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Computing Challenge for Self-Driving Cars

- WIRE[H]

(Feb 2018)
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SELE-DRIVING CARS USE CRAZY
AMOUNTS OF POWER, AND T°S
BECOMING A PROBLEM

Cameras and radar generate
~6 gigabytes of data every 30 seconds.

Self-driving car prototypes use
approximately 2,500 Watts of
computing power.

Generates wasted heat and some
prototypes need water-cooling!
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Existing Processors Consume Too Much Power

< 1 Watt > 10 Watts
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Transistors Are Not Getting More Efficient

I Stuttering
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Efficient Computing with Cross-Layer Design

Algorithms Systems
Linear Object
Convolutions Pooling Convs  Classifier Categories / Positions
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Link Clock! Core Clock DCNN Accelerator
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14x12 PE Array
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Input Image

Off-Chip DRAM
64 bits
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Il Energy Dominated by Data Movement

Operation: Energy | Relative Energy Cost
(pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9 Memory access is orders
8b Multiply 0.2 of magnitude higher
32b Multiply 31 energy than compute
16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

1 10 102 103 104
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Autonomous Navigation Uses a Lot of Data

Semantic Understanding Geometric Understanding

High frame rate  Growing map size
* Large resolutions

* Data expansion

2mi||ionpixe|s o 10x-100x more pixels

Vivienne Sze (s @eems_mit) [Pire, RAS 2017] ir



I Visual-Inertial Localization

Determines location/orientation of robot from images and IMU
(also used by headset in Augmented Reality and Virtual Reality)

Localization

4 )
Image sequence —| Visual-Inertial
Odometry
IMU - (VIO)*
Inertial Measurement Unit \_ J

"T...Y/:\
[\
7$12_

*Subset of SLAM algorithm
(Simultaneous Localization And Mapping) Mapping
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Bl Localization at Under 25 mW

First chip that performs
complete Visual-Inertial Odometry

Front-End for camera
(Feature detection, tracking, and
outlier elimination)

Front-End for IMU
(pre-integration of accelerometer
and gyroscope data)

Back-End Optimization of Pose

Graph Navion =5
( amiig Feature

IFE
- Tracking == ”“f‘f = Graph
Technolo 65nm CMOS | Supply 1V £ - =
CO n S u m es 684x a nd 1582)( Chip are:(ymm‘) 4.0x5.0 Re:’:lution 752x480 g g gFeatureE E E‘am = :
Iess energy tha n Core area (mm?) | 3.54x4.54 | Camera rate 28-171fps = f?qu‘ = =
Logic gates 2,043 kgates | Keyframe rate | 16 - 90 fps ' g: - il
mobile and desktop CPUs, o ssoc_ JRETR 24 W [omam] Seorse stereo | | oo
VFE Frequency 62.5 MHz GOPS 10.5-59.1
res pectively BE Frequency 83.3MH: | GFLOPS 1-5.7

[Zhang et al., RSS 2017], [Suleiman et al., VLSI 2018]
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Key Methods to Reduce Data Size

Navion: Fully integrated system — no off-chip processing or storage

Previous Current
R4 frame Frame )
Pl y —— 3 |

Apply Low v “
Cost .. . Right
Frame Frame
)

| Exploit

Sparsity in
Graph and

Linear Solver

Compression

v

Use compression and exploit sparsity to reduce memory down to 854kB
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Understanding the Environment

Depth Estimation

Semantic Segmentation

SUEH
S

-~ sky

body 3 road airplane

=

building
&

tree

grass grass
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Low Power 3D Time of Flight Imaging

* Pulsed Time of Flight: Measure distance using round trip time of laser light for each
image pixel
— Illlumination + Imager Power: 2.5 - 20 W for range from 1-8 m

* Use computer vision techniques and passive images to estimate changes in depth

without turning on laser
— CMOS Imaging Sensor Power: < 350 mW

Estimated Depth Maps

Real-time Performance on Embedded Processor
VGA @ 30 fps on Cortex-A7 (< 0.5W active power)

Vivienne Sze (v @eems_mit) [Noraky, /CIP 2017] Mir



Results of Low Power Depth ToF Imaging

RGB Image Depth Map Depth Map
Ground Truth Estimated

Mean Relative Error: 0.7%
Duty Cycle (on-time of laser): 11%

Vivienne Sze (w @eems_mit) [Noraky, /CIP 2017] Mir



Understanding the Environment

Depth Estimation

output layer
input layer
hidden layer

State-of-the-art approaches use

Deep Neural Networks, which

require up to several hundred
millions of operations and
building weights to compute!

& >100x more complex than video

body o road airplane compression

-~ sky

tree

grass grass
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Deep Neural Networks

Deep Neural Networks (DNNs) have become a cornerstone of Al

Computer Vision
.

] person

1
|
L eoban
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Properties We Can Leverage

* Operations exhibit high parallelism

* Memory Access is the Bottleneck

DRAM

— high throughput possible

Memory Read : MAC" Memory Write
filter weighté - ALU ;
image pixel: ®
partial sum : ;Z(rjt?e;[le:um .
200x 1x

Vivienne Sze (» @eems_mit)

Worst Case: all memory R/W are DRAM accesses

Example:

* multiply-and-accumulate

AlexNet has 724M MACs
- 2896M DRAM accesses required




Properties We Can Leverage

* Operations exhibit high parallelism
— high throughput possible

* Input data reuse opportunities (up to 500x)

Filter Input Fmap

0. I 0. :
C
|

Convolutional Reuse
(Activations, Weights)

CONYV layers only
(sliding window)
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Filters

Input Fmap

1

=
\
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Fmap Reuse
(Activations)
CONV and FC layers

Input Fmaps

Filter

- .
*
‘\“

Filter Reuse
(Weights)
CONV and FC layers
(batch size > 1)



Exploit Data Reuse at Low-Cost Memories

NoC: 200 - 1000 PEs | PE

Global

Buffer

Specialized
PE H PE Reg File hardware with
small (< 1kB)
PE M ALU low cost memory
Control near compute

0.5-1.0 kB [lg—>

Normalized Enerqy Cost’

ALU

ALU

>

ALU

ALU

ALU

1% (Reference)
1%

2%
6%

{ 200x

* measured from a commercial 65nm process
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Farther and larger memories consume more power v




Weight Stationary (WS)

Weight

* Minimize weight read energy consumption

Global Buffer

(e
W5

A [P

— maximize convolutional and filter reuse of weights

 Broadcast activations and accumulate partial sums
spatially across the PE array

« Examples: TPU [Jouppi, ISCA 2017], NVDLA

Vivienne Sze (v @eems_mit)

[Chen, ISCA 2016]



Output Stationary (OS)

Global Buffer

Activation |

& E B EEEHE

Psum

 Minimize partial sum R/W energy consumption
— maximize local accumulation

 Broadcast/Multicast filter weights and reuse activations
spatially across the PE array

 Examples: [Moons, VLS/ 2016], [Thinker, VLSI/ 2017]

Vivienne Sze (s @eems_mit) [Chen, ISCA 2016] Mir



Row Stationary Dataflow

T PE 1
‘m* ‘ « Maximize row
convolutional reuse in RF
— Keep a filter row and fmap
sliding window in RF
 Maximize row psum
accumulation in RF
mmmam
* =

Vivienne Sze (» @eems_mit) [Chen, ISCA 2016] Select for Micro Top Picks I"lir



Row Stationary Dataflow

T PE 1 T PE 4 T PE 7
[Rew] | (- | (-

PN TS

E 2 ES5
[Row2 ] | [ | |3+

T PE 3 T PE 6 T PE 9

[Rews [ Rewisw| §l [RewWs [ rowa | )l [R6WS [ suRow s
E~ = B @~ =B -

Optimize for overall energy efficiency instead
for only a certain data type

Vivienne Sze (w @eems_mit) [Chen, ISCA 2016] Select for Micro Top Picks "




Dataflow Comparison: CONV Layers

Normalized
Energy/MAC I

S, 0S; OSc
CNN Dataflows

B psums

W weights

B pixels

RS optimizes for the best overall energy efficiency

Vivienne Sze (s @eems_mit) [Chen, ISCA 2016] i



Deep Neural Networks at Under 0.3W

Eyeriss

Link Clock; Core Clock
G-

DCNN Accelerator

Filter

Input Image
1T

L, Comp g RelU

e
. ecomp
' Output Image JERME M

14%x12 PE Array

EEEE
S

Off-Chip DRAM
64 bits

dmm

[Chen, ISSCC 2016]

Exploits data reuse for 100x reduction in memory accesses from global
buffer and 1400x reduction in memory accesses from off-chip DRAM

Overall >10x energy reduction compared to a mobile GPU (Nvidia TK1) |

Eyeriss Project Website: http://eyeriss.mit.edu

Vivienne Sze (» @eems_mit)

Results for AlexNet

[Joint work with Joel Emer]


http://eyeriss.mit.edu/

Features: Energy vs. Accuracy

Exponential
10000
*VGG162
1000
Energy/ 100 » AlexNet?
Pixel (nJ)
10 .
Measured in 65nm* Video
4mm 1 ComEression
E i +HOG!
' Linear
s 0.1 . . . .
0 20 40 60 80
@ (suleiman, VLSI 2016] @) [Chen, ISSCC 2016] .
Accuracy (Average Precision)
* Only feature extraction. Does Measured in on VOC 2007 Dataset
not include data, classification 1. DPM V5 [Girshick 2012]
energy, augmentation and ’ 7
ensemble, etc. 2. Fast R-CNN [Girshick, CVPR 2015]

Vivienne Sze (w @eems_mit) [Suleiman, ISCAS 2017] Mir



Energy-Efficient Processing of DNNs

A significant amount of algorithm and hardware research
on energy-efficient processing of DNNs

V. Sze, Y.-H. Chen,
T-J. Yang, J. Emer,
“Efficient Processing of
Deep Neural Networks:
A Tutorial and Survey,”
Proceedings of the IEEE,
Dec. 2017

Hardware Architectures for
Deep Neural Networks

ISCA Tutorial
June 24, 2017

Website: http://eyeriss.mit.edu/tutorial.html

mmm  Massachusetts D~
I l Institute of < >N nv I DIA
Technology — "

http://eyeriss.mit.edu/tutorial.html

We identified various limitations to existing approaches
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Design of Efficient DNN Algorithms

Popular efficient DNN algorithm approaches

Network Pruning Efficient Network Architectures

before pruning after pruning

o e | —
pruning s ’
neurons l C’ S 1 1 : C

«— —> ¥

S
Examples: SqueezeNet, MobileNet

... also reduced precision

* Focus on reducing number of MACs and weights
* Does it translate to energy savings and reduced latency?

Vivienne Sze (¥ @eems_mit) [Chen*, Yang®*, SysML 2018] Mir



Number of MACs and Weights are Not Good Proxies

# of operations (MACs) does not approximate

latency well
30
() ." Similar latency, 3x range in # MACs
(@ o o
N e LT TP
= 20 o .'.\: » o
é 09
> o ! ®
o i
o || i .
< 1
=1 10 e 9!
€ ooo ! Similar # MACs,
® & .0 ~~ 2xrange in latency
8
0
25 50 75 100 125 150 175

# MACs (Million)

Source: Google
(https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)

Vivienne Sze (w» @eems_mit)

# of weights alone is not a good metric for energy

(All data types should be considered)

Computation
10% Input Feature Map

25%

Weights

22%
Energy breakdown of

GooglLeNet

https://energyestimation.mit.edu/
[Yang, CVPR 2017]



https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html
https://energyestimation.mit.edu/

Energy-Aware Pruning

Directly target energy
and incorporate it into the
optimization of DNNs to provide
greater energy savings

« Sort layers based on energy and prune layers
that consume the most energy first

* Energy-aware pruning reduces AlexNet
energy by 3.7x w/ similar accuracy
« Outperforms magnitude-based pruning by 1.7x

[Yang, CVPR 2017]

Vivienne Sze (» @eems_mit)

4.5
4
3.5
3
2.5
2
1.5
1
0.5
0

x10°

Normalized Energy (AlexNet)

2.1x

Ori. Magnitude Energy Aware

Based Pruning Pruning

Pruned models available at
http://eyeriss.mit.edu/energy.html
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NetAdapt: Platform-Aware DNN Adaptation

. Automatically adapt DNNtoa  Prerained Budget Platform

Network e Budger Empirical Measurements

mobile platform to reach a oy |9 =
target latency or energy budget %_‘ P

l Energy 41. 46 I
 Use empirical measurements NetAdapt | Measure
to guide optimization (avoid ) N;twmkcpmp";a's )
modeling of tool chain or B S S S—" - i
. A A L) A
platform architecture) ENEREmES | Em
L ] ] I’ I;I
= | o=m =
. Adapted
Few hyperparameters to Network

reduce tuning effort
[Yang, ECCV 2018]
« >1.7x speed up on MobileNet

w/ similar accuracy Code available at
http://netadapt.mit.edu

Vivienne Sze (¥ @eems_mit) [In collaboration with Google’s Mobile Vision Team] i
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FastDepth: Fast Monocular Depth Estimation

RGB Prediction

Depth estimation from a single RGB image
desirable, due to the relatively low cost
and size of monocular cameras.

0.80 4 - S 10x
' <€ >
- © x*
§ 0.75 4
a‘ * This Work
© | ) Eigen'l4 ~
0.70
é " @® Eigen'l5 (AlexNet) 49fps on
b ® Eigen'l5 (VGG) an iPhone
0.65 A ® Laina'lé (UpConv)
Laina'l6 (UpProj) Model bl ,
& ® Xian'ls odels avallable a
0.60 1= —_— ; http://fastdepth.mit.edu

0 25 50 75 100 125 150 175
Frames per second (on Jetson TX2 GPU)

[Wofk*, Ma*, ICRA 2019]

Configuration: Batch size of one (32-bit float)

Vivienne Sze (s @eems_mit) [Joint work with Sertac Karaman] Mir
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DNN Accelerator Evaluation Tools

* Require systematic way to

— Evaluate and compare DNN accelerators

— Rapidly explore design space

* Accelergy wu, iccap 2019]

— Early stage estimation tool at the architecture level

« Estimate energy based on architecture level components
(e.g., # of PEs, memory size, on-chip network)

— Evaluate architecture level impact of emerging devices
» Plug-ins for different technologies
* Timeloop (parashar, 1spAss 2019]
— DNN mapping tool

— Performance Simulator = Action counts

Vivienne Sze (

@eems_mit)

Timeloop
C (DNN Mapping Tool &
_ Performance Simulator)
Architecture
description
>
Accelergy
(Energy Estimator Tool)
Compound
component P
description
Energy Energy
estimation estimation Et_ner?_y
plug-in O plug-in 1 estimation

Open-source code available at:
http://accelergy.mit.edu



http://accelergy.mit.edu/

Accelergy Estimation Validation

 Validation on Eyeriss [chen, isscc 2016]

— Achieves 95% accuracy compared to post-layout simulations
— Can accurately captures energy breakdown at different granularities

PsumRdNoC PsumRdNoC
PsumWrNoC 1.3% SharedBuffer PsumWrNoC 1 9y SharedBuffer
0.6% 3 6% 0.6% 3.9%
WeightsNoC 270 . .
0.1% WeightsBuffer WeightsNoC WeightsBuffer
' 0.2% 0.1% 0.2%
IfmapNoC IfmapNoC
0.5% 0.5%
Ground Truth Energy Breakdown Accelergy Energy Breakdown
Open-source code available at; http://accelergy.mit.edu [Wu, ICCAD 2019]

Vivienne Sze (» @eems_mit)
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Accelergy Infrastructure

Architecture Description

Global |
Buffer'—‘! I I i

(GLB)

Vivienne Sze (» @eems_mit)

Accelergy

Open-source code available at:
http://accelergy.mit.edu

[Wu, ICCAD 2019]
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Open-source code available at:

ACCEIErgy InfraStrUCture http://accelergy.mit.edu

Architecture Description

1 1 i
! |
Global | i| "= '_"®"€i9; —
r, Buffer r— I I i
{ | (GLB i i
{ | (GLBY 1 il PE2 M PE3 n Accelergy
: e ] )
\ i
s _GLB PE__ |/ —
SRAM multiplier
control adder

Compound Component
Description

[Wu, ICCAD 2019]
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Accelergy Infrastructure

Architecture Description

Open-source code available at:
http://accelergy.mit.edu

T 1. ¢l |
Global | i| "= '_"®"€i9 —
r Buffer I I i
/] 1
=" (GL8) | PE2 171 PE3 ‘;\‘ Accelergy
1 Py ———— 1
\ i
| _GlLB PE_ |/ —
SRAM multiplier -\ 7
control adder “: Energy Estimation Plug-in
‘\‘ name technology width action energy (pJ)
c°mp°D:’S‘Sr;‘:‘;z°“e“t S multiplier 65nm 16 multiply 0.8
adder

Vivienne Sze (» @eems_mit)

[Wu, ICCAD 2019]
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ACCEIQrgy |nfra structure Open-source code available at:

http://accelergy.mit.edu

Action Counts

Architecture Description

oyt iy : name action count
1
obal i| PEO H@—»éi . <«—| PEO | compute | 500
Global| i PE1
r, Buffer r— I I !
/ (GLB) : PE2 P4 PE3 ! . .
| : 'i\ Accelergy Energy Estimation
| 1
: I C LT ' ‘; name energy (pJ)
\ I
s _GLB PE__ |/ T —| PEO 1500
SRAM multiplier M, 3 PE1
\...
\
control adder ‘: Energy Estimation Plug-in
‘\‘ name technology width action energy (pJ)
Compg:rslgri(;.:?;zonent ) multiplier 65nm 16 multiply 0.8
adder

[Wu, ICCAD 2019]
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In-Memory Computing (IMC)

" Acrt]i;/?tion .iStinput Vdoltige (Vi)G - Reduce data movement by moving compute
eight is resistor conductance (G,) into memory

« Compute MAC with memory storage element

« Analog Compute
— Activations, weights and/or partial sums are encoded

I, = V,xG, with analog voltage, current, or resistance
— Increased sensitivity to circuit non-idealities
Psum =L +| — A/D and D/A circuits to interface with digital domain
is output  _ 12
current = V1%¥Gy + VpxGy

« Leverage emerging memory device technology
Image Source: [Shafiee, ISCA 2016]

Vivienne Sze (¥ @eems_mit) eNVM:[Yu, PIEEE 2018], SRAM:[Verma, SSCS 2019] i



Accelergy for IMC

Architecture Description

Open-source code available at:

http://accelergy.mit.edu

Action Counts

e : name action count
i| PEO n—q®_,éi —_— <«—| PEO | compute 500
Global i : PE1
.~ Buffer =4 __T [
/|G| P2 o pEs Acceler E Estimati
i | N gy nergy Estimation
E SRRt CEE T ' :, name energy (pJ)
'\\ GLB PE 4_,:' — — PEO 1500 E 101
‘\‘<ADC SRAM multiplier fi, 7 PE1
\es
DAC) control adder “.I Energy Estimation Plug-in
=| name technology width action energy (pJ)
c°mp°D:’S‘Sr;‘:‘;z°“e“t ‘\\ multiplier | 65am memristor 16 multiply 0.8 E,
¥ adder
ADC
DAC

Vivienne Sze (

@eems_mit)
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Open-source code available at:
ACCEIErgy fOr IMC http://accelergy.mit.edu

Energy breakdown across layers Achieves ~95% accuracy
5 1B+ 0.037J
= 9.E+3 0.035J
S 8.E+3
a  7.E+3
66.9% 67.9%
S 6E+3
S 5.E+3
O 4 E+3
S  3.E+3
2 2.E+3 12.6% 11.4%
0 1.E+3 . . J . J
0.E+0 ; arar - ] - J,17.7A 17.4%
1 2 3 4 3 6 / 8 rrra3-0% 1~ 31%
VGG Layers This work —2-07% Cascade [MICRO
2019]
m A2D Conver. Sys. = Digital Accu. =1 D2A Conver. Sys.
OPE Array Input Buffer [Wu, ISPASS 2020]
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Designing DNNs for IMC

* Designing DNNs for IMC may differ from 9\;80_
DNNs for digital processors - 60
2 940
* Highest accuracy DNN on digital processor ¢ -
may be different on IMC 520
— Accuracy drops based on robustness to non-

idealities

* Reducing number of weights is less
desirable

— Since IMC is weight stationary, may be better to
reduce number of activations

— IMC tend to have larger arrays = fewer weights
may lead to low utilization on IMC

Vivienne Sze (» @eems_mit)

[Yang, IEDM 2019]
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Where to Go Next: Planning and Mapping

Robot Exploration: Decide where to go by computing Shannon Mutual Information

| Select candidate scan | Compute Shannon M| and choose ) Mqve to Update
> : > : » location and |— Occupancy
locations best location
scan Map
Where to scan? Mutual Information Updated Map

T
T

------
111111

it
iR i
Tt

||||||
::::::

o

Vivienne Sze (w @eems_mit) [Joint work with Sertac Karaman] "



Information Theoretic Mapping

Occupancy grid map, M Mutual information map, I(M; Z)
HM|Z) = HM) - IM;2)
Perspective updated Current map Mutual
map entropy entropy information

Vivienne Sze (w @eems_mit) i



Experimental Results (4x Real Time)

Occupancy map
with planned
path using RRT*
(compute Ml on
all possible paths)

M
I surface

Exploration with a mini race car using motion capture for localization

Vivienne Sze (v @eems_mit) [Zhang, ICRA 2019] ir



Building Hardware to Compute Ml

Motivation: Compute MI faster for faster exploration!

njtA Evaluate Ml for all cells

Approximate FSMI [(M;Z) = 2 z P(ej)Cka,j in entire beam

, . altogether removes
[Zhang, ICRA 2019] J=1k=j-A numerical integration

Algorithm is embarrassingly parallel!
High throughput should be possible with multiple cores.

Core N Process beams in parallel with multiple cores
L]

|
[ \ * Corel
\ Core 3

Occupancy %
= e f
\ "Z Core 1 Core N

Vivienne Sze (w @eems_mit) Mir
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Challenge is Data Delivery to All Cores

Power consumption of memory scales with number of ports.
Low power SRAM limited to two-ports!

Read Port 1 .I Core 1

O >
ccl\:ap;ncy Arbiter |

Read Port 2

Data delivery, specifically memory bandwidth,
limits the throughput (not compute)

Vivienne Sze (w @eems_mit) Mir



Specialized Memory Architecture

Break up map into separate memory banks and novel storage pattern to
minimize read conflicts when processing different beams in parallel.

Memory Access Pattern Diagonal Banking Pattern

8 ; Bank 0
’ ’ / Bank 1

6 / Bank 2

5 BlBank 3

8 | [MBank 4

3 5 6|7 Bank 5
Bank 6

YL 21 3 7.1 85 Bank 7

Compute the mutual information for an entire map of 20m x 20m at 0.1m resolution
in under a second = a 100x speed up versus CPU for 1/10t of the power

Vivienne Sze (v @eems_mit) [Joint work with Sertac Karaman] [Li, RSS 2019] IMir



Experimental Results

X104 T T T T T T T T T T T T T T T IR

8 - | =&~ Baseline (1 bank) 7

7 - | = 16 banks,vertical banking,1x1 packing g

6 s 16 banks,diagonal banking,1x1 packing 7

- | —8— 16 banks,diagonal banking,2x2 packing Z ] .. . ..

§ || ====Unlimited bandwidth , : Specialized banking, efficient
= ol ] memory arbiter and packing
= | multiple values at each address
Q . . °
5°] ] results in throughput achieves 94%
3 | —% . e e
£ | 1 of theoretical limit

2| | (unlimited bandwidth)

c S 1 o
2 4 6 8 10 12 14 16

Number of FSMI Cores

Vivienne Sze (» @eems_mit)
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Extend FSMI to 3D Environments

Computing Ml on a
3D map requires
significant amounts of
storage and compute

Compress map
with OctoMap

[Hornung, et al., Autonomous
Robots, 2013]
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Experiments of 3D FSMI (4x Real Time)

Vivienne Sze (v @eems_mit) [Zhang, [URR 2020]



Experiments of 3D FSMI

We achieve an average compression ratio of around 18X,
with an acceleration ratio of 8X

Vivienne Sze (s @eems_mit) [Zhang, IJRR 2020] Mir



FCMI: Fast Continuous Mutual Information

Reformulate with a continuous occupancy map framework and
exploit recursive structure when computing M| across entire map
- two orders of magnitude speed up over FSMI!

1D Scans in Direction ¢ = 0.00 rad Accumulation of 1D Scans

[Henderson, ICRA 2020]

Occupancy Grid Mir




Balancing Actuation and Computing Energy

Motion Planning
Find a feasible (obstacle-free) path
[typically optimize for shortest path]

Low-power Robotics
Actuation and computing energy
are similar order of magnitude

Vivienne Sze (v @eems_mit)

start M we
Path

(obstacle free)

Energy to move 1 more meter (P,/v [W/(m/s)])

. Cheerwing  Slocum Ocean 2 WD Robot
Robobee ~ Viper Dash .. .o~ Glider 2D Robot

Chassis Chassis
- g b. -
" l‘ . .
. v ! »y e N
4 5 6 7 8 b
ASIC FPGA Cortex-A7 Cortex-Al5 Nvidia Jetson TX2
Embedded CPUs GPU

Energy to compute 1 more second (P [W])

[Sudhakar, /ICRA 2020] Mir



Robots Consuming < 1 Watt for Actuation

Low Energy Robotics

Miniature aerial vehicles

Gyroscope

Lighter than air vehicles

Magnetometer

Solar cells

Micro unmanned gliders

Microcontroller

Antenna

Miniature satellites

Vivienne Sze (» @eems_mit) Mir



Balancing Actuation and Computing Energy

Baseline

(compute 20,000 samples) Time: 0 s

E
c
E,

80 - —E

90

total 7
| ® CEIMP Stopping Point
70 .

60

50 +

Energy ()

40

30 +

20 -

10 +

0 5 10 15 20
Time (s)

Compute Energy Included Motion Planning (CEIMP)

A framework to balance the energy spent on computing a path and
the energy spent on moving along that path (Don’t think too hard!)

Vivienne Sze (» @eems_mit)

[Sudhakar, ICRA 2020]



Summary

e Efficient computing is critical for advancing the progress of autonomous robots,
particularly at the smaller scales. = Critical step to making autonomy ubiquitous!

* |n order to meet computing demands in terms of power and speed, need to redesign
computing hardware from the ground up - Focus on data movement!

* Specialized hardware opens up new opportunities for the co-design of algorithms
and hardware = Innovation opportunities for the future of robotics!

.

Algorithms Hardware

A

Vivienne Sze (s @eems_mit) Slides available at https://tinyurl.com/SzeMITDL2020 Mir
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Low-Energy Autonomy and Navigation (LEAN) Group

LEAN
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A broad range of next-generation applications will be enabled by low-energy, miniature mobile robotics including insect-size flapping wing robots that
can help with search and rescue, chip-size satellites that can explore nearby stars, and blimps that can stay in the air for years to provide
communication services in remote locations. While the low-energy, miniature actuation, and sensing systems have already been developed in many of
these cases, the processors currently used to run the algorithms for autonomous navigation are still energy-hungry. Our research addresses this
challenge as well as brings together the robotics and hardware design communities,

We enable efficient computing on various key modules of other autonomous navigation systems including perception, localization, exploration and
planning. We also consider the overall system by considering the energy cost of computing in conjunction with actuation and sensing.

Motion Planning

Many motion planning and control algorithms aim to design trajectories and controllers that minimize actuation energy.
However, in low-energy robotics, computing such trajectories and controls themselves may consume a large amount of
energy. We develop algorithms that optimize this trade-off.

Mutual Information for Exploration

Computing mutual information between the map and future measurements is critical to efficient exploration. Unfortunately,
mutual information computation is computationally very challenging. We develop new algorithms and hardware for efficient
computation of mutual information, and demonstrate real-time computation for the whole map in a reasonably-sized map.

Depth Sensing and Perception

Depth sensing is a critical function for robotic tasks such as localization, mapping and obstacle detection. State-of-the-art
single-view depth estimation algorithms are based on fairly complex deep neural networks that are too slow for real-time
inference on an embedded platform, for instance, mounted on a micro aerial vehicle. We address the problem of fast depth
estimation on embedded systems.

Localization and Mapping

Autonomous navigation of miniaturized robots (e.g., nano/pico aerial vehicles) is currently a grand challenge for robotics
research, due to the need for processing a large amount of sensor data (e.g., camera frames) with limited on-board
computational resources. We focus on the design of a visual-inertial odometry (VIO) system in which the robot estimates
its ego-motion (and a landmark-based map) from on-board camera and IMU data.

Vivienne Sze (» @eems_mit)

Group Website: http://lean.mit.edu
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Book on Efficient Processing of DNNs

WA MORGAN &CLAYPOOL PUBLISHERS

Efficient Processing
of Deep Neurdl
Networks O

Vivienne Sze, Yu-Hsin Chen,
Tien-Ju Yang, Joel Emer

SYNTHESIS LECTURES ON
COMPUTER ARCHITECTURE

Vivienne Sze (» @eems_mit)

Part | Understanding Deep Neural Networks
Introduction
Overview of Deep Neural Networks

Part Il Design of Hardware for Processing DNNs
Key Metrics and Design Objectives
Kernel Computation
Designing DNN Accelerators
Operation Mapping on Specialized Hardware

Part lll Co-Design of DNN Hardware and Algorithms
Reducing Precision
Exploiting Sparsity
Designing Efficient DNN Models
Advanced Technologies

https://tinyurl.com/EfficientDNNBook
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CHAPTER 3

Key Metrics and Design
Objectives

Over the past few years, there has been a significant amount of research on efficient process-
ing of DNNs. Accordingly, it is important to discuss the key metrics that one should consider
when comparing and evaluating the strengths and weaknesses of different designs and proposed
techniques and that should be incorporated into design considerations. While efficiency is often
only associated with the number of operations per second per Watt (e.g., floating-point opera-
tions per second per Watt as FLOPS/W or tera-operations per second per Watt as TOPS/W),
it is actually composed of many more metrics including accuracy, throughput, latency, energy
consumption, power consumption, cost, flexibility, and scalability. Reporting a comprehensive
set of these metrics is important in order to provide a complete picture of the trade-offs made
by a proposed design or technique.
In this chapter, we will

« discuss the importance of each of these metrics;

* breakdown the factors that affect each metric. When feasible, present equations that de-
scribe the relationship between the factors and the metrics;

* describe how these metrics can be incorporated into design considerations for both the
DNN hardware and the DNN model (i.e., workload); and

* specify what should be reported for a given metric to enable proper evaluation.

Finally, we will provide a case study on how one might bring all these metrics together for a
holistic evaluation of a given approach. But first, we will discuss each of the metrics.

3.1  ACCURACY

Accuracy is used to indicate the quality of the result for a given task. The fact that DNNs can
achieve state-of-the-art accuracy on a wide range of tasks is one of the key reasons driving the
popularity and wide use of DNNs today. The units used to measure accuracy depend on the
task. For instance, for image classification, accuracy is reported as the percentage of correctly
classified images, while for object detection, accuracy is reported as the mean average precision

(mAP), which is related to the trade off between the true positive rate and false positive rate.

Vivienne Sze (» @eems_mit)

CHAPTER 10

Advanced Technologies

As highlighted throughout the previous chapters, data movement dominates energy consump-
tion. The energy is consumed both in the access to the memory as well as the transfer of the
data. The associated physical factors also limit the bandwidth available to deliver data between
memory and compute, and thus limits the throughput of the overall system. This is commonly
referred to by computer architects as the “memory wall.”!

To address the challenges associated with data movement, there have been various efforts
to bring compute and memory closer together. Chapters 5 and 6 primarily focus on how to
design spatial architectures that distribute the on-chip memory closer to the computation (e.g.,

scratch pad memory in the PE). This chapter will deseribe various other architectures that usc

advanced memory, process, undﬁl/lrimlion technologies to bri

] ine the off-chi " [ []
et Avallable on DNN tutorial website

A

near-data processing, and include memory technologies
stacked DRAM.

n n 1 ]
e s ool (D2 /f@YEIISS. Mit.edu/tutorial.html

memory technologics such as Static Random Access Mch -
Access Memories (DRAM), and emerging non-volatile memory (NVM). Since these ap-
proaches rely on mixed-signal circuit design to enable processing in the analog domain, we will
also discuss the design challenges related to handling the increased sensitivity to circuit and de-
vice non-idealities (e.g., nonlinearity, process and temperature variations), as well as the impact
on area density, which is critical for memory.

Significant data movement also occurs between the sensor that collects the data and the
DNN processor. The same principles that are used to bring compute near the memory, where
the weights are stored, can be used to bring the compute near the sensor, where the input data is
collected. Therefore, we will also discuss how o integrate some of the compute infs the sensor.

Finally, since photons travel much faster than electrons and the cost of moving a photon
can be independent of distance, processing in the optical domain using light may provide signifi-
cant improvements in encrgy cfficiency and throughput over the clectrical domain. Accordingly,
we will conclude this chaprer by discussing the recent work that performs DNN processing in
the optical domain, referred to as Optical Newral Networks.

*Specifically, the memory wall refers to data moving between the off-chip memory (e.g., DRAM) and the processor.
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Additional Resources

Talks and Tutorial Available Online
https://www.rle.mit.edu/eems/publications/tutorials/
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