced Technologies

As highlighted throughout the previous chapters, data movement dominates energy consump-
tion. The energy is consumed both in the access to the memory as well as the transfer of the
data. The associated physical factors also limit the bandwidth available to deliver data between
memory and compute, and thus limits the throughput of the overall system. This is commonly
referred to by computer architects as the “memory wall."!

To address the challenges associated with data movement, there have been various efforts
to bring compute and memory closer together. Chapters 5 and 6 primarily focus on how to
design spatial architectures that distribute the on-chip memory closer to the computation (e.g.,
scratch pad memory in the PE). This chapter will describe various other architectures that usc
advanced memory, process, and fabrication technologies to bring the compute and memory together.

First, we will describe efforts to bring the off-chip high-density memory (e.g., DRAM)
closer to the computation. These approaches are often referred to as processing near memory or
near-data processing, and include memory fechnologies such as embedded DRAM and 3-D
stacked DRAM.

Next, we will describe efforts to integrate the computation infe the memory itself. These
'.\pproachcs are often referred to as /n'm'rUth in memary Of in~rm'moly ’/;mpu!ing, and include
memory technologics such as Static Random Access Memorics (SRAM), Dynamic Random
Access Memories (DRAM), and cmerging non-volatile memory (NVM). Since thesc ap-
proaches rely on mixed-signal circuit design to enable processing in the analog domain, we will
also discuss the design challenges related to handling the increased sensitivity to circuit and de-
vice non-idealities (e.g., nonlinearity, process and temperature variations), as well as the impact
on area density, which is critical for memory.

Significant data movement also occurs between the sensor that collects the data and the
DNN processor. The same principles that are used to bring compute near the memory, where
the weights are stored, can be used to bring the compute near the sensor, where the input data is
collected. Therefore, we will also discuss how to integrate some of the compute infs the sensor.

Finally, since photons travel much faster than electrons and the cost of moving a photon

canbcindo

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer

How to

ImageNet

Evaluate Deep Neural
Network Processors

TOPS/W (alone) Considered Harmful

sgnificant amount
of specialized
A | hardware bas been
developed for pro-

cessing deep neural

networks (DNNs) in both academia and
industry. This article aims to highlight
the key concepts reguired to evaluate
and compare these DNN processors.
We discuss existing challenges, such
as the flexibility and scalability need-
ed to support a wide range of neural
networks, as well as design consider-
ations for both the DNN processors
and the DNN models themselves, We
also describa specific metrics that can

Accuracy is used to indicate the quality of the result for a given task. The fact
achieve state-of-the-art accuracy on a wide range of tasks is one of the key rea
popularity and wide use of DNNs today. The units used to measure accuracy
task. For instance, for image classification, accuracy is reported as the percen
classified images, while for object detection, accuracy is reported as the mean a
(mAP), which is related to the trade off between the true positive rate and £

Available on DNN tutorial web

site

valuate and compare ex-
ns beyond the commonly
Jerations per second per
). This article is based on
How to Understand and
ep Learning Processors®
fen at the 2020 Interna-

e 10 209/MSSE, 220, 1062140

ttp://eyeriss.mit.edu/tutorial.html ==

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit

tonal Solid-State Clrcuits Conference,
as well as excerpts from the book, Ef-
ficient Processing of Deep Neural Nel-
works [36L

Motivation and Background

Over the past few years, there has

been & significant amount of research

on enabling the efficlent processing

of DNNs. The challenge of efficient

DAIN processing depends on balanc-

ing multiple objectives:

= high performance (including ac-
curacy) and efficiency (including
cost)

= enough flexibility to cater to a
wide and rapidly changing range
of workloads

= good Integration with existing
software frameworks.

DNN computations are composed
of several processing layers (Fig-
ure 1), where, for many layers, the
main computation Is a weighted sum;
in other words, the main computa-
tion for DNN processing is often a

multiply-accumulate (MAC) opera-
tion. The arrangement of the MAC
operations within a layer is defined
by the layer shape; for instance,
Table 1 and Figure 2 highlight the
shape parameters for layers used
in convolutional neural networks
{CNNs), & popular type of DNN. Be-
cause the shape parameters can vary
across layers, ONNs come in a wide
variety of shapes and sizes, depend-
ing on the application. (The DNN re-
search community often refers to the
shape and size of a DNN as its met-
work architecture. However, to avold
confusion with the use of the word
architecture by the hardware com-
munity, we talk about DNN models
and their shape and size in this ar-
ticle.) This variety is one of the mo-
tivations for Mexibility, and it causes
the objectives listed previously to be
highly interrelated.

Figure 3 lllustrates the hardware
architecture of a typical DNN proces-
sor. which is composed of an array
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Additional Resources

Talks and Tutorial Available Online
https://tinyurl.com/ISCAS2021Sze
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