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Computing Challenge for Self-Driving Cars

(Feb 2018)

Cameras and radar generate 
~6 gigabytes of data every 30 seconds. 

Generates wasted heat and some 
prototypes need water-cooling!

Self-driving car prototypes use 
approximately 2,500 Watts of 

computing power.
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Existing Processors Consume Too Much Power

< 1 Watt > 10 Watts
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Transistors Are Not Getting More Efficient

Slowdown of Moore’s Law and 
Dennard Scaling 

General purpose microprocessors are 
not getting faster or more efficient 

Need specialized / 
domain-specific hardware for 

significant improvements in speed 
and energy efficiency

Slowdown
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Efficient Computing with Cross-Layer Design

Architectures

Algorithms Systems

Circuits
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Energy Dominated by Data Movement

Operation: Energy 
(pJ)

8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Multiply 0.2
32b Multiply 3.1
16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

[Horowitz, ISSCC 2014] 

Relative Energy Cost

1 10 102 103 104

Memory access is orders 
of magnitude higher 
energy than compute
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Autonomous Navigation Uses a Lot of Data

Geometric Understanding

• Growing map size

2 million pixels 10x-100x more pixels

Semantic Understanding

• High frame rate
• Large resolutions
• Data expansion

[Pire, RAS 2017] 

7



Vivienne Sze (    @eems_mit)

Visual-Inertial Localization

Visual-Inertial 
Odometry 

(VIO) 

Localization 

Mapping 

Image sequence 

IMU 
Inertial Measurement Unit 

… 

*Subset of SLAM algorithm 
(Simultaneous Localization And Mapping) Slide 28 

Determines location/orientation of robot from images and IMU
(also used by headset in Augmented Reality and Virtual Reality)

*
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Localization at Under 25 mW

[Zhang et al., RSS 2017], [Suleiman et al., VLSI 2018]

Consumes 684× and 1582×
less energy than 

mobile and desktop CPUs, 
respectively

First chip that performs 
complete Visual-Inertial Odometry 

[Joint work with Sertac Karaman (AeroAstro)]

Navion

Front-End for camera 
(Feature detection, tracking, and 

outlier elimination)

Front-End for IMU 
(pre-integration of accelerometer 

and gyroscope data)

Back-End Optimization of Pose 
Graph
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Key Methods to Reduce Data Size

Backend Control

Data & Control Bus
Build 
Graph

Linear 
Solver

Linearize

Marginal

Retract

Graph
Linear 
Solver

Horizon 
States

Shared 
Memory

Floating 
Point 

Arithmetic

Matrix 
Operations

Cholesky

Back 
Substitute

Rodrigues 
Operations

Feature 
Tracking 

(FT)

Previous 
FrameLine Buffers

Feature 
Detection 

(FD)

Undistort 
& Rectify 

(UR)

Undistort 
& Rectify 

(UR)

Data & Control Bus

Sparse Stereo (SS)

Vision Frontend Control

RANSAC Fixed Point 
Arithmetic Point Cloud Pre-IntegrationFloating Point 

Arithmetic

IMU 
memory

Current 
Frame

Left 
Frame

Right 
Frame

Vision Frontend (VFE)

IMU Frontend (IFE)

Backend (BE)

Register 
File

Apply Low 
Cost 

Frame
Compression

Use compression and exploit sparsity to reduce memory down to 854kB

Exploit 
Sparsity in 
Graph and 

Linear Solver

Navion: Fully integrated system – no off-chip processing or storage 

[Suleiman, VLSI-C 2018]  Best Student Paper Award
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Understanding the Environment
Depth Estimation

Semantic Segmentation
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• Pulsed Time of Flight: Measure distance using round trip time of laser light for each 
image pixel
– Illumination + Imager Power: 2.5 – 20 W for range from 1 - 8 m 

• Use computer vision techniques and passive images to estimate changes in depth 
without turning on laser
– CMOS Imaging Sensor Power: < 350 mW

Low Power 3D Time of Flight Imaging

Estimated Depth Maps
Real-time Performance on Embedded Processor

VGA @ 30 fps on Cortex-A7  (< 0.5W active power)

[Noraky, ICIP 2017]
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Results of Low Power Depth ToF Imaging

RGB Image Depth Map
Ground Truth

Depth Map
Estimated

Mean Relative Error: 0.7%
Duty Cycle (on-time of laser): 11%

[Noraky, ICIP 2017]
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Understanding the Environment
Depth Estimation

State-of-the-art approaches use 
Deep Neural Networks, which 
require up to several hundred 

millions of operations and 
weights to compute!

>100x more complex than video 
compression

Semantic Segmentation
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Deep Neural Networks

Computer Vision Speech Recognition

Game Play Medical

Deep Neural Networks (DNNs) have become a cornerstone of AI
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Properties We Can Leverage

• Operations exhibit high parallelism
à high throughput possible

• Memory Access is the Bottleneck

ALU

Memory Read Memory WriteMAC*

* multiply-and-accumulate

filter weight
image pixel
partial sum updated 

partial sum

• Example: AlexNet has 724M MACs 
à 2896M DRAM accesses required

Worst Case: all memory R/W are DRAM accesses

200x 1x

DRAM DRAM
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Properties We Can Leverage

• Operations exhibit high parallelism
à high throughput possible

• Input data reuse opportunities (up to 500x)

Filter Input Fmap

Convolutional Reuse 
(Activations, Weights)

CONV layers only
(sliding window)

Filters

2

1

Input Fmap

Fmap Reuse
(Activations)

CONV and FC layers

Filter

2

1

Input Fmaps

Filter Reuse
(Weights)

CONV and FC layers
(batch size > 1)
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Exploit Data Reuse at Low-Cost Memories

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 

Farther and larger memories consume more power

0.5 – 1.0 kB

Control

Reg File
Specialized 

hardware with 
small (< 1kB) 

low cost memory 
near compute
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Weight Stationary (WS)

• Minimize weight read energy consumption
− maximize convolutional and filter reuse of weights

• Broadcast activations and accumulate partial sums
spatially across the PE array

• Examples: TPU [Jouppi, ISCA 2017], NVDLA

  
            

  

  

Global Buffer 

W0 W1 W2 W3 W4 W5 W6 W7 

  

  

  

  

Psum Activation 

PE 
Weight 

[Chen, ISCA 2016] 
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Output Stationary (OS)

[Chen, ISCA 2016] 

• Minimize partial sum R/W energy consumption
− maximize local accumulation

• Broadcast/Multicast filter weights and reuse activations
spatially across the PE array

• Examples: [Moons, VLSI 2016], [Thinker, VLSI 2017]

  
            

  

  

Global Buffer 

P0 P1 P2 P3 P4 P5 P6 P7 

  

  

  

  

Activation Weight 

PE 
Psum 
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Row Stationary Dataflow

• Maximize row 
convolutional reuse in RF
− Keep a filter row and fmap

sliding window in RF

• Maximize row psum
accumulation in RF

PE 1
Row 1 Row 1

Row 1

=*

*

[Chen, ISCA 2016]  Select for Micro Top Picks
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Row Stationary Dataflow

Optimize for overall energy efficiency instead 
for only a certain data type

PE 1
Row 1 Row 1

PE 2
Row 2 Row 2

PE 3
Row 3 Row 3

Row 1

=*

PE 4
Row 1 Row 2

PE 5
Row 2 Row 3

PE 6
Row 3 Row 4

Row 2

=*

PE 7
Row 1 Row 3

PE 8
Row 2 Row 4

PE 9
Row 3 Row 5

Row 3

=*

* * *

* * *

* * *

[Chen, ISCA 2016]  Select for Micro Top Picks
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Dataflow Comparison: CONV Layers

0

0.5

1

1.5

2

Normalized
Energy/MAC

WS OSA OSB OSC NLR RS

psums

weights
pixels

RS optimizes for the best overall energy efficiency

CNN Dataflows

[Chen, ISCA 2016] 

23



Vivienne Sze (    @eems_mit)

Deep Neural Networks at Under 0.3W

On
-ch

ip 
Bu

ffe
r Spatial 

PE Array

4mm

4m
m

[Joint work with Joel Emer]

Results for AlexNet

Overall >10x energy reduction compared to a mobile GPU (Nvidia TK1)

Exploits data reuse for 100x reduction in memory accesses from global 
buffer and 1400x reduction in memory accesses from off-chip DRAM

Eyeriss Project Website: http://eyeriss.mit.edu

[Chen, ISSCC 2016] 

Eyeriss
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Features: Energy vs. Accuracy 

0.1

1

10

100

1000

10000

0 20 40 60 80
Accuracy (Average Precision)

Energy/
Pixel (nJ)

VGG162

AlexNet2

HOG1

Measured in on VOC 2007 Dataset
1. DPM v5 [Girshick, 2012]
2. Fast R-CNN [Girshick, CVPR 2015] 

Exponential

Linear

Video 
Compression

[Suleiman, ISCAS 2017]

Measured in 65nm*

* Only feature extraction. Does 
not include data, classification 

energy, augmentation and 
ensemble, etc.

On
-c

hip
 B

uff
er Spatial 

PE Array

4mm

4m
m

4mm

4m
m

[Suleiman, VLSI 2016] [Chen, ISSCC 2016]1 2
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Energy-Efficient Processing of DNNs

V. Sze, Y.-H. Chen, 
T-J. Yang, J. Emer, 

“Efficient Processing of 
Deep Neural Networks: 
A Tutorial and Survey,” 
Proceedings of the IEEE, 

Dec. 2017

A significant amount of algorithm and hardware research 
on energy-efficient processing of DNNs

We identified various limitations to existing approaches

http://eyeriss.mit.edu/tutorial.html
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Design of Efficient DNN Algorithms
Popular efficient DNN algorithm approaches 

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Network Pruning

C
1

1
S

R

1

R

S
C

Efficient Network Architectures

Examples: SqueezeNet, MobileNet

... also reduced precision

• Focus on reducing number of MACs and weights
• Does it translate to energy savings and reduced latency?

[Chen*, Yang*, SysML 2018] 
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Number of MACs and Weights are Not Good Proxies

# of operations (MACs) does not approximate 
latency well

Source: Google 
(https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)

Output	Feature	Map	
43%	

Input	Feature	Map	
25%	

Weights	
22%	

Computa:on	
10%	

Energy	Consump:on	
of	GoogLeNet	

[Yang, CVPR 2017]

# of weights alone is not a good metric for energy 
(All data types should be considered) 

Energy breakdown of 
GoogLeNet

https://energyestimation.mit.edu/
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Energy-Aware Pruning

Directly target energy 
and incorporate it into the 

optimization of DNNs to provide 
greater energy savings

• Sort layers based on energy and prune layers 
that consume the most energy first

• Energy-aware pruning reduces AlexNet
energy by 3.7x w/ similar accuracy

• Outperforms magnitude-based pruning by 1.7x
0 

0.5 
1 

1.5 
2 

2.5 
3 

3.5 
4 

4.5 

Ori. DC EAP 

Normalized Energy (AlexNet) 

2.1x 3.7x 

x109 

Magnitude 
Based Pruning 

Energy Aware 
Pruning 

Pruned models available at 
http://eyeriss.mit.edu/energy.html

[Yang, CVPR 2017]
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NetAdapt: Platform-Aware DNN Adaptation

• Automatically adapt DNN to a 
mobile platform to reach a 
target latency or energy budget

• Use empirical measurements 
to guide optimization (avoid 
modeling of tool chain or 
platform architecture) 

• Few hyperparameters to 
reduce tuning effort

• >1.7x speed up on MobileNet
w/ similar accuracy

[In collaboration with Google’s Mobile Vision Team]

NetAdapt Measure

…

Network Proposals

Empirical Measurements
Metric Proposal A … Proposal Z

Latency 15.6 … 14.3

Energy 41 … 46

…… …

Pretrained
Network Metric Budget

Latency 3.8

Energy 10.5

Budget

Adapted
Network

… …

Platform

A B C D Z

[Yang, ECCV 2018]

Code available at
http://netadapt.mit.edu
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FastDepth: Fast Monocular Depth Estimation

[Joint work with Sertac Karaman]

Depth estimation from a single RGB image 
desirable, due to the relatively low cost 

and size of monocular cameras.

RGB Prediction

[Wofk*, Ma*, ICRA 2019]Configuration: Batch size of one (32-bit float)

Models available at 
http://fastdepth.mit.edu

> 10x

~40fps on 
an iPhone
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• Require systematic way to
– Evaluate and compare DNN accelerators
– Rapidly explore design space

• Accelergy [Wu, ICCAD 2019]

– Early stage estimation tool at the architecture level
• Estimate energy based on architecture level components 

(e.g., # of PEs, memory size, on-chip network)

– Evaluate architecture level impact of emerging devices
• Plug-ins for different technologies

• Timeloop [Parashar, ISPASS 2019]

– DNN mapping tool 
– Performance Simulator à Action counts

DNN Accelerator Evaluation Tools

Open-source code available at: 
http://accelergy.mit.edu

Accelergy
(Energy Estimator Tool)

Architecture
description

Action 
countsAction 
counts

Compound 
component
description

… Energy 
estimation

Energy
estimation 
plug-in 0

Energy 
estimation 
plug-in 1

Timeloop
(DNN Mapping Tool & 

Performance Simulator)

32
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• Validation on Eyeriss [Chen, ISSCC 2016]

– Achieves 95% accuracy compared to post-layout simulations
– Can accurately captures energy breakdown at different granularities

Accelergy Estimation Validation

PE	Array	
93.8%

WeightsBuffer
0.2%

SharedBuffer
3.6%

PsumRdNoC
1.3%PsumWrNoC

0.6%
WeightsNoC

0.1%

Ground	Truth	Energy	Breakdown Accelergy Energy	Breakdown

IfmapNoC
0.5%

PE	Array	
93.0%

PsumRdNoC
1.2%

IfmapNoC
0.5%

WeightsNoC
0.1%

SharedBuffer
3.9%

WeightsBuffer
0.2%

PsumWrNoC
0.6%

Open-source code available at: http://accelergy.mit.edu [Wu, ICCAD 2019]
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Accelergy Infrastructure

Accelergy

Architecture Description

Global 
Buffer
(GLB)

PE0

PE2 PE3

Open-source code available at: 
http://accelergy.mit.edu

[Wu, ICCAD 2019]
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Accelergy Infrastructure

Accelergy

Architecture Description

Global 
Buffer
(GLB)

PE0

PE2 PE3

SRAM

control

GLB

Compound Component 
Description

…multiplier

adder

PE

[Wu, ICCAD 2019]

Open-source code available at: 
http://accelergy.mit.edu35
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Accelergy Infrastructure

Accelergy

Architecture Description

Global 
Buffer
(GLB)

PE0

PE2 PE3

SRAM

control

GLB

…multiplier

adder

PE

name technology width action energy (pJ)
multiplier 65nm 16 multiply 0.8

adder …

Energy Estimation Plug-in

[Wu, ICCAD 2019]

Compound Component 
Description

Open-source code available at: 
http://accelergy.mit.edu36

http://accelergy.mit.edu/
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Accelergy Infrastructure

Accelergy

Architecture Description

Global 
Buffer
(GLB)

PE0

PE2 PE3

SRAM

control

GLB

…multiplier

adder

PE

name technology width action energy (pJ)
multiplier 65nm 16 multiply 0.8

adder …

Energy Estimation Plug-in

name action count
PE0 compute 500
PE1 …

Action Counts

name energy (pJ)
PE0 1500
PE1 …

Energy Estimation

Compound Component 
Description

[Wu, ICCAD 2019]

Open-source code available at: 
http://accelergy.mit.edu37
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In-Memory Computing (IMC)

• Reduce data movement by moving compute 
into memory

• Compute MAC with memory storage element 

• Analog Compute
– Activations, weights and/or partial sums are encoded 

with analog voltage, current, or resistance
– Increased sensitivity to circuit non-idealities
– A/D and D/A circuits to interface with digital domain

• Leverage emerging memory device technology

V1
G1

I1 = V1×G1
V2

G2

I2 = V2×G2

I = I1 + I2
= V1×G1 + V2×G2

Image Source: [Shafiee, ISCA 2016]

Activation is input voltage (Vi)
Weight is resistor conductance (Gi)

Psum
is output 
current

eNVM:[Yu, PIEEE 2018], SRAM:[Verma, SSCS 2019]
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Accelergy for IMC

Accelergy

Architecture Description

Global 
Buffer
(GLB)

PE0

PE2 PE3

SRAM

control

GLB

…multiplier

adder

PE

Energy Estimation Plug-in

name action count
PE0 compute 500
PE1 …

Action Counts

name energy (pJ)
PE0 1500 𝑬𝒕𝒐𝒕𝒂𝒍
PE1 …

Energy Estimation

Compound Component 
Description

DAC

ADC

Open-source code available at: 
http://accelergy.mit.edu

name technology width action energy (pJ)
multiplier 65nm memristor 16 multiply 0.8 𝑬𝒎𝒖𝒍𝒕

adder …
ADC
DAC
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Accelergy for IMC 

0.E+0
1.E+3
2.E+3
3.E+3
4.E+3
5.E+3
6.E+3
7.E+3
8.E+3
9.E+3
1.E+4

1 2 3 4 5 6 7 8

En
er

gy
 C

on
su

m
pt

io
n 

(µ
J)

A2D Conver. Sys. Digital  Accu. D2A Conver. Sys.
PE Array Input Buffer

VGG Layers

Energy breakdown across layers

This Work [7]

0.037J
0.035J

66.9% 67.9%

11.4%

17.4%

3.1%

12.6%

17.7%

3.0%
0.01% N/ACascade [MICRO 

2019]

[Wu, ISPASS 2020]

Achieves ~95% accuracy

Open-source code available at: 
http://accelergy.mit.edu40
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• Designing DNNs for IMC may differ from 
DNNs for digital processors

• Highest accuracy DNN on digital processor 
may be different on IMC
– Accuracy drops based on robustness to non-

idealities

• Reducing number of weights is less 
desirable
– Since IMC is weight stationary, may be better to 

reduce number of activations
– IMC tend to have larger arrays à fewer weights 

may lead to low utilization on IMC

Designing DNNs for IMC

[Yang, IEDM 2019]
Im

ag
eN

et

Storage Element

R
 x

 S
 x

 C

M
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Where to Go Next: Planning and Mapping

Select candidate scan 
locations

Compute Shannon MI and choose 
best location

Move to 
location and 

scan

Update 
Occupancy 

Map

Where to scan?

Occupancy map Mutual information map

Mutual Information Updated Map

Robot Exploration: Decide where to go by computing Shannon Mutual Information

[Joint work with Sertac Karaman]
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Information Theoretic Mapping

Occupancy grid map, 𝑀

𝐻 𝑀 𝑍 = 𝐻 𝑀 − 𝐼(𝑀; 𝑍)
Perspective updated 

map entropy
Mutual 

information
Current map 

entropy

Mutual information map, 𝐼(𝑀; 𝑍)

43



Vivienne Sze (    @eems_mit)

Experimental Results (4x Real Time)

Occupancy map 
with planned 

path using RRT* 
(compute MI on 

all possible paths)

MI 
surface

Exploration with a mini race car using motion capture for localization

[Zhang, ICRA 2019]

44



Vivienne Sze (    @eems_mit)

Building Hardware to Compute MI

Approximate FSMI 𝐼 𝑀; 𝑍 =*
'()

*

*
+(',-

'.-

𝑃 𝑒' 𝐶+𝐺+,'

Algorithm is embarrassingly parallel!
High throughput should be possible with multiple cores.

Motivation: Compute MI faster for faster exploration!

Core 1

Core 2

Core 3

Core N

Core N

Core 2

Core 1

Process beams in parallel with multiple cores

Evaluate MI for all cells 
in entire beam 
altogether removes 
numerical integration[Zhang, ICRA 2019]
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Challenge is Data Delivery to All Cores

Core N

Core 2

Core 1Read Port 1

Read Port 2

Power consumption of memory scales with number of ports.
Low power SRAM limited to two-ports!

Data delivery, specifically memory bandwidth, 
limits the throughput (not compute)
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Specialized Memory Architecture
Break up map into separate memory banks and novel storage pattern to 

minimize read conflicts when processing different beams in parallel.

Compute the mutual information for an entire map of 20m x 20m at 0.1m resolution 
in under a second à a 100x speed up versus CPU for 1/10th of the power

[Joint work with Sertac Karaman]

X
Y

X

Y

Memory Access Pattern

8 8 8

7 7 7

6 6 6

5 5 5

4 4 4 8

3 3 3 5 6 7

2 2 3 4

1 2 3 4 5 6 7 8

Diagonal Banking Pattern

X

Y

Bank 0

Bank 1

Bank 4

Bank 3

Bank 5

Bank 7

Bank 2

Bank 6

8 8 8

7 7 7

6 6 6

5 5 5

4 4 4 8

3 3 3 5 6 7

2 2 3 4

1 2 3 4 5 6 7 8

[Li, RSS 2019]
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Experimental Results

2 4 6 8 10 12 14 16

Number of FSMI Cores

2

3

4

5

6

7

8

T
h

ro
u

g
h
p

u
t 

(M
I/

s)

104

Baseline (1 bank)

16 banks,vertical banking,1x1 packing

16 banks,diagonal banking,1x1 packing

16 banks,diagonal banking,2x2 packing

Unlimited bandwidth Specialized banking, efficient 
memory arbiter and packing 

multiple values at each address 
results in throughput achieves 94% 

of theoretical limit
(unlimited bandwidth) 

[Li, RSS 2019]
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Extend FSMI to 3D Environments

Computing MI on a
3D map requires 

significant amounts of 
storage and compute 

Compress map 
with OctoMap

[Hornung, et al., Autonomous 
Robots, 2013]

49



Vivienne Sze (    @eems_mit)

Experiments of 3D FSMI (4x Real Time)

[Zhang, IJRR 2020]
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Experiments of 3D FSMI

We achieve an average compression ratio of around 18×, 
with an acceleration ratio of 8×

[Zhang, IJRR 2020]
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FCMI: Fast Continuous Mutual Information

[Henderson, ICRA 2020]

Reformulate with a continuous occupancy map framework and 
exploit recursive structure when computing MI across entire map 

à two orders of magnitude speed up over FSMI!
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Balancing Actuation and Computing Energy

Motion Planning
Find a feasible (obstacle-free) path
[typically optimize for shortest path]

Energy to move 1 more meter (Pa/v [W/(m/s)])

Energy to compute 1 more second (Pc [W])

Low-power Robotics 
Actuation and computing energy 
are similar order of magnitude 

Robobee
Cheerwing
Mini RC 

Slocum Ocean 
GliderViper Dash 2 WD Robot 

Chassis
2 WD Robot 
Chassis

ASIC      FPGA Cortex-A15 Nvidia Jetson TX2 
GPUEmbedded CPUs

Cortex-A7 

[Sudhakar, ICRA 2020]
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Robots Consuming < 1 Watt for Actuation

scale, the power required for computing would be more than five times more than that required for sensing
and actuation! The differences are exacerbated as the size of the robot gets smaller. For example, pico-scale
aerial robotic vehicles are reported to require only 100 milliWatts of power to lift themselves [4]. Cameras
that run under 100 milliWatts can also be found. Hence, at the pico scale, the power for computation is more
than two order of magnitudes, when compared to that required for actuation and sensing.

studies to design and manufacture bio-inspired legged
robots to achieve power efficient, fast, silent and stable
legged locomotion on deep or very shallow water
surfaces. Hu et al. [13] proposed a mechanical water
strider powered by an elastic thread. Suhr et al. [17]
developed a controllable water strider robot utilizing
three piezoelectric unimorph actuators. Song et al. [18, 19]
studied the numerical modelling of supporting legs
by developing, respectively, a rigid-leg model and a
compliant-leg model, and built a non-tethered water
strider robot with two miniature DC motors and a lithium
polymer battery. Suzuki et al. [20] showed two water
strider robots with hydrophobic microstructures on the
surface of the supporting legs driven by a vibration motor
and a slider-crank mechanism, respectively. Shin et al.
[21] and Zhou et al. [22] developed a water-jumping robot
that was able to achieve a vertical jumping motion on the
water surface with a latch mechanism driven by a shape
memory alloy actuator.

In this work, to achieve efficient and fast legged
propulsion, a new improved water strider robot, called
STRIDE II, using a DC motor actuated four-bar elliptical
leg rotation mechanism for water propulsion is proposed.
This robot has concentric circular footpads that are
designed, analysed and manufactured using laser-cutting
to generate more lift force per unit area and greater
stability when compared to STRIDE [19]. Moreover, the
drag force model of the supporting structure and the
propulsion mechanism are investigated and explained in
detail. Finally, the robustness and the payload capacity of
the robot are improved by the new design while keeping
such features as the silent operation, slight subsurface
disturbance and manoeuvring capabilities in both deep
and shallow water of the older version, STRIDE [19].
This work is an extension and advanced version of our
previous conference paper [23].

2. Problem Statement

Water strider insect locomotion exemplifies robust and
efficient water surface walking because of the lift force
mechanism involved, the low drag force on the supporting
legs and the elliptical trajectory of the propelling legs.
Therefore, these three features should be captured in the
design of a water strider-inspired robot.

The lift force mechanism that a water strider insect
dominantly uses is the surface tension force of the
water, which is linearly proportional to the length of the
supporting legs. Since the weight of the insect scales
with its volume, if it is small in size, then the surface
tension force is used as the lift force mechanism instead
of buoyancy. To mimic the water strider insect, the robot
should use surface tension as the dominant part of the
lift force; therefore, the robot should have a relatively
low weight and small size, but long legs to support
itself on water. The water strider robot should also have
enough payload capacity to carry on-board electronics,
a power supply, actuators and sensors for control,
autonomous locomotion and potential future applications,
like monitoring water quality. On the other hand, for
a robot to have a high payload capacity using surface

tension, the required leg lengths might be unrealistically
long. Therefore, the supporting structures are designed
as concentric circular footpads, which increase the total
length subjected to lift force while keeping the total area
of the supporting structures relatively small. The lift
force mechanism and the results are explained in detail in
Section 3.

The drag forces that a water strider insect experiences
are relatively low at the supporting legs, enabling them
to move rapidly and efficiently on the water’s surface.
This is due to the lift force mechanism of a water strider,
which does not require the insect to break the water
surface to stay afloat. Therefore, in order to claim that the
designed robot is efficient for water surface locomotion,
the drag force model for the robot should be established,
as explained in detail in Section 4.

In addition to the problems concerning lift force generation
and drag force modelling, the propulsion mechanism of
the robot should be designed so that the drag forces on
the propelling legs, which are propulsion forces for the
robot due to the momentum transfer principle [15], move
the robot quickly. On the previous STRIDE, a miniature
DC motor-driven actuating mechanism that was capable
of creating sculling motions was used. The propelling
wire-leg was formed into a rectangular loop and connected
to the motor through a coupling. Therefore, the motion
of the propelling wire-leg had a circular trajectory [19].
However, a more desirable means of propulsion employs
an elliptical-like trajectory for the propelling wire-legs,
as longer contact between the water surface and the
propelling wire-legs is able to produce more propulsion
in every driving stroke. Therefore, a four-bar mechanism,
explained in Section 5.1.2, is designed which can create an
elliptical-like trajectory for the propelling legs to efficiently
increase the propulsion forces. The agility of the robot,
its complexity and the availability of parts that are used
in the propulsion mechanism should also be considered.
Within these considerations, the final design of STRIDE II
is shown in Figure 1.

Figure 1. Photo of STRIDE II: A: The robot body with a control
board, a battery and two four-bar actuators; B: Four sets of circular
concentric supporting footpads. C: Two propulsion legs with an
elliptical rotation trajectory, driven by two DC motors.
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Fig. 6. Peristaltic crawling locomotion of the robot is displayed in a sequence
of snapshots, from top to bottom. On the top, the initial relaxed state (with the
legs marked) is displayed. The three following images show the contraction of
each segment, which correspond to the control signal supplying current to their
embedded SMA coils in order. The bottom image is the final relaxed state.

snapshots in Fig. 6. The two legs protruding under the robot on
both ends can also be seen in this figure. As mentioned before,
the legs are folded in the same direction, creating a frictional
anisotropy to drive the robot forward. In future implementa-
tions, the legs themselves can be actively angled to drive the
robot backwards. Note that, while a tetherless implementation
using two miniature LiPoly batteries (3.7 V, 160 mAh, 2.3 g
each) is feasible (yielding an operation time of 74 min with the
parameters given in Table II), in these experiments, the robot is
powered by off-board power.

We designed and printed a family of origami robots and mech-
anisms in different shapes and sizes, as displayed in Fig. 7. The
robot shown in Fig. 6 is the latest one with feet incorporated.
The feet are manually angled and tested for friction in forward

Fig. 7. Collection of origami robots and mechanisms fabricated by the pro-
posed procedure. From left to right: the first column displays axial springs,
second column shows the negative Poisson’s ratio structures, and the rest are
robotic worm bodies in various shapes and sizes. The horizontal robot is the
final prototype used in experiments.

Fig. 8. Displacement of the origami worm robot over time.

and backward directions before experiments to make sure the
necessary anisotropy is formed. The robot crawled on flat wood
and paper surfaces on a tabletop, in a total of ten experiments,
with about 100 mm displacements.

To quantify the speed of the worm robot, we used image
processing techniques. Using a webcam, an initial image of the
background is taken first and the robot is placed. By driving
the robot over the known background, its position can be ac-
curately detected by simple background subtraction. We traced
the forward edge of the robot with this motion detection setup
and converted the pixel information to millimeters to achieve
the displacement curve shown in Fig. 8.

The robot crawls about 50 mm in 3 min at an approximately
linear rate for an average forward velocity of 18.5 mm/min,
which is about 77% of the expected result from (1). The oscil-
lations in the data coincide with the actuation of segments and
show the effectiveness of the motion detection.

The speed of the robot can be improved with a loss of safety
by increasing the input current and reducing the actuation period
correspondingly. Another improvement can be made by using
a longer robot with more segments to be able to reduce the
cooling period between actuations. Using an actuation current
Ion = 1 A and an actuation period of �on = 0.5 s, leaving all
other control parameters constant, the theoretical speed becomes
36.9 mm/min. Using these actuation parameters, we performed
experiments on the repeatability of speed on three surfaces in
Fig. 9.

In these experiments, the robot is placed on a flat surface
and the time it takes to traverse a defined distance of 50 mm is
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Figure 4: A selection of robotics applications are shown. From left to right:
Robot water strider spends roughly 1 Watt of electrical power to move roughly
an inch per second on water [5], origami-inspired worm robot spends 0.96
Watts of electrical power to travel 1 inch in 100 seconds [6], an inchworm robot
that spends 0.9 Watts of electrical power to travel 7 inches in 100 seconds [7].

The application domain of
low-energy mobile robotic CPS

go far beyond the nano- and pico-
scale robots. Other robotics ap-
plications include robotic glid-
ers, robotic water striders, printed
robots, micro soft robots, and
many others. See Figure 4. In
these most of these applications,
even though the size of the robot
is relatively large, the energy con-
sumed by the robot is still fairly
low, e.g., around 1 Watt.

One might wishfully expect that, miniaturization in the consumer electronics industry will eventually
come to rescue with low-energy general-purpose computers that will run existing robotics algorithms and
software on very little energy budgets. Unfortunately, even the consumer electronics industry started rapidly
moving away from the utilization of general-purpose central processing units for compute-heavy tasks. In-
stead, specialized computing elements, such as Field Programmable Gate Arrays (FPGAs) and Application
Specific Integrated Circuits (ASICs), are now common, specifically for processing massive amounts of sens-
ing data, e.g., for camera images [8, 9]. This is primarily due to the fact the Moore’s law [10] and Dennard
scaling [11], which predict that transistors will shrink and be faster and more energy-efficient at an expo-
nential rate, respectively, have slowed down or ended over the past decade [12]. As a result, today’s mobile
phones require specialized hardware to perform tasks such as video compression, speech recognition, cryp-
tography, and more; thus, it is increasingly important to explore specialized hardware for robotics.

In almost all of these cases, implementation on specialized computing hardware, such as FPGAs and
ASICs, requires a careful rethinking of the algorithms themselves. To achieve substantial power savings,
most specialized hardware does not include complex floating-point arithmetic-logic units or massively-sized
memory [13, 14]. Instead, the hardware is specially designed for the algorithm that it implements. The al-
gorithm, in turn, is designed based on this computing hardware. In essence, the hardware and algorithm

components are co-designed to achieve the same performance, but at substantially low power. For instance,
specialized hardware can optimize the data processing order to leverage data reuse and reduce data move-
ment; the algorithms can be designed to exploit data reuse for reduced power consumption [15]. Orders
of magnitude power savings are reported using FPGA and ASIC implementations in the literature [16, 17],
particularly in applications that work with massive data, such as those obtained using cameras.

2 Research Description
In this section, we provide a thorough description of the research effort. In Section 2.1, we discuss the
intellectual merit of this proposal. In Section 2.2, we provide a short background on the hardware design
principles that guide the design of application-specific integrated circuits as well as the essentials of algo-
rithmic foundations of autonomy. In Section 2.3, we describe the specific research tasks in detail. We leave
evaluation/experimentation plan and the project management to Sections 3 and 4, respectively.
2.1 Intellectual Merit
The intellectual merit of this proposal is found in the development of novel algorithms and novel comput-
ing hardware for low-energy mobile robotic Cyber-Physical Systems. The proposed research will enable
low-energy computation for full autonomy by way of minimizing energy consumption during both design
time and run time. Our approach is to simultaneously design the computing hardware (integrated circuits)
and the autonomy algorithms to achieve low-energy performance that is orders of magnitude energy savings
when compared to existing solutions. Specifically, we propose to develop novel computing hardware and
algorithms for (i) visual-inertial state estimation, (ii) probabilistic mapping and mutual-information-based
map analysis, and (iii) energy-aware motion planning and decision making. In each case, the new methods

3

Example low-energy mobile robotic CPS. Each vehicle consumes
less than 1 Watt of electrical power for actuation.

• Miniature aerial vehicles 

• Lighter than air vehicles 

• Micro unmanned gliders

• Miniature satellites

Low Energy Robotics

[CMU] [MIT, Harvard] [MIT, Harvard]

54



Vivienne Sze (    @eems_mit)

Balancing Actuation and Computing Energy

Compute Energy Included Motion Planning (CEIMP) 
A framework to balance the energy spent on computing a path and
the energy spent on moving along that path (Don’t think too hard!)

[Sudhakar, ICRA 2020]

Baseline 
(compute 20,000 samples) CEIMP
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• Efficient computing is critical for advancing the progress of autonomous robots, 
particularly at the smaller scales. à Critical step to making autonomy ubiquitous!

• In order to meet computing demands in terms of power and speed, need to redesign 
computing hardware from the ground up à Focus on data movement!

• Specialized hardware opens up new opportunities for the co-design of algorithms 
and hardware à Innovation opportunities for the future of robotics!

Summary

Algorithms Hardware

Slides available at https://tinyurl.com/SzeMITDL2020
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Book on Efficient Processing of DNNs

Part I Understanding Deep Neural Networks 
Introduction 

Overview of Deep Neural Networks 

Part II Design of Hardware for Processing DNNs 
Key Metrics and Design Objectives 

Kernel Computation 
Designing DNN Accelerators 

Operation Mapping on Specialized Hardware 

Part III Co-Design of DNN Hardware and Algorithms 
Reducing Precision 
Exploiting Sparsity 

Designing Efficient DNN Models 
Advanced Technologies 

https://tinyurl.com/EfficientDNNBook
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Excerpts of Book

Available on DNN tutorial website
http://eyeriss.mit.edu/tutorial.html
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Additional Resources
Talks and Tutorial Available Online

https://www.rle.mit.edu/eems/publications/tutorials/

YouTube Channel
EEMS Group – PI: Vivienne Sze

61

https://www.rle.mit.edu/eems/publications/tutorials/


Vivienne Sze (    @eems_mit)
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– Y.-H. Chen, T. Krishna, J. Emer, V. Sze, “Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural 
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– Y.-H. Chen, J. Emer, V. Sze, “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks,” 
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– Y.-H. Chen*, T.-J. Yang*, J. Emer, V. Sze, “Understanding the Limitations of Existing Energy-Efficient Design Approaches for Deep 
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– Hardware Architecture for Deep Neural Networks: http://eyeriss.mit.edu/tutorial.html
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• Co-Design of Algorithms and Hardware for Deep Neural Networks
– T.-J. Yang, Y.-H. Chen, V. Sze, “Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning,” IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 
– Energy estimation tool: http://eyeriss.mit.edu/energy.html
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IEEE International Conference on Robotics and Automation (ICRA), May 2019. http://fastdepth.mit.edu/
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• Low Power Time of Flight Imaging
– J. Noraky, V. Sze, “Low Power Depth Estimation of Rigid Objects for Time-of-Flight Imaging,” IEEE Transactions on Circuits 

and Systems for Video Technology (TCSVT), 2019.
– J. Noraky, V. Sze, “Depth Map Estimation of Dynamic Scenes Using Prior Depth Information,” arXiv, February 2020. 
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– J. Noraky, V. Sze, “Depth Estimation of Non-Rigid Objects For Time-Of-Flight Imaging,” IEEE International Conference on 
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– J. Noraky, V. Sze, “Low Power Depth Estimation for Time-of-Flight Imaging,” IEEE International Conference on Image 

Processing (ICIP), September 2017.
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• Energy-Efficient Visual Inertial Localization  
– Project website: http://navion.mit.edu
– A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, “Navion: A Fully Integrated Energy-Efficient Visual-Inertial Odometry 

Accelerator for Autonomous Navigation of Nano Drones,” IEEE Symposium on VLSI Circuits (VLSI-Circuits), June 2018. 
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– Z. Zhang, T. Henderson, V. Sze, S. Karaman, “FSMI: Fast computation of Shannon Mutual Information for information-
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