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Processing at “Edge” instead of the “Cloud”

Communication Privacy Latency
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Computing Challenge for Self-Driving Cars

(Feb 2018)

Cameras and radar generate 
~6 gigabytes of data every 30 seconds. 

Generates wasted heat and some 
prototypes need water-cooling!

Self-driving car prototypes use 
approximately 2,500 Watts of 

computing power.

3

http://sze.mit.edu/


Vivienne Sze http://sze.mit.edu/ @eems_mit

Existing Processors Consume Too Much Power

< 1 Watt > 10 Watts
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Transistors Are Not Getting More Efficient

Slowdown of Moore’s Law and 
Dennard Scaling 

General purpose microprocessors are 
not getting faster or more efficient 

Need specialized / 
domain-specific hardware for 

significant improvements in speed 
and energy efficiency

Slowdown
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Efficient Computing with Cross-Layer Design

Architectures

Algorithms Systems

Circuits
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Energy Dominated by Data Movement

Operation: Energy 
(pJ)

8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Multiply 0.2
32b Multiply 3.1
16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

[Horowitz, ISSCC 2014] 

Relative Energy Cost

1 10 102 103 104

Memory access is orders 
of magnitude higher 
energy than compute
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Autonomous Navigation Uses a Lot of Data

Geometric Understanding

• Growing map size

2 million pixels 10x-100x more pixels

Semantic Understanding

• High frame rate
• Large resolutions
• Data expansion

[Pire, RAS 2017] 
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Visual-Inertial Localization

Visual-Inertial 
Odometry 

(VIO) 

Localization 

Mapping 

Image sequence 

IMU 
Inertial Measurement Unit 

… 

*Subset of SLAM algorithm 
(Simultaneous Localization And Mapping) Slide 28 

Determines location/orientation of robot from images and IMU
(also used by headset in Augmented Reality and Virtual Reality)

*
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Localization at Under 25 mW

[Zhang, RSS 2017], [Suleiman, VLSI-C 2018]

Consumes 684× and 1582× less energy 
than mobile and desktop CPUs, 

respectively

First chip that performs 
complete Visual-Inertial Odometry 

[Joint work with Sertac Karaman (AeroAstro)]

Navion

Front-End for camera 
(Feature detection, tracking, and outlier 

elimination)

Front-End for IMU 
(pre-integration of accelerometer and 

gyroscope data)

Back-End Optimization of Pose Graph
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Key Methods to Reduce Data Size

Backend Control

Data & Control Bus
Build 
Graph

Linear 
Solver

Linearize

Marginal

Retract

Graph
Linear 
Solver

Horizon 
States

Shared 
Memory

Floating 
Point 

Arithmetic

Matrix 
Operations

Cholesky

Back 
Substitute

Rodrigues 
Operations

Feature 
Tracking 

(FT)

Previous 
FrameLine Buffers

Feature 
Detection 

(FD)

Undistort 
& Rectify 

(UR)

Undistort 
& Rectify 

(UR)

Data & Control Bus

Sparse Stereo (SS)

Vision Frontend Control

RANSAC Fixed Point 
Arithmetic Point Cloud Pre-IntegrationFloating Point 

Arithmetic

IMU 
memory

Current 
Frame

Left 
Frame

Right 
Frame

Vision Frontend (VFE)

IMU Frontend (IFE)

Backend (BE)

Register 
File

Apply Low 
Cost 

Frame
Compression

Use compression and exploit sparsity to reduce memory down to 854kB

Exploit 
Sparsity in 
Graph and 

Linear Solver

Navion: Fully integrated system – no off-chip processing or storage 

[Suleiman, VLSI-C 2018]  Best Student Paper Award

Navion Project Website: http://navion.mit.edu
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Understanding the Environment
Depth Estimation

State-of-the-art approaches use 
Deep Neural Networks, which 
require up to several hundred 

millions of operations and 
weights to compute!

>100x more complex than video 
compression

Semantic Segmentation
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Deep Neural Networks

Computer Vision Speech Recognition

Game Play Medical

Deep Neural Networks (DNNs) have become a cornerstone of AI
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Book on Efficient Processing of DNNs

Part I Understanding Deep Neural Networks 
Introduction 

Overview of Deep Neural Networks 

Part II Design of Hardware for Processing DNNs 
Key Metrics and Design Objectives 

Kernel Computation 
Designing DNN Accelerators 

Operation Mapping on Specialized Hardware 

Part III Co-Design of DNN Hardware and Algorithms 
Reducing Precision 
Exploiting Sparsity 

Designing Efficient DNN Models 
Advanced Technologies 

https://tinyurl.com/EfficientDNNBook

Free download for institutional subscribers
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Weighted Sums

Key operation is 
multiply and accumulate (MAC)

Accounts for > 90% of computation 

Yj = activation Wij × Xi
i=1

3
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Input Layer

Output Layer

Hidden Layer

X1

X2

X3

Y1

Y2

Y3

Y4

W11

W34

Nonlinear 
Activation
Function

Sigmoid
1

-1

0

0 1-1

Rectified Linear Unit (ReLU)
1

-1

0

0 1-1

y=max(0,x)y=1/(1+e-x)

Image source: Caffe tutorial
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High-Dimensional Convolution in CNN

H 
R 

S 

…
 

…
 

…
 

C 

input fmap 

output fmap 

…
 

…
 

…
 

…
 C …

 
filter 

…
 

Many Input Channels (C) 

E 

W F 
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Define Shape for Each Layer

H – Height of input fmap (activations) 
W – Width of input fmap (activations)
C – Number of 2-D input fmaps /filters
(channels)
R – Height of 2-D filter (weights)
S – Width of 2-D filter (weights)
M – Number of 2-D output fmaps (channels)
E – Height of output fmap (activations)
F – Width of output fmap (activations)
N – Number of input fmaps/output fmaps
(batch size)

Shape varies across layers
Filters

R

S

…

…

…C

H

W

…

…

…C

…
E

F

…

…

…M

…

…

…M

…

R

S

…

…

…C

H

W
…

…C

1

N

1

M

1

…

…

Input fmaps
Output fmaps

…

E

F
N
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Popular DNN Models

Metrics LeNet-5 AlexNet VGG-16 GoogLeNet
(v1)

ResNet-50 EfficientNet-B4

Top-5 error (ImageNet) n/a 16.4 7.4 6.7 5.3 3.7*
Input Size 28x28 227x227 224x224 224x224 224x224 380x380
# of CONV Layers 2 5 16 21 (depth) 49 96
# of Weights 2.6k 2.3M 14.7M 6.0M 23.5M 14M
# of MACs 283k 666M 15.3G 1.43G 3.86G 4.4G
# of FC layers 2 3 3 1 1 65**
# of Weights 58k 58.6M 124M 1M 2M 4.9M
# of MACs 58k 58.6M 124M 1M 2M 4.9M
Total Weights 60k 61M 138M 7M 25.5M 19M
Total MACs 341k 724M 15.5G 1.43G 3.9G 4.4G
Reference Lecun, 

PIEEE 1998
Krizhevsky, 
NeurIPS 2012

Simonyan, 
ICLR 2015

Szegedy, 
CVPR 2015

He, 
CVPR 2016

Tan, 
ICML 2019

DNN models getting larger and deeper
*   Does not include multi-crop and ensemble
** Increase in FC layers due to squeeze-and-excitation layers (much smaller than FC layers for classification)
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Properties We Can Leverage

• Operations exhibit high parallelism
à high throughput possible

• Memory Access is the Bottleneck

ALU

Memory Read Memory WriteMAC*

* multiply-and-accumulate

filter weight
fmap act

partial sum updated 
partial sum

• Example: AlexNet has 724M MACs 
à 2896M DRAM accesses required

Worst Case: all memory R/W are DRAM accesses

200x 1x

DRAM DRAM
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Properties We Can Leverage

• Operations exhibit high parallelism
à high throughput possible

• Input data reuse opportunities (up to 500x)

Filter Input Fmap

Convolutional Reuse 
(Activations, Weights)

CONV layers only
(sliding window)

Filters

2

1

Input Fmap

Fmap Reuse
(Activations)

CONV and FC layers

Filter

2

1

Input Fmaps

Filter Reuse
(Weights)

CONV and FC layers
(batch size > 1)
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Exploit Data Reuse at Low-Cost Memories

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 

Farther and larger
memories consume 

more power

0.5 – 1.0 kB

Control

Reg File
Specialized 

hardware with 
small (< 1kB) 

low cost memory 
near compute
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Weight Stationary (WS)

• Minimize weight read energy consumption
− maximize convolutional and filter reuse of weights

• Broadcast activations and accumulate partial sums
spatially across the PE array

• Examples: TPU [Jouppi, ISCA 2017], NVDLA

  
            

  

  

Global Buffer 

W0 W1 W2 W3 W4 W5 W6 W7 

  

  

  

  

Psum Activation 

PE 
Weight 

[Chen, ISCA 2016] 
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Output Stationary (OS)

[Chen, ISCA 2016] 

• Minimize partial sum R/W energy consumption
− maximize local accumulation

• Broadcast/Multicast filter weights and reuse activations
spatially across the PE array

• Examples: [Moons, VLSI 2016], [Thinker, VLSI 2017]

  
            

  

  

Global Buffer 

P0 P1 P2 P3 P4 P5 P6 P7 

  

  

  

  

Activation Weight 

PE 
Psum 
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Row Stationary Dataflow

• Maximize row 
convolutional reuse in RF
− Keep a filter row and fmap

sliding window in RF

• Maximize row psum
accumulation in RF

PE 1
Row 1 Row 1

Row 1

=*

*

[Chen, ISCA 2016]  Select for Micro Top Picks
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Row Stationary Dataflow

Optimize for overall energy efficiency instead 
for only a certain data type

PE 1
Row 1 Row 1

PE 2
Row 2 Row 2

PE 3
Row 3 Row 3

Row 1

=*

PE 4
Row 1 Row 2

PE 5
Row 2 Row 3

PE 6
Row 3 Row 4

Row 2

=*

PE 7
Row 1 Row 3

PE 8
Row 2 Row 4

PE 9
Row 3 Row 5

Row 3

=*

* * *

* * *

* * *

[Chen, ISCA 2016]  Select for Micro Top Picks
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Dataflow Comparison: CONV Layers

0

0.5

1

1.5

2

Normalized
Energy/MAC

WS OSA OSB OSC NLR RS

psums

weights
activations

RS optimizes for the best overall energy efficiency

CNN Dataflows

[Chen, ISCA 2016] 
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Deep Neural Networks at Under 0.3W

On
-ch

ip 
Bu

ffe
r Spatial 

PE Array

4mm

4m
m

[Joint work with Joel Emer]

Results for AlexNet

Overall >10x energy reduction compared to a mobile GPU (Nvidia TK1)

Exploits data reuse for 100x reduction in memory accesses from global 
buffer and 1400x reduction in memory accesses from off-chip DRAM

Eyeriss Project Website: http://eyeriss.mit.edu

[Chen, ISSCC 2016] 

Eyeriss
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Features: Energy vs. Accuracy 

0.1

1

10

100

1000

10000

0 20 40 60 80
Accuracy (Average Precision)

Energy/
Pixel (nJ)

VGG162

AlexNet2

HOG1

Measured in on VOC 2007 Dataset
1. DPM v5 [Girshick, 2012]
2. Fast R-CNN [Girshick, CVPR 2015] 

Exponential

Linear

Video 
Compression

[Suleiman, ISCAS 2017]

Measured in 65nm*

* Only feature extraction. Does 
not include data, classification 

energy, augmentation and 
ensemble, etc.

On
-c

hip
 B

uff
er Spatial 

PE Array

4mm

4m
m

4mm

4m
m

[Suleiman, VLSI 2016] [Chen, ISSCC 2016]1 2
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Energy-Efficient Processing of DNNs

V. Sze, Y.-H. Chen, 
T-J. Yang, J. Emer, 

“Efficient Processing of 
Deep Neural Networks: 
A Tutorial and Survey,” 
Proceedings of the IEEE, 

Dec. 2017

A significant amount of algorithm and hardware research 
on energy-efficient processing of DNNs

We identified various limitations to existing approaches

http://eyeriss.mit.edu/tutorial.html
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Popular efficient DNN algorithm approaches

Design of Efficient DNN Algorithms

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Network Pruning Efficient Network Architectures

... also reduced precision

• Focus on reducing number of MACs and weights
• Does it translate to energy savings and reduced latency?

[Chen*, Yang*, SysML 2018] 

C
1

1
S

R

1

R

S
C

G

Depth-Wise
Layer

Point-Wise
Layer

Convolutional
Layer

…
Channel
Groups

Examples: SqueezeNet, MobileNet
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Number of MACs and Weights are Not Good Proxies

# of operations (MACs) does not approximate 
latency well

Source: Google 
(https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)

Output	Feature	Map	
43%	

Input	Feature	Map	
25%	

Weights	
22%	

Computa:on	
10%	

Energy	Consump:on	
of	GoogLeNet	

[Yang, CVPR 2017]

# of weights alone is not a good metric for energy 
(All data types should be considered) 

Energy breakdown of 
GoogLeNet

https://energyestimation.mit.edu/
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Energy-Aware Pruning

Directly target energy 
and incorporate it into the 

optimization of DNNs to provide 
greater energy savings

• Sort layers based on energy and prune layers 
that consume the most energy first

• Energy-aware pruning reduces AlexNet
energy by 3.7x w/ similar accuracy

• Outperforms magnitude-based pruning by 1.7x
0 

0.5 
1 

1.5 
2 

2.5 
3 

3.5 
4 

4.5 

Ori. DC EAP 

Normalized Energy (AlexNet) 

2.1x 3.7x 

x109 

Magnitude 
Based Pruning 

Energy Aware 
Pruning 

Pruned models available at 
http://eyeriss.mit.edu/energy.html

[Yang, CVPR 2017]
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NetAdapt: Platform-Aware DNN Adaptation

• Automatically adapt DNN to a 
mobile platform to reach a 
target latency or energy budget

• Use empirical measurements 
to guide optimization (avoid 
modeling of tool chain or 
platform architecture) 

• Few hyperparameters to 
reduce tuning effort

• >1.7x speed up on MobileNet
w/ similar accuracy

[In collaboration with Google’s Mobile Vision Team]

NetAdapt Measure

…

Network Proposals

Empirical Measurements
Metric Proposal A … Proposal Z

Latency 15.6 … 14.3

Energy 41 … 46

…… …

Pretrained
Network Metric Budget

Latency 3.8

Energy 10.5

Budget

Adapted
Network

… …

Platform

A B C D Z

[Yang, ECCV 2018]

Code available at
http://netadapt.mit.edu
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FastDepth: Fast Monocular Depth Estimation

[Joint work with Sertac Karaman]

Depth estimation from a single RGB image 
desirable, due to the relatively low cost 

and size of monocular cameras.

RGB Prediction

[Wofk*, Ma*, ICRA 2019]

Configuration: Batch size of one (32-bit float)

Models available at 
http://fastdepth.mit.edu

> 10x

~40fps on 
an iPhone
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Many Efficient DNN Design Approaches

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Network Pruning Compact Network Architectures

10100101000000000101000000000100

01100110

Reduce Precision

32-bit float

8-bit fixed

Binary 0

No guarantee that DNN algorithm 
designer will use a given approach.

Need flexible hardware!

C
1

1
S

R

1

R

S
C

G

Depth-Wise
Layer

Point-Wise
Layer

Convolutional
Layer

…
Channel
Groups

[Chen*, Yang*, SysML 2018] 
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• Specialized DNN hardware often rely on certain properties of DNN in order to 
achieve high energy-efficiency

• Example: Reduce memory access by amortizing across MAC array

Existing DNN Architectures

MAC arrayWeight
Memory

Activation
Memory

Weight 
reuse

Activation
reuse

36

http://sze.mit.edu/


Vivienne Sze http://sze.mit.edu/ @eems_mit

• Example: Reuse and array utilization depends on # of channels, feature map/batch size 
– Not efficient across all network architectures (e.g., compact DNNs)

Limitation of Existing DNN Architectures

MAC array
(spatial 

accumulation)

Number of filters
(output channels)

Number of
input channels

MAC array
(temporal

accumulation)

Number of filters
(output channels)

feature map
or batch size
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• Example: Reuse and array utilization depends on # of channels, feature map/batch size 
– Not efficient across all network architectures (e.g., compact DNNs)

Limitation of Existing DNN Architectures

MAC array
(spatial 

accumulation)

Number of filters
(output channels)

Number of
input channels

MAC array
(temporal

accumulation)

Number of filters
(output channels)

feature map
or batch size

C
1

1

S

R

1

Example mapping for 
depth wise layer
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• Example: Reuse and array utilization depends on # of channels, feature map/batch size 
– Not efficient across all network architectures (e.g., compact DNNs)
– Less efficient as array scales up in size
– Can be challenging to exploit sparsity

Limitation of Existing DNN Architectures

MAC array
(spatial 

accumulation)

Number of filters
(output channels)

Number of
input channels

MAC array
(temporal

accumulation)

Number of filters
(output channels)

feature map
or batch size
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• Use flexible dataflow (Row Stationary) to exploit reuse in any dimension of DNN to 
increase energy efficiency and array utilization

Need Flexible Dataflow & Mapping 

Example: Depth-wise layer

[Chen, JETCAS 2019]
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• When reuse available, need multicast to exploit spatial data reuse for energy 
efficiency and high array utilization

• When reuse not available, need unicast for high BW for weights for FC and weights 
& activations for high PE utilization

• An all-to-all satisfies above but too expensive and not scalable

Need Flexible NoC for Varying Reuse
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High Bandwidth, Low Spatial Reuse Low Bandwidth, High Spatial Reuse

Unicast Networks Broadcast Network1D Multicast Networks1D Systolic Networks

[Chen, JETCAS 2019]
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Hierarchical Mesh
GLB
Cluster

Router
Cluster

PE
Cluster

…

…

…

…

…… …

Mesh
Network

All-to-all
Network

(a) (b) (c) (d) (e)

GLB
Cluster

Router
Cluster

PE
Cluster

…

…

…

…

…… …

Mesh
Network

All-to-all
Network

(a) (b) (c) (d) (e)

High Bandwidth High Reuse Grouped Multicast Interleaved Multicast

All-to-AllMesh

[Chen, JETCAS 2019]
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• Uses a flexible hierarchical mesh 
on-chip network to efficiently 
support 
– Wide range of filter shapes 
– Different layers 
– Wide range of sparsity

• Scalable architecture

Eyeriss v2: Balancing Flexibility and Efficiency

Over an order of magnitude faster and 
more energy efficient than Eyeriss v1

Speed up over Eyeriss v1 scales with number of PEs 

# of PEs 256 1024 16384

AlexNet 17.9x 71.5x 1086.7x

GoogLeNet 10.4x 37.8x 448.8x

MobileNet 15.7x 57.9x 873.0x

[Joint work with Joel Emer]

5.6
10.9
12.6

[Chen, JETCAS 2019]
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Eyexam: Performance Evaluation Framework

Step 1: max workload parallelism (Depends on DNN Model)
Step 2: max dataflow parallelism
Number of PEs (Theoretical Peak Performance)peak

performance

MAC/cycle

MAC/data

[Chen, arXiv 2019: https://arxiv.org/abs/1807.07928 ] 

A systematic way of understanding the 
performance limits for DNN hardware as a 
function of specific characteristics of the DNN 

model and hardware design
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Eyexam: Performance Evaluation Framework

Number of PEs (Theoretical Peak Performance)peak
performance

Slope = BW to PEs

MAC/cycle

MAC/data

Bandwidth (BW)
Bounded 

Compute
Bounded [Williams, CACM 2009] 

Based on Roofline Model
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Eyexam: Performance Evaluation Framework

Step 1: max workload parallelism
Step 2: max dataflow parallelism

Step 3: # of active PEs under a finite PE array size
Number of PEs (Theoretical Peak Performance)

Step 4: # of active PEs under fixed PE array dimension

peak
performance

Step 5: # of active PEs under fixed storage capacity

Slope = BW to only active PE

MAC/cycle

MAC/data

PE

C

M

46

http://sze.mit.edu/


Vivienne Sze http://sze.mit.edu/ @eems_mit

Eyexam: Performance Evaluation Framework

Step 1: max workload parallelism
Step 2: max dataflow parallelism

Step 3: # of active PEs under a finite PE array size
Number of PEs (Theoretical Peak Performance)

Step 4: # of active PEs under fixed PE array dimension

peak
performance

Step 5: # of active PEs under fixed storage capacity

workload operational intensity

Step 6: lower act. PE util. due to insufficient average BW
Step 7: lower act. PE util. due to insufficient instantaneous BW

MAC/cycle

MAC/data
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• Require systematic way to
– Evaluate and compare DNN accelerators
– Rapidly explore design space

• Accelergy [Wu, ICCAD 2019]

– Early stage estimation tool at the architecture level
• Estimate energy based on architecture level components 

(e.g., # of PEs, memory size, on-chip network)

– Evaluate architecture level impact of emerging devices
• Plug-ins for different technologies

• Timeloop [Parashar, ISPASS 2019]

– DNN mapping tool 
– Performance Simulator à Action counts

DNN Accelerator Evaluation Tools

Open-source code available at: 
http://accelergy.mit.edu

Accelergy
(Energy Estimator Tool)

Architecture
description

Action 
countsAction 
counts

Compound 
component
description

… Energy 
estimation

Energy
estimation 
plug-in 0

Energy 
estimation 
plug-in 1

Timeloop
(DNN Mapping Tool & 

Performance Simulator)
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• Validation on Eyeriss [Chen, ISSCC 2016]

– Achieves 95% accuracy compared to post-layout simulations
– Can accurately captures energy breakdown at different granularities

Accelergy Estimation Validation

Open-source code available at: http://accelergy.mit.edu

[Wu, ICCAD 2019]
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Accelergy Infrastructure

Accelergy

Architecture Description

Global 
Buffer
(GLB)

PE0

PE2 PE3

Open-source code available at: 
http://accelergy.mit.edu

[Wu, ICCAD 2019]
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Accelergy Infrastructure

Accelergy

Architecture Description

Global 
Buffer
(GLB)

PE0

PE2 PE3

SRAM

control

GLB

Compound Component 
Description

…multiplier

adder

PE

Open-source code available at: 
http://accelergy.mit.edu

[Wu, ICCAD 2019]
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Accelergy Infrastructure

Accelergy

Architecture Description

Global 
Buffer
(GLB)

PE0

PE2 PE3

SRAM

control

GLB

…multiplier

adder

PE

name technology width action energy (pJ)
multiplier 65nm 16 multiply 0.8

adder …

Energy Estimation Plug-in

Compound Component 
Description

Open-source code available at: 
http://accelergy.mit.edu

[Wu, ICCAD 2019]
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Accelergy Infrastructure

Accelergy

Architecture Description

Global 
Buffer
(GLB)

PE0

PE2 PE3

SRAM

control

GLB

…multiplier

adder

PE

name technology width action energy (pJ)
multiplier 65nm 16 multiply 0.8

adder …

Energy Estimation Plug-in

name action count
PE0 compute 500
PE1 …

Action Counts

name energy (pJ)
PE0 1500
PE1 …

Energy Estimation

Compound Component 
Description

Open-source code available at: 
http://accelergy.mit.edu

[Wu, ICCAD 2019]
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• External energy/area models that accurately reflect the properties of a macro
– e.g., multiplier with zero-gating

Plug-ins for Fine-Grain Action Energy Estimation

23.0

16.8

1.3

~20x

Energy characterizations of the zero-gated multiplier
(normalized to idle) 

With the characterization provided in the plug-in, 
we can capture the energy savings for sparse workloads

Random
multiply

Reused
multiply

Gated
multiply

PnR simulations

0.00

0.05

0.10

0.15

0.20

0.25

PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8

En
er

gy
 C

on
su

m
pt

io
n 

(u
J)

PEs that process data of different sparsity

ground truth Accelergy
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In-Memory Computing (IMC*)

• Reduce data movement by moving compute 
into memory

• Compute MAC with memory storage element 

• Analog Compute
– Activations, weights and/or partial sums are encoded 

with analog voltage, current, or resistance
– Increased sensitivity to circuit non-idealities
– A/D and D/A circuits to interface with digital domain

• Leverage emerging memory device technology

V1
G1

I1 = V1×G1
V2

G2

I2 = V2×G2

I = I1 + I2
= V1×G1 + V2×G2

Image Source: [Shafiee, ISCA 2016]

Activation is input voltage (Vi)
Weight is resistor conductance (Gi)

Psum
is output 
current

* a.k.a. Processing In Memory (PIM)
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In-Memory Computing (IMC)

• Implement as matrix-vector multiply
– Typically, matrix composed of stored weights and vector 

composed of input activations

• Reduce weight data movement by moving compute 
into the memory
– Perform MAC with storage element or in peripheral circuits

– Read out partial sums rather than weights à fewer accesses 
through peripheral circuits

• Increase weight bandwidth 
– Multiple weights accessed in parallel to keep MACs busy (high 

utilization) 

• Increase amount of parallel MACs 
– Storage element can be higher area density than digital MAC

– Reduce routing capacitance 

weight 
stationary 
dataflow

input
activations 

DAC

AD
C

psum/
output activations

Analog logic 
(mult/add/shift)

Columns in Array (A)

Rows in 
Array (B)

Storage Element
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Accelergy for IMC

Accelergy

Architecture Description

Global 
Buffer
(GLB)

PE0

PE2 PE3

SRAM

control

GLB

…multiplier

adder

PE

Energy Estimation Plug-in

name action count
PE0 compute 500
PE1 …

Action Counts

name energy (pJ)
PE0 1500 𝑬𝒕𝒐𝒕𝒂𝒍
PE1 …

Energy Estimation

Compound Component 
Description

DAC

ADC

Open-source code available at: 
http://accelergy.mit.edu

name technology width action energy (pJ)
multiplier 65nm memristor 16 multiply 0.8 𝑬𝒎𝒖𝒍𝒕

adder …
ADC
DAC

[Wu, ISPASS 2020]
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Accelergy for IMC 

0.E+0
1.E+3
2.E+3
3.E+3
4.E+3
5.E+3
6.E+3
7.E+3
8.E+3
9.E+3
1.E+4

1 2 3 4 5 6 7 8

En
er

gy
 C

on
su

m
pt

io
n 

(µ
J)

A2D Conver. Sys. Digital  Accu. D2A Conver. Sys.
PE Array Input Buffer

VGG Layers

Energy breakdown across layers

This Work [7]

0.037J
0.035J

66.9% 67.9%

11.4%

17.4%

3.1%

12.6%

17.7%

3.0%
0.01% N/ACascade 

[MICRO 2019]

Achieves ~95% accuracy

Open-source code available at: 
http://accelergy.mit.edu

[Wu, ISPASS 2020]
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Accelergy + Timeloop Tutorial

Tutorial material available at http://accelergy.mit.edu/tutorial.html
Includes videos and hands-on exercises
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• Designing DNNs for IMC may differ from 
DNNs for digital processors

• Highest accuracy DNN on digital processor 
may be different on IMC
– Accuracy drops based on robustness to non-

idealities

• Reducing number of weights is less 
desirable
– Since IMC is weight stationary, may be better to 

reduce number of activations
– IMC tend to have larger arrays à fewer weights 

may lead to low utilization on IMC

Designing DNNs for IMC

[Yang, IEDM 2019]
Im

ag
eN

et

Storage Element

R
 x

 S
 x

 C

M
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Book Chapter on In-Memory Computing

Available on DNN tutorial website
http://eyeriss.mit.edu/tutorial.html

Many Design Considerations for In-Memory Computing

• Number of Storage Elements per Weight
• Array Size
• Number of Rows Activated in Parallel
• Number of Columns Activated in Parallel
• Time to Deliver Input
• Time to Compute MAC

Tradeoffs between energy efficiency, throughput, area 
density, and accuracy, which reduce the achievable gains 
over conventional architectures 
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Where to Go Next: Planning and Mapping
Robot Exploration
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Where to Go Next: Planning and Mapping

Select candidate scan 
locations

Compute Shannon MI and choose 
best location

Move to 
location and 

scan

Update 
Occupancy 

Map

Where to scan?

Occupancy map Mutual information map

Mutual Information Updated Map

Robot Exploration: Decide where to go by computing Shannon Mutual Information

[Joint work with Sertac Karaman]
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Experimental Results (4x Real Time)

Occupancy map with 
planned path using RRT* 

(compute MI on all possible paths)

MI surface

Exploration with a mini race car using motion capture for localization

[Zhang, ICRA 2019]
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Building Hardware Accelerator to Compute MI

𝐼 𝑀; 𝑍 ='
!"#

$

'
%"!&'

!('

𝑃 𝑒! 𝐶%𝐺%,!

Algorithm is embarrassingly parallel!
High throughput should be possible with multiple processing elements (PE)

Motivation: Compute MI faster for faster exploration!

PE 1

PE 2

PE 3

PE C

PE C 

PE 2 

PE 1 

Process sensor beams in parallel with multiple PEs

Fast Shannon
Mutual Information (FSMI)

[Zhang, ICRA 2019]
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Challenge is Data Delivery to All PEs

PE C 

PE 2 

PE 1 Read Port 1

Read Port 2

Power consumption of memory scales with number of ports.
Low power SRAM limited to two-ports!

Data delivery, specifically memory bandwidth, 
limits the throughput (not compute)
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Increasing memory bandwidth (read ports) by partitioning the map storage into multiple banks

Proposed architecture includes
1) Memory banking pattern that minimizes memory access conflicts among all PEs
2) Efficient arbiter that quickly identifies and resolves memory access conflicts among all PEs

Proposed Accelerator Architecture

PE 1

PE 2

PE 3

PE C

⋮
Arbiter

Bank 1

Bank 2

Bank 3

Bank B

⋮

Entire Map
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Memory Access Pattern

Memory access pattern at every cycle

• The number denotes the order of memory 
access in each PE. 

• During every cycle, PEs access the map 
locations in the same column or row.

• Design a fixed banking pattern that minimizes the number of memory access collisions.

• Challenge: memory access pattern is dependent on the scan location and sensor angle. 
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Memory Access Pattern
• Design a fixed banking pattern that minimizes the number of memory access collisions.

• Challenge: memory access pattern is dependent on the scan location and sensor angle. 

Memory access pattern at location A Memory access pattern at location B
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Naïve Memory Banking Pattern

Memory access pattern at every cycle

PEs read the map at the same row 
or column every cycle

Challenge: memory access pattern is scan location and sensor angle dependent. 

Vertical Banking Pattern

8 8 8

7 7 7

6 6 6

5 5 5

4 4 4 8

3 3 3 5 6 7

2 2 3 4

1 2 3 4 5 6 7 8

Bank 0

Bank 1

Bank 4

Bank 3

Bank 5

Bank 7

Bank 2

Bank 6

Conflicts when same column
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Proposed Memory Banking Pattern

Memory access pattern at every cycle

PEs read the map at the same row 
or column every cycle

8 8 8

7 7 7

6 6 6

5 5 5

4 4 4 8

3 3 3 5 6 7

2 2 3 4

1 2 3 4 5 6 7 8

Diagonal Banking Pattern

Bank 0

Bank 1

Bank 4

Bank 3

Bank 5

Bank 7

Bank 2

Bank 6

8 8 8

7 7 7

6 6 6

5 5 5

4 4 4 8

3 3 3 5 6 7

2 2 3 4

1 2 3 4 5 6 7 8

Diagonal Banking Pattern

Challenge: memory access pattern is scan location and sensor angle dependent. 

[Li, RSS 2019]

Reduced conflicts across banks
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2 4 6 8 10 12 14 16

Number of FSMI Cores

2

3

4

5

6

7

8

T
h
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u

g
h

p
u

t 
(M

I/
s)

104

Baseline (1 bank)

16 banks,vertical banking,1x1 packing

16 banks,diagonal banking,1x1 packing

16 banks,diagonal banking,2x2 packing

Unlimited bandwidth

Experimental Results

Specialized banking, efficient 
memory arbiter and packing 

multiple values at each address 
results in throughput within 

94% of theoretical limit
(unlimited bandwidth) 

[Li, RSS 2019]

Compute MI for an entire map of 20m x 20m 
at 0.1m resolution in under a second 

on a ZC706 FPGA 
(100x faster than CPU at 10x lower power)

Number of PEs
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Generalize to a Class of Banking Patterns

Gold Medal at ACM Student Research Competition 

We rigorously proved that Latin-square tiles usage minimizes read conflicts between PEs
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• Efficient computing is critical for advancing the progress of AI & autonomous robots
à Critical step to making AI & autonomy ubiquitous!

• In order to meet computing demands in terms of power and speed, need to redesign 
computing hardware from the ground up à Focus on data movement!

• Specialized hardware creates new opportunities for the co-design of algorithms and 
hardware à Innovation opportunities for the future of AI & robotics!

Summary

Algorithms Hardware
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Low-Energy Autonomy and Navigation (LEAN) Group

Group Website: http://lean.mit.edu
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Book on Efficient Processing of DNNs

Part I Understanding Deep Neural Networks 
Introduction 

Overview of Deep Neural Networks 

Part II Design of Hardware for Processing DNNs 
Key Metrics and Design Objectives 

Kernel Computation 
Designing DNN Accelerators 

Operation Mapping on Specialized Hardware 

Part III Co-Design of DNN Hardware and Algorithms 
Reducing Precision 
Exploiting Sparsity 

Designing Efficient DNN Models 
Advanced Technologies 

https://tinyurl.com/EfficientDNNBook

Free download for institutional subscribers
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Excerpts of Book

Available on DNN tutorial website
http://eyeriss.mit.edu/tutorial.html

78

http://sze.mit.edu/
http://eyeriss.mit.edu/tutorial.html


Vivienne Sze http://sze.mit.edu/ @eems_mit

Additional Resources
Talks and Tutorial Available Online

https://tinyurl.com/SzeMITDL2020

YouTube Channel
EEMS Group – PI: Vivienne Sze

79

http://sze.mit.edu/
https://tinyurl.com/SzeMITDL2020


Vivienne Sze http://sze.mit.edu/ @eems_mit

• Efficient Processing for Deep Neural Networks
– Project website: http://eyeriss.mit.edu
– Y.-H. Chen, T.-J Yang, J. Emer, V. Sze, “Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices,” 

IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS), Vol. 9, No. 2, pp. 292-308, June 2019.

– Y.-H. Chen, T. Krishna, J. Emer, V. Sze, “Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural 
Networks,” IEEE Journal of Solid State Circuits (JSSC), ISSCC Special Issue, Vol. 52, No. 1, pp. 127-138, January 2017.

– Y.-H. Chen, J. Emer, V. Sze, “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks,” 
International Symposium on Computer Architecture (ISCA), pp. 367-379, June 2016. 

– Y.-H. Chen*, T.-J. Yang*, J. Emer, V. Sze, “Understanding the Limitations of Existing Energy-Efficient Design Approaches for Deep 
Neural Networks,” SysML Conference, February 2018.

– V. Sze, Y.-H. Chen, T.-J. Yang, J. Emer, “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the 
IEEE, vol. 105, no. 12, pp. 2295-2329, December 2017.

– Y. N. Wu, J. S. Emer, V. Sze, “Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs,” 
International Conference on Computer Aided Design (ICCAD), November 2019. http://accelergy.mit.edu/

– Y. N. Wu, V. Sze, J. S. Emer, “An Architecture-Level Energy and Area Estimator for Processing-In-Memory Accelerator Designs,” to
appear in IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), April 2020.

– A. Suleiman*, Y.-H. Chen*, J. Emer, V. Sze, “Towards Closing the Energy Gap Between HOG and CNN Features for Embedded 
Vision,” IEEE International Symposium of Circuits and Systems (ISCAS), Invited Paper, May 2017.

– Hardware Architecture for Deep Neural Networks: http://eyeriss.mit.edu/tutorial.html
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• Co-Design of Algorithms and Hardware for Deep Neural Networks
– T.-J. Yang, Y.-H. Chen, V. Sze, “Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning,” IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 
– Energy estimation tool: http://eyeriss.mit.edu/energy.html
– T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, V. Sze, H. Adam, “NetAdapt: Platform-Aware Neural Network Adaptation 

for Mobile Applications,” European Conference on Computer Vision (ECCV), 2018. http://netadapt.mit.edu

– D. Wofk*, F. Ma*, T.-J. Yang, S. Karaman, V. Sze, “FastDepth: Fast Monocular Depth Estimation on Embedded Systems,” 
IEEE International Conference on Robotics and Automation (ICRA), May 2019. http://fastdepth.mit.edu/

– T.-J. Yang, V. Sze, “Design Considerations for Efficient Deep Neural Networks on Processing-in-Memory Accelerators,” IEEE 
International Electron Devices Meeting (IEDM), Invited Paper, December 2019.

• Low Power Time of Flight Imaging
– J. Noraky, V. Sze, “Low Power Depth Estimation of Rigid Objects for Time-of-Flight Imaging,” IEEE Transactions on Circuits 

and Systems for Video Technology (TCSVT), 2019.
– J. Noraky, V. Sze, “Depth Map Estimation of Dynamic Scenes Using Prior Depth Information,” arXiv, February 2020. 

https://arxiv.org/abs/2002.00297
– J. Noraky, V. Sze, “Depth Estimation of Non-Rigid Objects For Time-Of-Flight Imaging,” IEEE International Conference on 

Image Processing (ICIP), October 2018.
– J. Noraky, V. Sze, “Low Power Depth Estimation for Time-of-Flight Imaging,” IEEE International Conference on Image 

Processing (ICIP), September 2017.
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• Energy-Efficient Visual Inertial Localization  
– Project website: http://navion.mit.edu
– A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, “Navion: A Fully Integrated Energy-Efficient Visual-Inertial Odometry 

Accelerator for Autonomous Navigation of Nano Drones,” IEEE Symposium on VLSI Circuits (VLSI-Circuits), June 2018. 
– Z. Zhang*, A. Suleiman*, L. Carlone, V. Sze, S. Karaman, “Visual-Inertial Odometry on Chip: An Algorithm-and-Hardware Co-

design Approach,” Robotics: Science and Systems (RSS), July 2017. 

– A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, “Navion: A 2mW Fully Integrated Real-Time Visual-Inertial Odometry 
Accelerator for Autonomous Navigation of Nano Drones,” IEEE Journal of Solid State Circuits (JSSC), VLSI Symposia Special 
Issue, Vol. 54, No. 4, pp. 1106-1119, April 2019.
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• Fast Shannon Mutual Information for Robot Exploration
– Project website: http://lean.mit.edu
– Z. Zhang, T. Henderson, V. Sze, S. Karaman, “FSMI: Fast computation of Shannon Mutual Information for information-

theoretic mapping,” IEEE International Conference on Robotics and Automation (ICRA), May 2019.
– P. Li*, Z. Zhang*, S. Karaman, V. Sze, “High-throughput Computation of Shannon Mutual Information on Chip,” Robotics: 

Science and Systems (RSS), June 2019

– Z. Zhang, T. Henderson, S. Karaman, V. Sze, “FSMI: Fast computation of Shannon Mutual Information for information-
theoretic mapping,” to appear in International Journal of Robotics Research (IJRR). http://arxiv.org/abs/1905.02238

– T. Henderson, V. Sze, S. Karaman, “An Efficient and Continuous Approach to Information-Theoretic Exploration,” IEEE 
International Conference on Robotics and Automation (ICRA), May 2020.

• Balancing Actuation and Computation
– Project website: http://lean.mit.edu
– S. Sudhakar, S. Karaman, V. Sze, “Balancing Actuation and Computing Energy in Motion Planning,” IEEE International 

Conference on Robotics and Automation (ICRA), May 2020
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