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Processing at “Edge” instead of the “Cloud”

| 77, SES o

Communication | Privacy Latency
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Computing Challenge for Self-Driving Cars

- WIRE[H]

(Feb 2018)

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

SELE-DRIVING CARS USE CRAZY
AMOUNTS OF POWER, AND T°S
BECOMING A PROBLEM

Cameras and radar generate
~6 gigabytes of data every 30 seconds.

Self-driving car prototypes use
approximately 2,500 Watts of
computing power.

Generates wasted heat and some
prototypes need water-cooling!
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Existing Processors Consume Too Much Power

< 1 Watt > 10 Watts
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Transistors Are Not Getting More Efficient

I Stuttering
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Il Efficient Computing with Cross-Layer Design

Algorithms Systems

Linear Object
Convolutions Pooling Convs  Classifier Categories / Positions
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Off-Chip DRAM
64 bits
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Energy Dominated by Data Movement

Operation: Energy | Relative Energy Cost
(pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9 Memory access is orders
8b Multiply 0.2 of magnitude higher
32b Multiply 31 energy than compute
16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) | 5
32b DRAM Read 640

1 10 102 103 104
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Ell Autonomous Navigation Uses a Lot of Data

Semantic Understanding Geometric Understanding

* High frame rate  Growing map size
* Large resolutions

* Data expansion

2mi||ionpixe|s o 10x-100x more pixels
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Bl Visual-Inertial Localization

Determines location/orientation of robot from images and IMU
(also used by headset in Augmented Reality and Virtual Reality)

Localization

4 )
Image sequence —| Visual-Inertial
Odometry
IMU - (VIO)*
Inertial Measurement Unit \_ J

"T...Y/:\
[\
7$12_

*Subset of SLAM algorithm
(Simultaneous Localization And Mapping) Mapping
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Localization at Under 25 mW

First chip that performs
complete Visual-Inertial Odometry

Front-End for camera
(Feature detection, tracking, and outlier
elimination)

Front-End for IMU
(pre-integration of accelerometer and
gyroscope data)

Back-End Optimization of Pose Graph

Consumes 684x and 1582x less energy
than mobile and desktop CPUs,
respectively

”

Navion

Technology 65nm CMOS | Supply 1V
Chip area (mm?) 4.0x5.0 Resolution 752x480
Core area (mm?) | 3.54x4.54 | Camera rate 28-171fps
Logic gates 2,043 kgates | Keyframe rate 16 - 90 fps
SRAM 854KB Average Power 24 mW
VFE Frequency 62.5 MHz GOPS 10.5-59.1
BE Frequency 83.3 MHz GFLOPS 1-5.7
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[Joint work with Sertac Karaman (AeroAstro)]

[Zhang, RSS 2017], [Suleiman, VLSI-C 2018]
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Key Methods to Reduce Data Size

Navion: Fully integrated system — no off-chip processing or storage

Previous

R4 Frame
g T y
{' “ | Exploit
TYeTE || .- Sparsity in
Apply Low T ]
ngst Right — Graph and
ig :
R | e Frame Linear Solver
Frame
Compression . «
1

¥

Use compression and exploit sparsity to reduce memory down to 854kB

Navion Project Website: http://navion.mit.edu

Vivienne Sze @ http://sze.mit.edu/ ¥ @eems_mit [Suleiman, VLS/-C 2018] Best Student Paper Award i
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Understanding the Environment

Depth Estimation

output layer
input layer
hidden layer

State-of-the-art approaches use

Deep Neural Networks, which

require up to several hundred
millions of operations and
building weights to compute!

& >100x more complex than video

body road airplane compression

‘F"sky

tree

grass grass
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Deep Neural Networks

Deep Neural Networks (DNNs) have become a cornerstone of Al

Computer Vision
.

Vivienne Sze & http://sze.mit.edu/ % @eems_mit Mir



http://sze.mit.edu/

Book on Efficient Processing of DNNs

WA MORGAN & CLAYPOOL PUBLISHERS

Efficient Processing
of Deep Neurdl
Networks S

Vivienne Sze, Yu-Hsin Chen,
Tien-Ju Yang, Joel Emer

SYNTHESIS LECTURES ON
COMPUTER ARCHITECTURE

Vivienne Sze @ http://sze.mit.edu/

@eems_mit

Part | Understanding Deep Neural Networks
Introduction
Overview of Deep Neural Networks

Part Il Design of Hardware for Processing DNNs
Key Metrics and Design Objectives
Kernel Computation
Designing DNN Accelerators
Operation Mapping on Specialized Hardware

Part lll Co-Design of DNN Hardware and Algorithms
Reducing Precision
Exploiting Sparsity
Designing Efficient DNN Models
Advanced Technologies

https://tinyurl.com/EfficientDNNBook

Free download for institutional subscribers hir
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Weighted Sums

Input Layer

Hidden Layer
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Yj = Activation

Nonlinear 3
Function

i=1

Eavﬂijé) 1_!?/

Sigmoid

—

0
y=1/(

1+e™)

-1

Rectified Linear Unit (ReLU)

1

-1

Image source: Caffe tutorial

y=max

(0,x)

-1

Key operation is
multiply and accumulate (MAC)
Accounts for > 90% of computation

0

1
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High-Dimensional Convolution in CNN

input fmap

. C,{"

filter K output fmap
T /’/

H
Rl —1H & - D e
l' B ! R !
«— S — «— W — «— F —

Many Input Channels (C)

Vivienne Sze & http://sze.mit.edu/ % @eems_mit Mir



http://sze.mit.edu/

Define Shape for Each Layer

Input fmaps

: Output fmaps
Filters P P
M7 - Shape varies across layers
c’ = ‘
T E H - Height of input fmap (activations)
R 1 1 X W - Width of input fmap (activations)
! | C - Number of 2-D input fmaps /filters
<SS F (channels)
- . R - Height of 2-D filter (weights)
. . S - Width of 2-D filter (weights)
c’ M7 > M - NL!mber of 2-D output fmaps (f:hannels)
g — : E - Height of output fmap (activations)
! F — Width of output fmap (activations)
R E N - Number of input fmaps/output fmaps
| M . (batch size)
«~— S — N o
F

W
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Popular DNN Models

Metrics LeNet-5 AlexNet GooglLeNet ResNet-50 EfficientNet-B4
(v1)

Top-5 error (ImageNet) n/a 16.4 7.4 6.7 5.3 3.7*

Input Size 28x28 227x227 224x224 224x224 224x224 380x380

# of CONV Layers 2 5 16 21 (depth) 49 96

# of Weights 2.6k 2.3M 14.7M 6.0M 23.5M 14M

# of MACs 283k 666 M 15.3G 1.43G 3.86G 4.4G

# of FC layers 2 3 3 1 1 65**

# of Weights 58k 58.6M 124M 1M 2M 4.9M

# of MACs 58k 58.6M 124M 1M 2M 4.9M

Total Weights 60k 61M 138M ™ 25.5M 19M

Total MACs 341k 724M 15.5G 1.43G 3.9G 4.4G

Reference Lecun, Krizhevsky, Simonyan, Szegedy, He, Tan,
PIEEE 1998 NeurlPS 2012 ICLR 2015 CVPR 2015 CVPR 2016 ICML 2019

DNN models getting larger and deeper

* Does not include multi-crop and ensemble
** Increase in FC layers due to squeeze-and-excitation layers (much smaller than FC layers for classification) —
Vivienne Sze @ http://sze.mit.edu/ ¥ @eems_mit i
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Properties We Can Leverage

* Operations exhibit high parallelism

— high throughput possible

* Memory Access is the Bottleneck

DRAM

Memory Read : MAC" Memory Write
filter weighté A ALU
fmgp act ® updated
partial sum ( Sartial sum >
200x 1x

Worst Case: all memory R/W are DRAM accesses

Vivienne Sze @ http://sze.mit.edu/

Example:

@eems_mit

* multiply-and-accumulate

AlexNet has 724M MACs
- 2896M DRAM accesses required
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Properties We Can Leverage

* Operations exhibit high parallelism
— high throughput possible

* Input data reuse opportunities (up to 500x)

Filter Input Fmap

0. I 0. :
C
|

Convolutional Reuse
(Activations, Weights)

CONYV layers only
(sliding window)

Vivienne Sze & http://sze.mit.edu/ % @eems_mit

Filters

Input Fmap

1

=
\
y

Fmap Reuse
(Activations)
CONV and FC layers

Input Fmaps

Filter

- .
*
‘\“

Filter Reuse
(Weights)
CONV and FC layers
(batch size > 1)
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Exploit Data Reuse at Low-Cost Memories

Specialized
Global Al H PE Reg File hardware with
Buff small (< 1kB)
— PE P4 ALU low cost memory
Control near compute

Normalized Enerqy Cost’

ALU 1% (Reference)
0.5-1.0 kB m—» ALU 1% Farther and larger
NoC: 200 - 1000 PEs | PE > ALU 2% memories consume
more power
> ALU 6x
»[ALU ( 200x

* measured from a commercial 65nm process

Vivienne Sze & http://sze.mit.edu/ % @eems_mit Mir
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Weight Stationary (WS)

Weight

* Minimize weight read energy consumption

Global Buffer

(e
W5

A [P

— maximize convolutional and filter reuse of weights

 Broadcast activations and accumulate partial sums
spatially across the PE array

« Examples: TPU [Jouppi, ISCA 2017], NVDLA

Vivienne Sze & http://sze.mit.edu/ % @eems_mit

[Chen, ISCA 2016]
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Output Stationary (OS)

Global Buffer

Activation |

& E B EEEHE

Psum

 Minimize partial sum R/W energy consumption
— maximize local accumulation

 Broadcast/Multicast filter weights and reuse activations
spatially across the PE array

 Examples: [Moons, VLS/ 2016], [Thinker, VLSI/ 2017]

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit [Chen, ISCA 2016] Mir



http://sze.mit.edu/

Row Stationary Dataflow

T PE 1
‘m* ‘ « Maximize row
convolutional reuse in RF
— Keep a filter row and fmap
sliding window in RF
 Maximize row psum
accumulation in RF
mmmam
* =

Vivienne Sze @ http://sze.mit.edu/ » @eems_mit [Chen, ISCA 2016] Select for Micro Top Picks Mir
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Row Stationary Dataflow

T PE 1 T PE 4 T PE 7
[Rew] | (- | [ |

PN TS

E 2 ES5
[Row2 ] | [ | |3+

T PE 3 T PE 6 T PE 9

[Rews [ Rewisw| §l [RewWs [ rowa | )l [R6WS [ suRow s
E~ = B @~ =B -

Optimize for overall energy efficiency instead
for only a certain data type

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit [Chen, ISCA 2016] Select for Micro Top Picks Mir
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Dataflow Comparison: CONV Layers

Normalized
Energy/MAC I

S, 0S; OSc
CNN Dataflows

B psums

W weights

B activations

RS optimizes for the best overall energy efficiency

Vivienne Sze @ http://sze.mit.edu/ % @eems_mit [Chen, ISCA 2016] i
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Deep Neural Networks at Under 0.3W

Eyeriss
Link Clogk_igore Clock DCNN Accelerator

14x g PéAl.'.r.ay
: il

Exploits data reuse for 100x reduction in memory accesses from global
buffer and 1400x reduction in memory accesses from off-chip DRAM

Filter

Input Image

Il Decomp SEAN M
' Output Image JERME M
L, Comp g RelU

dmm

[Chen, ISSCC 2016]

Overall >10x energy reduction compared to a mobile GPU (Nvidia TK1) |

. . . . . Results for AlexNet
Eyeriss Project Website: http://eyeriss.mit.edu eotiits Tor Alexte

Vivienne Sze @ http://sze.mit.edu/ ¥ @eems_mit [Joint work with Joel Emer] Mir
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Features: Energy vs. Accuracy

Exponential
10000
*VGG162
1000
Energy/ 100 + AlexNet?
Pixel (nJ)
10 .
Measured in 65nm* Video
1 ComEression
i *HOG!
Linear
s 0.1 . . . .
0 20 40 60 80
@ (suleiman, VLS 2016] @) [Chen, ISSCC 2016] .
Accuracy (Average Precision)
* Only feature extraction. Does Measured in on VOC 2007 Dataset
not include data, classification 1. DPM V5 [Girshick 2012]

energy, augmentation and
ensemble, etc.

2. Fast R-CNN [Girshick, CVPR 2015]

Vivienne Sze @ http://sze.mit.edu/ ¥ @eems [Suleiman, ISCAS 2017] Mir
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Energy-Efficient Processing of DNNs

A significant amount of algorithm and hardware research
on energy-efficient processing of DNNs

Proceedings IEEE

Hardware Architectures for S V. Sze, Y.-H. Chen,
Deep Neural Networks T-J. Yang, J. Emer,
“Efficient Processing of
Deep Neural Networks:
A Tutorial and Survey,”
Proceedings of the IEEE,
Dec. 2017

ISCA Tutorial
June 24, 2017

Website: http://eyeriss.mit.edu/tutorial.html

mmm  Massachuset ts =y
II Institute of 2, nVIDIA
Technology - "

http://eyeriss.mit.edu/tutorial.html

We identified various limitations to existing approaches

Vivienne Sze & http://sze.mit.edu/ % @eems_mit Mir
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Design of Efficient DNN Algorithms

Popular efficient DNN algorithm approaches

Network Pruning

before pruning after pruning

pruning
synapses

-->

pruning .
neurons

Efficient Network Architectures

Channel
Groups G

«— 0 —

R
. &,
'C s 18c
«~— g —
Convolutional Depth-Wise Point-Wise
Layer Layer Layer

Examples: SqueezeNet, MobileNet

... also reduced precision

* Focus on reducing number of MACs and weights
* Does it translate to energy savings and reduced latency?

Vivienne Sze & http://sze.mit.edu/ % @eems_mit

[Chen*, Yang*, SysML 2018]
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Number of MACs and Weights are Not Good Proxies

# of operations (MACs) does not approximate

latency well
30
() .. Similar latency, 3x range in # MACs
D e e e =
L R R - R 4
/ .\
= 20 o I’ ! . o
E 09
> e ! ®
o &
2 i e
=1 10 | @ !
€ o0'e! Simiar#MACs,
® & ’0 - 2xrange in latency
&
0
25 50 75 100 125 150 175

# MACs (Million)

Source: Google
(https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit

# of weights alone is not a good metric for energy

(All data types should be considered)

Computation
10% Input Feature Map

25%

Weights

22%
Energy breakdown of

GooglLeNet

https://energyestimation.mit.edu/
[Yang, CVPR 2017]
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Energy-Aware Pruning

Directly target energy
and incorporate it into the
optimization of DNNs to provide
greater energy savings

« Sort layers based on energy and prune layers
that consume the most energy first

* Energy-aware pruning reduces AlexNet
energy by 3.7x w/ similar accuracy
« Outperforms magnitude-based pruning by 1.7x

[Yang, CVPR 2017]

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit

4.5
4
3.5
3
2.5
2
1.5
1
0.5
0

x10°

Normalized Energy (AlexNet)

2.1x

Ori. Magnitude Energy Aware

Based Pruning Pruning

Pruned models available at
http://eyeriss.mit.edu/energy.html
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NetAdapt: Platform-Aware DNN Adaptation

Network e Budger Empirical Measurements

. Automatically adapt DNNtoa  Prerained Budget Platform

mobile platform to reach a oy |9 =
target latency or energy budget %_‘ o | e [ e

l Energy 41. 46 I
 Use empirical measurements NetAdapt | Measure
to guide optimization (avoid ) N;twmkcpmp";a's )
modeling of tool chain or B S S S—" - i
. A A L) A
platform architecture) ENEREmES | Em
L ] ] |
=& == =
. Adapted ' '
Few hyperparameters to Network

reduce tuning effort Code available at

http://netadapt.mit.edu

« >1.7x speed up on MobileNet

w/ similar accuracy
[In collaboration with Google’s Mobile Vision Team]

Vivienne Sze @ http://sze.mit.edu/ % @eems_mit [Yang, ECCV 2018] Mir
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FastDepth: Fast Monocular Depth Estimation

RGB Prediction

Depth estimation from a single RGB image
desirable, due to the relatively low cost
and size of monocular cameras.

0.80 - S 10x
' <€ >
- © x*
§ 0.75 4
a‘ * This Work
© | ) Eigen'l4 ~
0.70
é " @® Eigen'l5 (AlexNet) 49fps on
b ® Eigen'l5 (VGG) an iPhone
0.65 A ® Laina'lé (UpConv)
Laina'l6 (UpProj) Model bl ,
& ® Xian'ls odels avallable a
0.60 1 — : http://fastdepth.mit.edu

0 25 50 75 100 125 150 175
Frames per second (on Jetson TX2 GPU)

Configuration: Batch size of one (32-bit float) [Joint work with Sertac Karaman]

Vivienne Sze & http://sze.mit.edu/ % @eems_mit [Wofk*, Ma*, ICRA 2019] Mir
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Many Efficient DNN Design Approaches

Network Pruning Compact Network Architectures

before pruning after pruning

Channel
Groups G
pruning ___
synapses

R
pruning l R ?
neurons
< y  1EFC
S 1
«~— g —
Convolutional Depth-Wise Point-Wise
Layer Layer Layer

Reduce Precision

Y 0110011010000000001011/0000000001 00

8-bit fixed [JIHINHIHR No guarantee that DNN algorithm
designer will use a given approach.
Need flexible hardware!

Binary E

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit [Chen*, Yang*, SysML 2018] Mir
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Existing DNN Architectures

e Specialized DNN hardware often rely on certain properties of DNN in order to

achieve high energy-efficiency

 Example: Reduce memory access by amortizing across MAC array

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit

Activation
Memory
> Weight
reuse
MAC array
Activation
Y reuse
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Limitation of Existing DNN Architectures

* Example: Reuse and array utilization depends on # of channels, feature map/batch size

— Not efficient across all network architectures (e.g., compact DNNs)

Number of

input channels

<€

>

I

Number of filters MAC array
(output channels) (spatial

<€

accumulation)

|

>

Vivienne Sze & http://sze.mit.edu/ % @eems_mit

I

Number of filters
(output channels)

|

feature map
or batch size

MAC array
(temporal
accumulation)
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Limitation of Existing DNN Architectures

* Example: Reuse and array utilization depends on # of channels, feature map/batch size

— Not efficient across all network architectures (e.g., compact DNNs)

Example mapping for

depth wise layer

Number of

input channels

<€

>

T

Number of filters MAC array
(output channels) (spatial

<€

accumulation)

|

>

Vivienne Sze & http://sze.mit.edu/ % @eems_mit

S 1

I

Number of filters
(output channels)

|

/.

feature map
or batch size

<€ >

F

MAC array
(temporal
accumulation)
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Limitation of Existing DNN Architectures

* Example: Reuse and array utilization depends on # of channels, feature map/batch size

— Not efficient across all network architectures (e.g., compact DNNs)

— Less efficient as array scales up in size

— Can be challenging to exploit sparsity

Number of

input channels

<€

>

T

Number of filters MAC array
(output channels) (spatial

<€

accumulation)

|

>

Vivienne Sze & http://sze.mit.edu/ % @eems_mit

I

Number of filters
(output channels)

|

feature map
or batch size

<€ >

F

MAC array
(temporal
accumulation)
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Need Flexible Dataflow & Mapping

* Use flexible dataflow (Row Stationary) to exploit reuse in any dimension of DNN to
increase energy efficiency and array utilization

Spatial Accumulation Array Temporal Accumulation Array Eyeriss
A
M
v [ ]
<€ > <€ >
ExF E

Example: Depth-wise layer

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit [Chen, JETCAS 2019] Mir
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Need Flexible NoC for Varying Reuse

* When reuse available, need multicast to exploit spatial data reuse for energy
efficiency and high array utilization

 When reuse not available, need unicast for high BW for weights for FC and weights
& activations for high PE utilization

* An all-to-all satisfies above but too expensive and not scalable

High Bandwidth, Low Spatial Reuse Low Bandwidth, High Spatial Reuse
_ i o e B s
=| PE [=2| PE |5 PE | |PE| > PE |5 PE |->| PE [>[PE | |PE| [PE| [PE] |PE] [PE] [PE] [PE] [PE]
s g gl g |
3 =| PE |22| PE |>| PE | | PE 5 | PE |>{ PE || PE || PE | 5 [PE] [PE| [PE] [PE] 5 [Pe] [PE] [PE] [PE]
= > = 3 E// i' — \t - i - J’ = ‘i i ...... i' »l/
3 PE |2| PE |»{ PE | | PE Sf—PE{PE>PE>PE| |8 [PE] |PE| |PE| |PE| (3| ||[PE| [PE| [PE| [PE]
of - - |o | :
| E=[PE|2|PE|»|PE| [PE| | |—[PE|>[PE>{PE|>[PE] ' [pe] [PE] [PE] [pe] | | [Pe] [pE] [PE] [PE]
Unicast Networks 1D Systolic Networks 1D Multicast Networks Broadcast Network

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit [Chen, JETCAS 2019] Mir
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Hierarchical Mesh

GLB
Cluster

Network

Rout
Mesh P -] All-to-All
R
PE All-to-all
Cluster\ ) Network L )
High Bandwidth High Reuse Grouped Multicast Interleaved Multicast
| ! !
[] L_rl E | ITI lI___I |I___I L]
! | l
é) I 1 O @) I ] (!3
é) ('R | | O O
! | !
] | \O ]
O O ! 1 O 1O O

Vivienne Sze @ http://sze.mit.edu/ » @eems_mit [Chen, JETCAS 2019] Mir
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Eyeriss v2: Balancing Flexibility and Efficiency

¢ Uses a fIEXibIe hierarChicaI mESh ® v1.5 & MobileNet = v2 & MobileNet = v2 & sparse MobileNet
on-chip network to efficiently X II i
|““d“|| “ﬂ

pat
o O

Speedup (times)

support
— Wide range of filter shapes &

— Different layers

— Wide ra nge of SPa I"Slty Speed up over Eyeriss v1 scales with number of PEs
# of PEs 256 1024 16384

-

Aq’ %
Q@‘ o S

AlexNet 17.9x 71.5x 1086.7x

e Scalable architecture
GoogLeNet 10.4x 37.8x 448.8x

57 .9x 873.0x

Over an order of magnitude faster and MobileNet | 15.7x
more energy efficient than Eyeriss vl

[Joint work with Joel Emer]

[Chen, JETCAS 2019] i
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Eyexam: Performance Evaluation Framework

MAC/cycle
A
................................................. —> Step 1: max workload parallelism (Depends on DNN Model)
B N Step 2: max dataflow para"elism
PEakY —> Number of PEs (Theoretical Peak Performance)

performance

A systematic way of understanding the
performance limits for DNN hardware as a
function of specific characteristics of the DNN

model and hardware design

> MAC/data

[Chen, arXiv 2019: htips://arxiv.org/abs/1807.07928 ]

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit [Joint work with Joel Emer] Mir
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Eyexam: Performance Evaluation Framework

MAC/cycle

A
Slope = BW to PEs

peak

performance —> Number of PEs (Theoretical Peak Performance)

Based on Roofline Model

> MAC/data
v v
Bandwidth (BW) Compute
Bounded Bounded [Williams, CACM 2009]

Vivienne Sze & http://sze.mit.edu/ % @eems_mit Mir
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Eyexam: Performance Evaluation Framework

MAC/cycle

peak
performance

s —> Number of PEs (Theoretical Peak Performance)
............................................... Step 3: # of active PEs under a finite PE array size
............................................... Step 4: # of active PEs under fixed PE array dimension
------------------------- —> Step 5: # of active PEs under fixed storage capacity

> MAC/data

Slope = BW to only active PE

Vivienne Sze & http://sze.mit.edu/ % @eems_mit ) ’ Mir
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Eyexam: Performance Evaluation Framework

MAC/cycle

ooooooooooooooooooooooooooooooooooooooooooooooooo

peak

performance [ —> Number of PEs (Theoretical Peak Performance)

oooooooooooooooooooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooo

N —— —> Step 6: lower act. PE util. due to insufficient average BW
------------------------------------------ —> Step 7: lower act. PE util. due to insufficient instantaneous BW

> MAC/data

workload operational intensity

Vivienne Sze & http://sze.mit.edu/ % @eems_mit Mir
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DNN Accelerator Evaluation Tools

* Require systematic way to
Timeloo
— Evaluate and compare DNN accelerators > (DNN Mappinngoo| 8
— Rapidly explore design space Architecture Performance Simulator)
description
* Accelergy wu, iccap 2019] >
— Early stage estimation tool at the architecture level \_/
. . . Accelergy
Estimate energy based on architecture level components ) d (Energy Estimator Tool)
. i ompoun
(e.g., # of PEs, memory size, on-chip network) component |4
— Evaluate architecture level impact of emerging devices desaription
. . . \/-
 Plug-ins for different technologies 4 4 \ 4
E.nerg‘y E.nerg.y Energy
* Timeloop (parashar, ispass 2019] Samo || e [ | estimation

— DNN mapping tool

— Performance Simulator = Action counts

Vivienne Sze @ http://sze.mit.edu/ ¥ @eems_mit [Joint work with Joel Emer]

Open-source code available at:

http://accelergy.mit.edu
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Accelergy Estimation Validation

 Validation on Eyeriss [chen, isscc 2016]

— Achieves 95% accuracy compared to post-layout simulations
— Can accurately captures energy breakdown at different granularities

PsumRdNoC  sharedBuffer PsumRdNoC g}, e qBuffer

PsumWrNoC 1 39 3.6% PsumWrNoC  1.2%
) ;

il WeightsBuffer 0.6%

0.2%  WeightsNoC

0.1%

IfmapN
0.5%

Ground Truth Energy Breakdown Accelergy Energy Breakdown
*Total energy might not add up to exact 100.0% due to rounding

Open-source code available at: http://accelergy.mit.edu

Vivienne Sze @ http:/sze.mit.edu/ % @eems_mit [Wu, ICCAD 2019] Mir
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Open-source code available at:

ACCEIErgy InfraStrUCtu re http://accelergy.mit.edu

Architecture Description

Global |
Buffer'—‘! I I i

(GLB)

Accelergy

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit [Wu, ICCAD 2019] Mir
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ACCEIQrgy |nfra structure Open-source code available at:

http://accelergy.mit.edu

Architecture Description

Global | i| "= '_"®"€i9; —
r Buffer'—‘! I I i
i | (GLB i i
| (GLB) | PE2 ) PE3 I Accelergy
| _GlLB PE__]./ —
SRAM multiplier
control adder

Compound Component
Description

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit [Wu, ICCAD 2019] Mir
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Accelergy Infrastructure

Architecture Description

Open-source code available at:

http://accelergy.mit.edu

T 1. ¢l |
Global | i| "= '_"®"€i9 —
1 Buffer P I I i
/] 1
=" (GL8) | PE2 171 PE3 ‘;\‘ Accelergy
1 Py ———— 1
\ i
s _GlB PE__ | ./ —
SRAM multiplier -\\ 7
control adder “: Energy Estimation Plug-in
‘\ name technology width action energy (pJ)
c°mp°D:’S‘Sr;‘:‘;z°“e“t S multiplier 65nm 16 multiply 0.8
adder

Vivienne Sze @ http://sze.mit.edu/

@eems_mit

[Wu, /ICCAD 2019]
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ACCEIQrgy |nfra structure Open-source code available at:

http://accelergy.mit.edu

Action Counts

Architecture Description

oyt iy : name action count
1
obal i| PEO H@—»éi . <«—| PEO | compute | 500
Global| i PE1
r Buffer r— I I !
{ (GLB) : PE2 P4 PE3 ! . .
| : 'i\ Accelergy Energy Estimation
1 1
: T e ' ‘; name energy (pJ)
\ I
‘\__} GLB PE 4_,l' — — PEO 1500
SRAM multiplier M, 1 PE1
‘...
\
control adder [ Energy Estimation Plug-in I
‘\\ name technology width /action \ energy (pJ)
\
Compg:rslgri(;.:?;zonent ¥ multiplier 65nm 16 \multiplu 0.8
adder

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit [Wu, ICCAD 2019] Mir
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Plug-ins for Fine-Grain Action Energy Estimation

* External energy/area models that accurately reflect the properties of a macro
— e.g., multiplier with zero-gating

PnR simulations
Energy characterizations of the zero-gated multiplier /
(normalized to idIe) m ground truth m Accelergy
0.25
23.0 3
g 0.20
16.8 g
5 015
~20x éi 0.10
5
1.3 &L 0.05
[
Random Reused Gated 0.00
multlply multlply multlply PEO PE1 PE2 PE3 PE4 PES5 PE6 PE7 PES8

PEs that process data of different sparsity

With the characterization provided in the plug-in,
we can capture the energy savings for sparse workloads

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit [Wu, ICCAD 2019] Mir
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* a.k.a. Processing In Memory (PIM)

In-Memory Computing (IMC*)

" Acrt]i;/?tion .iStinput Vdoltige (Vi)G - Reduce data movement by moving compute
eight is resistor conductance (G,) into memory

« Compute MAC with memory storage element

« Analog Compute
— Activations, weights and/or partial sums are encoded

I, = V,xG, with analog voltage, current, or resistance
— Increased sensitivity to circuit non-idealities
Psum =L +| — A/D and D/A circuits to interface with digital domain
is output  _ 12
current = V1%¥Gy + VpxGy

« Leverage emerging memory device technology
Image Source: [Shafiee, ISCA 2016]

Vivienne Sze & http://sze.mit.edu/ % @eems_mit Mir
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In-Memory Computing (IMC)

Storage Element

* Implement as matrix-vector multiply DAC
—> =
— Typically, matrix composed of stored weights and vector :: :
composed of input activations nput [~ >
- Reduce weight data movement by moving compute activations - -
into the memory Ly >
—> e
— Perform MAC with storage element or in peripheral circuits
— Read out partial sums rather than weights - fewer accesses
through peripheral circuits 22228 2212)
. . Analog logic
* Increase weight bandwidth | (mult/add/shift)
— Multiple weights accessed in parallel to keep MACs busy (high ngght Y¥VV_VYVVY
utilization) stationary I/\I/\l/\l S
dataflow O
* Increase amount of parallel MACs 3T 1113
— Storage element can be higher area density than digital MAC pSUm/ _
output activations

— Reduce routing capacitance

Vivienne Sze & http://sze.mit.edu/ % @eems_mit Mir
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Accelergy for IMC

Architecture Description

Open-source code available at:

http://accelergy.mit.edu

Action Counts

e : name action count
Global i PEO H&éi — <«—| PEO | compute 500
I I PE1
7 Buffer 1 I I i
’// (GLB) E PE2 P PE3 i\‘ Acce|ergy Energy Estimation
i O SaGnELLEIT T ' E name energy (pJ)
'\‘ GLB PE 4_,:' — — PEO 1500 E ;o101
‘\‘<ADC SRAM multiplier i, 1 PE"
\ .
DAC) control adder “.I Energy Estimation Plug-in
:| name technology width action energy (pJ)
compool;rs'gr; ‘:?;:“e"t \ [ multilier | 65nm mernristor 16 multiply 08E, .
adder
ADC
DAC

Vivienne Sze @ http://sze.mit.edu/

@eems_mit

[Wu, ISPASS 2020]
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Accelergy for IMC

Energy breakdown across layers

= 1.E+4
=  9.E+3
S 8.E+3
g 7.E+3
% 6.E+3
S 5E+3
O 4 E+3
S  3.E+3

Q 2.E+3 . .
L 1.E+3

OE"‘O g — S I I I |

1 2 3 4 5 §) V4 8

VGG Layers
m A2D Conver. Sys. = Digital Accu. 1D2A Conver. Sys.

OPE Array Input Buffer

Vivienne Sze & http://sze.mit.edu/ % @eems_mit

[Wu, ISPASS 2020]

Open-source code available at:
http://accelergy.mit.edu

Achieves ~95% accuracy

0.037J
0.035J
66.9% 67.9%
J,12. 6% J,11.4%
JJ 7.7% 17.4%
m—3'0% FFri —3 1%
This Work 01%  Cascade
[MICRO 2019]
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Accelergy + Timeloop Tutorial

Tutorial material available at http://accelergy.mit.edu/tutorial.html
Includes videos and hands-on exercises

Timeloop Timeloop
Accelergy Accelergy

Angshuman Parashar NVIDIA Angshuman Parashar NVIDIA .
Yannan N‘?"ie Wu MIT ISCA T t . l Yannan Nellie Wu MIT ISCA TUtorlal
ol Ay utoria Sl A Hands-on session
Joel S. Emer NVIDIA, MIT May 2020 Joel S. Emer NVIDIA, MIT May 2020
N Em  Massachusetts (_;\“—' mmm  Massachusetts 7,;‘,;«»,»;‘ "
i =5 < NVIDIA. Hir =™ <2 NVIDIA.

o 3]
ir <=

Vivienne Sze & http://sze.mit.edu/ % @eems_mit Mir
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Bl Designing DNNs for IMC

X 801

* Designing DNNs for IMC may differ from ge’o'
DNNs for digital processors cﬁé i 40

E 450l

* Highest accuracy DNN on digital processor  * @

may be different on IMC
— Accuracy drops based on robustness to non-
idealities

* Reducing number of weights is less
desirable

— Since IMC is weight stationary, may be better to
reduce number of activations

— IMC tend to have larger arrays = fewer weights
may lead to low utilization on IMC

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit [Yang, I[EDM 2019]

o

0.0

=@ alexnet
=== vggl6
=®= vggl9
== inceptionv4
== inceptionresnetv2
== resnetl8

b= resnetl52
== resnextl01_32x4d

resnextl01_64x4d

=§- squeezenetl_ 0
== squeezenetl 1
~{~ densenet121

0:1 0:2 0:3 =§= mobilenetv2

Noise Std

Storage Element

«— RXxSxC —
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Book Chapter on In-Memory Computing

CHAPTER 10 |

Advanced Technologies Many Design Considerations for In-Memory Computing

As highlighted throughout the previous chapters, data movement dominates energy consump
tion. Th(‘ cnergy i1s consumed both in the access to the memory as well as the II’-HI\f('F of the

.
data. The associated physical factors also limit the bandwidth available to deliver data between L N u m be r Of Sto rag e E I e m e ntS pe r We I g ht
memory and compute, and thus limits the throughput of the overall system. This is commonly
referred to by computer architects as the “memory wall."! ° A S H

To address the challenges associated with data movement, there have been various efforts rray |Ze
to bring compute and memory closer together. Chapters 5 and 6 primarily focus on how to . .
design sp;nml architectures that distribute the on chip memory closer to the computation (e.g., ° N u m be r Of ROWS ACtlvate d I n P a ra I I e I
scratch pad memory in the PE). This chapter will describe various other architectures that usc
advanced memory, process, and fabrication technologies to bring the compute and memory together.

First, we will describe efforts to bring the off-chip high-density memory (e.g., DRAM) [ N u m be r Of COI u m n S ACtivated i n Pa ral Iel

closer to the (Uulpll!&liuu. These .1},‘})[().1(“&') are often referred to as pr;nwiug near memory or
near-data processing, and include memory technologies such as embedded DRAM and 3-D

ke DRAM « Time to Deliver Input

Next, we will describe efforts to integrate the computation infa the memory itself These
ary or - memaory .‘Gm/': 3

and include .
memory technologics such as Static Random Access Memorics (SRAM), Dynamic Random L4 TI l I le to COl I I pute MAC

Access Memories (DRAM), and emerging non-volatile memory (NVM). Since these ap

approaches are often referred to as processing in »

proaches rely on mixed-signal circuit design to enable processing in the analog domain, we will
also discuss the design challenges related to handling the increased sensitivity to circuit and de
vice non-idealities (e.g., nonlinearity, process and temperature variations), as well as the impact

area density, which is critical f 2 1A
O o | o w sl i il Tradeoffs between energy efficiency, throughput, area
DNN processor. The same principles that are used to bring compute near the memory, where . . . .
e density, and accuracy, which reduce the achievable gains
Finally, since photons travel much faster than electrons and the cost of moving a photon

B8 iAdepandnt G AlRiSHeE proseieli i the apbical o g bt may prodlde i over conhven tlo na l arc h Ite Ctu res

cant improvements in cnergy efficiency and throughput over the clectrical domain. Accordingly,

we will conclude this chaprer by discussing the recent work that performs DNN processing in

the optical domain, referred to as Optical Neural Networks.

Available on DNN tutorial website
http://eyeriss.mit.edu/tutorial.html

Vivienne Sze & http://sze.mit.edu/ % @eems_mit Mir



http://sze.mit.edu/
http://eyeriss.mit.edu/tutorial.html

Where to Go Next: Planning and Mapping

Robot Exploration

i}/

e

Vivienne Sze &) http://sze.mit.edu/ ¥ @eems_mit Mir
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Where to Go Next: Planning and Mapping

Robot Exploration: Decide where to go by computing Shannon Mutual Information

| Select candidate scan | Compute Shannon M| and choose ) Mqve to Update
> : > : » location and |— Occupancy
locations best location
scan Map
Where to scan? Mutual Information Updated Map

T
T

(588 =i

it
iR i
Tt

||||||
::::::

o

Vivienne Sze @ http://sze.mit.edu/ ¥ @eems_mit [Joint work with Sertac Karaman] Mir
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Experimental Results (4x Real Time)

Occupancy map with
planned path using RRT*
(compute Ml on all possible paths)

ﬂ I Ml surface

Exploration with a mini race car using motion capture for localization

Vivienne Sze @ http://sze.mit.edu/ » @eems_mit [Zhang, ICRA 2019] Mir
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Building Hardware Accelerator to Compute MI

Motivation: Compute MI faster for faster exploration!

n Jj+A
Fast Shannon
I(M;Z) = 2 z P(ej)Cka’j Mutual Information (FSMI)
=5 [Zhang, ICRA 2019]

Algorithm is embarrassingly parallel!
High throughput should be possible with multiple processing elements (PE)

PEC

\ / [ PE1 "

Vivienne Sze @ http://sze.mit.edu/

@eems_mit

Process sensor beams in parallel with multiple PEs

PE1

Occupancy 0
Map s
PEC

» [(M; Z)
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EEl Challenge is Data Delivery to All PEs

Power consumption of memory scales with number of ports.

Low power SRAM limited to two-ports!

Read Port 1 .I PE 1
J
Occupancy A | PE2
Map rbiter
Read Port 2
1 { PEC

Data delivery, specifically memory bandwidth,
limits the throughput (not compute)

Vivienne Sze & http://sze.mit.edu/ % @eems_mit



http://sze.mit.edu/

Proposed Accelerator Architecture

Increasing memory bandwidth (read ports) by partitioning the map storage into multiple banks

Entire Map
Bank 1 — > PE 1
- PE 2
Bank 3 R
Arbiter > PE3
Bank B s > PE C

Proposed architecture includes
1) Memory banking pattern that minimizes memory access conflicts among all PEs
2) Efficient arbiter that quickly identifies and resolves memory access conflicts among all PEs

Vivienne Sze & http://sze.mit.edu/ % @eems_mit
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EMll Memory Access Pattern

* Design a fixed banking pattern that minimizes the number of memory access collisions.

* Challenge: memory access pattern is dependent on the scan location and sensor angle.

Memory access pattern at every cycle

* The number denotes the order of memory
access in each PE.

* During every cycle, PEs access the map
locations in the same column or row.

Vivienne Sze & http://sze.mit.edu/ % @eems_mit
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EMl Memory Access Pattern

* Design a fixed banking pattern that minimizes the number of memory access collisions.

* Challenge: memory access pattern is dependent on the scan location and sensor angle.

Memory access pattern at location A

?

/

[

/

/

Vivienne Sze @ http://sze.mit.edu/

@eems_mit

Memory access pattern at location B

==

"

/
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Naive Memory Banking Pattern

Challenge: memory access pattern is scan location and sensor angle dependent.

Memory access pattern at every cycle

Vertical Banking Pattern

4

4
a

/

wlih|lo|oTN

3

PEs read the map at the same row
or column every cycle

Vivienne Sze @ http://sze.mit.edu/

@eems_mit

3
3

Conflicts when same column

A

4 Bank 5
Bank 6

~
B Bank 7
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Proposed Memory Banking Pattern

Challenge: memory access pattern is scan location and sensor angle dependent.

Memory access pattern at every cycle Diagonal Banking Pattern
8 f Bank 0
’ 7 / Bank 1
'6 / B Bank 2

. /51 | 5

8
3 (5 67 Bank 5
‘ - Bank 6
LL” 5 | 3 .‘ 6 | 718, Bank 7

PEs read the map at the same row Reduced conflicts across banks

or column every cycle

Vivienne Sze & http://sze.mit.edu/ % @eems_mit [Li, RSS 2019] Mir
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Experimental Results

x10* e
85_ —O— Baseline (1 bank)
7 || = 16 banks,vertical banking,1x1 packing Specialized banking efficient
6 - 16 banks,diagonal banking,1x1 packing . ! .
| —B— 16 banks,diagonal banking,2x2 packing _ memory arbiter and packlng
- | =====Unlimited bandwidth 1 .
51 e A : multiple values at each address
L4t ] results in throughput within
= | ! 94% of theoretical limit
£3} : (unlimited bandwidth)
o —x
E - / 1
5| : | Compute MI for an entire map of 20m x 20m
- at 0.1m resolution in under a second
on a ZC706 FPGA
(100x faster than CPU at 10x lower power)
o o — 0
2 4 6 8 10 12 14 16
Number of PEs

Vivienne Sze & http://sze.mit.edu/ % @eems_mit [Li, RSS 2019] Mir
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Generalize to a Class of Banking Patterns

 Latin-square banking tile: cells in each column and row is assigned to different banks

- H ” = : .
\ =1 o prowem - ¢8— o ; Bank 0
"L: coe g | | i . | | Bank 1
6 Bank 2
5 | . Bank 3
M| ko s B /3*‘ . Bank 4
S 2 5 Bank 5
3 |4 Bank 6
Sl 4 - _ - Bank 7

Latin-square Banking Tile (B x B)

We rigorously proved that Latin-square tiles usage minimizes read conflicts between PEs

Vivienne Sze @ http://sze.mit.edu/ » @eems_mit Gold Medal at ACM Student Research Competition Mir



http://sze.mit.edu/

Summary

* Efficient computing is critical for advancing the progress of Al & autonomous robots
—> Critical step to making Al & autonomy ubiquitous!

* |[n order to meet computing demands in terms of power and speed, need to redesign
computing hardware from the ground up - Focus on data movement!

* Specialized hardware creates new opportunities for the co-design of algorithms and
hardware = Innovation opportunities for the future of Al & robotics!

.

Algorithms Hardware

A

Vivienne Sze & http://sze.mit.edu/ % @eems_mit Mir
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Low-Energy Autonomy and Navigation (LEAN) Group

LEAN

HOME TEAM RESEARCH PUBLICATIONS PRESS RECOGNITION

A broad range of next-generation applications will be enabled by low-energy, miniature mobile robotics including insect-size flapping wing robots that
can help with search and rescue, chip-size satellites that can explore nearby stars, and blimps that can stay in the air for years to provide
communication services in remote locations. While the low-energy, miniature actuation, and sensing systems have already been developed in many of
these cases, the processors currently used to run the algorithms for autonomous navigation are still energy-hungry. Our research addresses this
challenge as well as brings together the robotics and hardware design communities,

We enable efficient computing on various key modules of other autonomous navigation systems including perception, localization, exploration and
planning. We also consider the overall system by considering the energy cost of computing in conjunction with actuation and sensing.

Motion Planning

Many motion planning and control algorithms aim to design trajectories and controllers that minimize actuation energy.
However, in low-energy robotics, computing such trajectories and controls themselves may consume a large amount of
energy. We develop algorithms that optimize this trade-off.

Mutual Information for Exploration

Computing mutual information between the map and future measurements is critical to efficient exploration. Unfortunately,
mutual information computation is computationally very challenging. We develop new algorithms and hardware for efficient
computation of mutual information, and demonstrate real-time computation for the whole map in a reasonably-sized map.

Depth Sensing and Perception

Depth sensing is a critical function for robotic tasks such as localization, mapping and obstacle detection. State-of-the-art
single-view depth estimation algorithms are based on fairly complex deep neural networks that are too slow for real-time
inference on an embedded platform, for instance, mounted on a micro aerial vehicle. We address the problem of fast depth
estimation on embedded systems.

Localization and Mapping

Autonomous navigation of miniaturized robots (e.g., nano/pico aerial vehicles) is currently a grand challenge for robotics
research, due to the need for processing a large amount of sensor data (e.g., camera frames) with limited on-board
computational resources. We focus on the design of a visual-inertial odometry (VIO) system in which the robot estimates
its ego-motion (and a landmark-based map) from on-board camera and IMU data.

Vivienne Sze @ http:/sze.mit.edu/ ¥ @eems_mit

Group Website: http://lean.mit.edu
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Book on Efficient Processing of DNNs
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Efficient Processing
of Deep Neurdl
Networks S
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COMPUTER ARCHITECTURE
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Part | Understanding Deep Neural Networks
Introduction
Overview of Deep Neural Networks

Part Il Design of Hardware for Processing DNNs
Key Metrics and Design Objectives
Kernel Computation
Designing DNN Accelerators
Operation Mapping on Specialized Hardware

Part lll Co-Design of DNN Hardware and Algorithms
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Designing Efficient DNN Models
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CHAPTER 3

Key Metrics and Design
Objectives

Over the past few years, there has been a significant amount of research on efficient process-
ing of DNNs. Accordingly, it is important to discuss the key metrics that one should consider
when comparing and evaluating the strengths and weaknesses of different designs and proposed
techniques and that should be incorporated into design considerations. While efficiency is often
only associated with the number of operations per second per Watt (e.g., floating-point opera-
tions per second per Watt as FLOPS/W or tera-operations per second per Watt as TOPS/W),
it is actually composed of many more metrics including accuracy, throughput, latency, energy
consumption, power consumption, cost, flexibility, and scalability. Reporting a comprehensive
set of these metrics is important in order to provide a complete picture of the trade-offs made
by a proposed design or technique.
In this chapter, we will

* discuss the importance of each of these metrics;

* breakdown the factors that affect each metric. When feasible, present equations that de-
scribe the relationship between the factors and the metrics;

* describe how these metrics can be incorporated into design considerations for both the
DNN hardware and the DNN model (i.e., workload); and

« specify what should be reported for a given metric to enable proper evaluation.

Finally, we will provide a case study on how one might bring all these metrics together for a
holistic evaluation of a given approach. But first, we will discuss each of the metrics.

3.1 ACCURACY

253

CHAPTER 10

Advanced Technologies

As highlighted throughout the previous chapters, data movement dominates energy consump-
tion. The energy is consumed both in the access to the memory as well as the transfer of the
data. The associated physical factors also limit the bandwidth available to deliver data between
memory and compute, and thus limits the throughput of the overall system. This is commonly
referred to by computer architects as the “memory wall.”!

To address the challenges associated with data movement, there have been various efforts
to bring compute and memory closer together. Chapters 5 and 6 primarily focus on how to
design spatial architectures that distribute the on-chip memory closer to the computation (e.g.,
scratch pad memory in the PE). This chapter will describe various other architectures that use
advanced memory, process, and fabrication technologies to bring the compute and memory together.

First, we will describe efforts to bring the off-chip high-density memory (e.g., DRAM)
closer to the computation. These approaches are often referred to as processing near memory or
near-data processing, and include memory fechnologies such as embedded DRAM and 3-D
stacked DRA

Next, we will describe efforts to integrate the computation infs the memory itself. These

appmnchcs are often referred to as /)rrxuring in memary of l'n-lm'mm:y mmpu!ing, and include
memory technologics such as Static Random Access Memorics (SRAM), Dynamic Random
Access Memories (DRAM), and cmerging non-volatile memory (NVM). Since thesc ap-
proaches rely on mixed-signal circuit design to enable processing in the analog domain, we will
also discuss the design challenges related to handling the increased sensitivity to circuit and de-
vice non-idealities (e.g., nonlinearity, process and temperature variations), as well as the impact
on area density, which is critical for memory.

Significant data movement also occurs between the sensor that collects the data and the
DNN processor. The same principles that are used to bring compute near the memory, where
the weights are stored, can be used to bring the compute near the sensor, where the input data is
collected. Therefore, we will also discuss how to integrate some of the compute infs the sensor.

Finally, since photons travel much faster than electrons and the cost of moving a photon
canheindeosndens of dist S s O decee

Accuracy is used to indicare the quality of the result for a given task. The fact
achieve state-of-the-art accuracy on a wide range of tasks is one of the key rea
popularity and wide use of DNNs today. The units used to measure accuracy
task. For instance, for image classification, accuracy is reported as the percen
classified images, while for object detection, accuracy is reported as the mean a
(mAP), which is related to the trade off between the true positive rate and fals
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developed for pro-

cessing deep neural

networks (DNNs) in both academia and
industry. This article aims to highlight
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We discuss existing challenges, such
as the flexibility and scalablility need-
ed to support a wide range of neural
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Mofivation and Background

Over the past few years, there has

been & significant amount of research

on enabling the efficlent processing

of DNNs. The challenge of efficient

DNN processing depends on balanc-

ing multiple objectives:

= high performance (including ac-
curacy) and efficiency (including

Cost)
= enough flexibility to cater to a

wide and rapidly changing range

ol workloads
= good Integration with existing

software frameworks.

DNN computations are composed
of several processing layers (Fig
ure 1), where, for many layers, the
main computation Is a weighted sum;
in other words, the main computa-
tion for DNN processing Is often a

multiply-accumulate (MAC) opera
tion. The arrangement of the MAC
operations within a layer is defined
by the layer shape, for instance,
Table 1 and Figure 2 highlight the
shape parameters for layers used
in convolutional neural networks
{CNNs), @ popular type of DNN. Be-
cause the shape parameters can vary
across layers, DNNs come in a wide
variety of shapes and sizes, depend
ing on the application. (The DNN re-
search community often refers to the
shape and size of a DNN as its met-
work architecture. However, to avold
confusion with the use of the word
architecture by the hardware com
munity, we talk about DNN models
and their shape and size in this ar-
ticle.) This variety is one of the mo-
tivations for flexibility, and it causes
the objectives listed previously to be
highly interrelated.

Figure 3 lllustrates the hardware
architecture of a typical DNN proces-
sor, which Is composed of an array
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