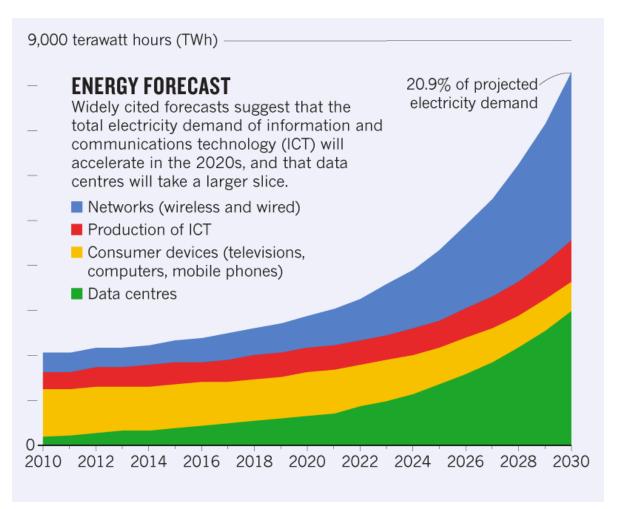
# Reducing the Carbon Emissions of ML Computing - Challenges and Opportunities -

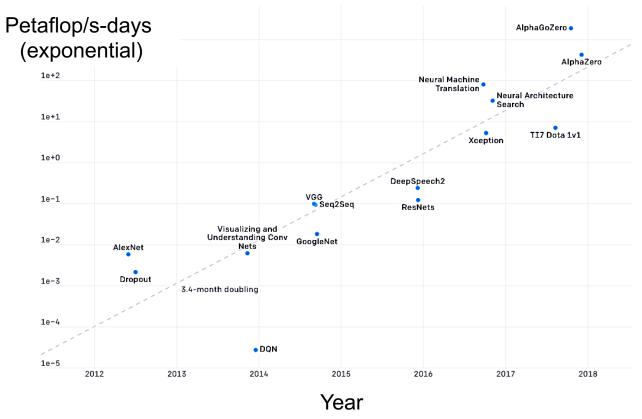


Massachusetts Institute of Technology

# Growing Demand for Computing



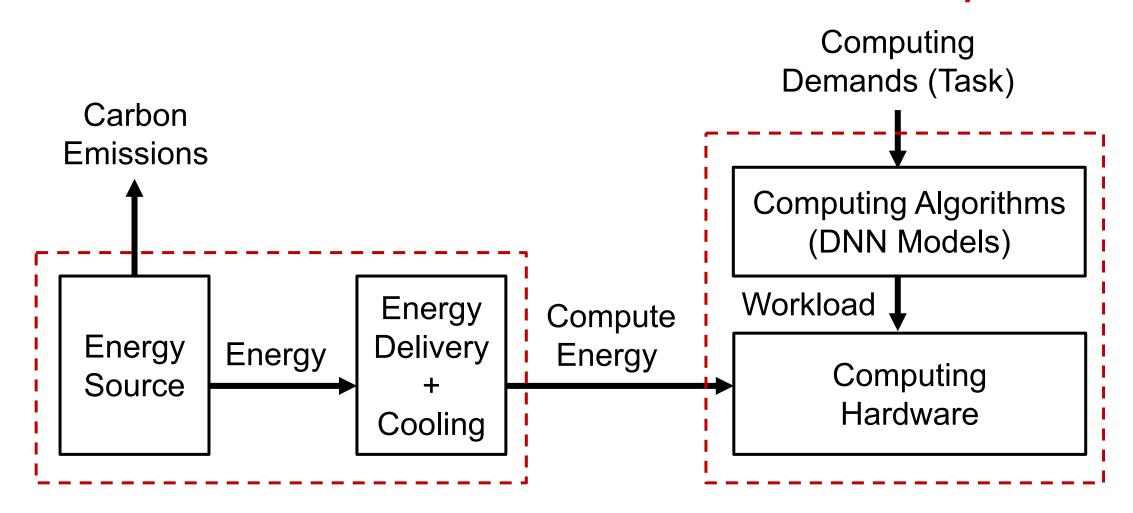
#### AlexNet to AlphaGo Zero: A 300,000x Increase in Compute



Source: Nature (<u>https://www.nature.com/articles/d41586-018-06610-y</u>)

Source: Open AI (<u>https://openai.com/blog/ai-and-compute/</u>)

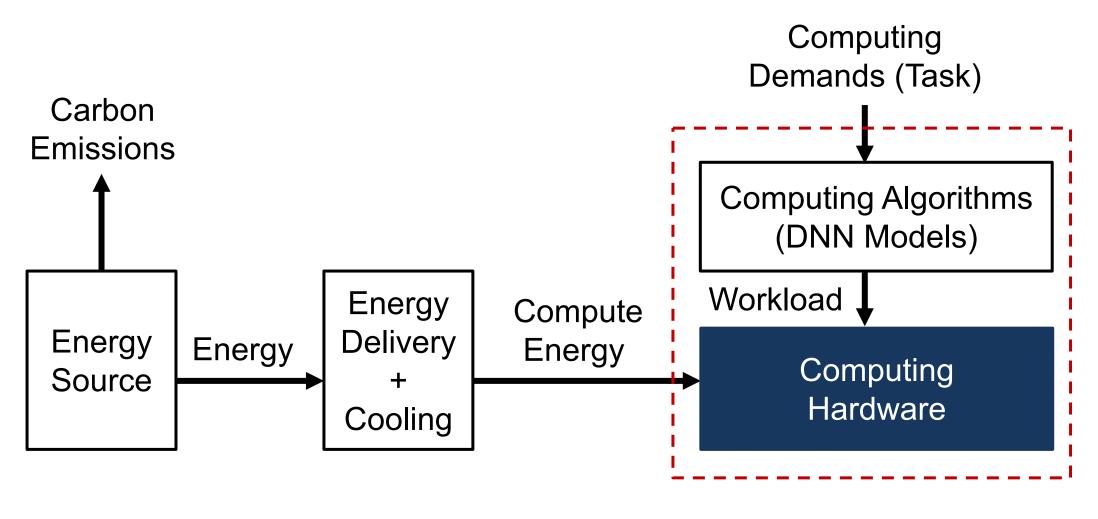
# From Compute to Carbon Emissions What to compute



### Where to compute

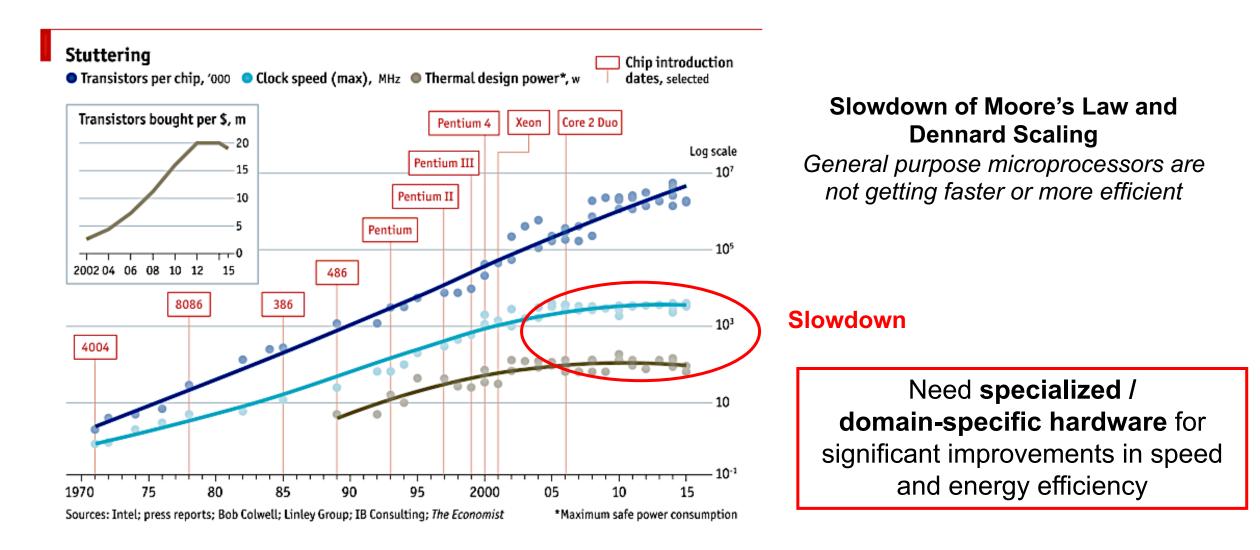
How to compute

## From Compute to Carbon Emissions



### How to compute

# **Transistors Are Not Getting More Efficient**



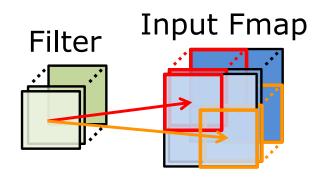
## Energy Consumption Dominated by Data Movement

| Operation:          | Energy<br>(pJ) | Relative Energy Cost |
|---------------------|----------------|----------------------|
| 8b Add              | 0.03           |                      |
| 16b Add             | 0.05           |                      |
| 32b Add             | 0.1            |                      |
| 16b FP Add          | 0.4            |                      |
| 32b FP Add          | 0.9            |                      |
| 8b Multiply         | 0.2            |                      |
| 32b Multiply        | 3.1            |                      |
| 16b FP Multiply     | 1.1            |                      |
| 32b FP Multiply     | 3.7            |                      |
| 32b SRAM Read (8KB) | 5              |                      |
| 32b DRAM Read       | 640            |                      |

Memory access is **orders of magnitude** higher energy than compute

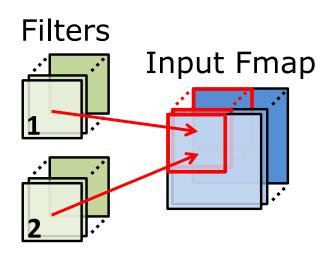
1 10 10<sup>2</sup> 10<sup>3</sup> 10<sup>4</sup>

## Exploit Data Reuse Opportunities in DNNs



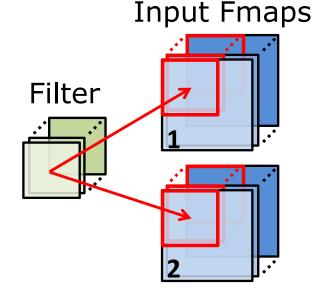
**Convolutional Reuse** 

(Activations, Weights) CONV layers only (sliding window)



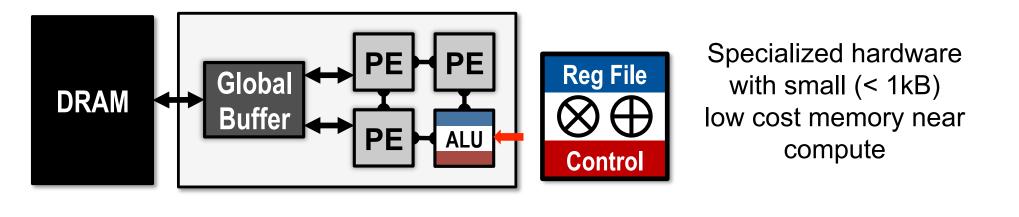
### **Fmap Reuse**

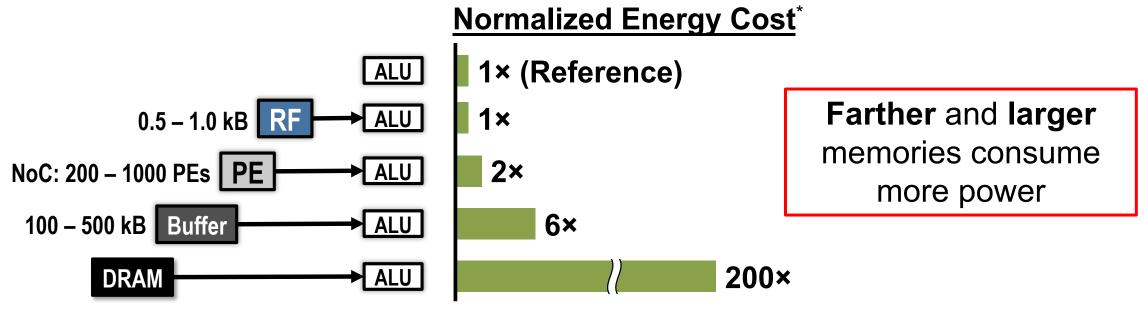
(Activations) CONV and FC layers



### Filter Reuse (Weights) CONV and FC layers (batch size > 1)

## Exploit Data Reuse at Low-Cost Memories

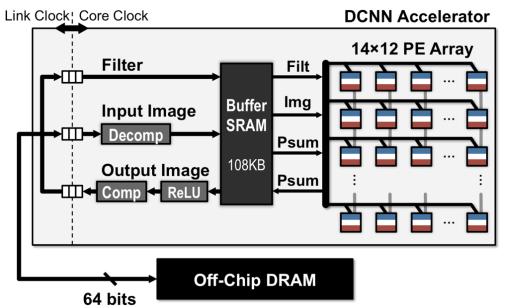




\* measured from a commercial 65nm process

## Energy-Efficient Dataflow





Eyeriss Project Website: <u>http://eyeriss.mit.edu</u>

4mm Buffer 4mm On-chip

[Chen, ISSCC 2016],[Chen, ISCA 2016] Micro Top Picks

*Exploits data reuse for* **100x** reduction in memory accesses from global buffer and **1400x** reduction in memory accesses from off-chip DRAM

Overall >10x energy reduction compared to a mobile GPU

## In-Memory Computing

Activation is input voltage (V<sub>i</sub>) Weight is resistor conductance (G<sub>i</sub>)

10

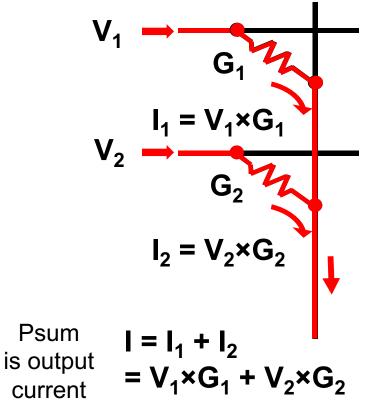


Image Source: [Shafiee, ISCA 2016]

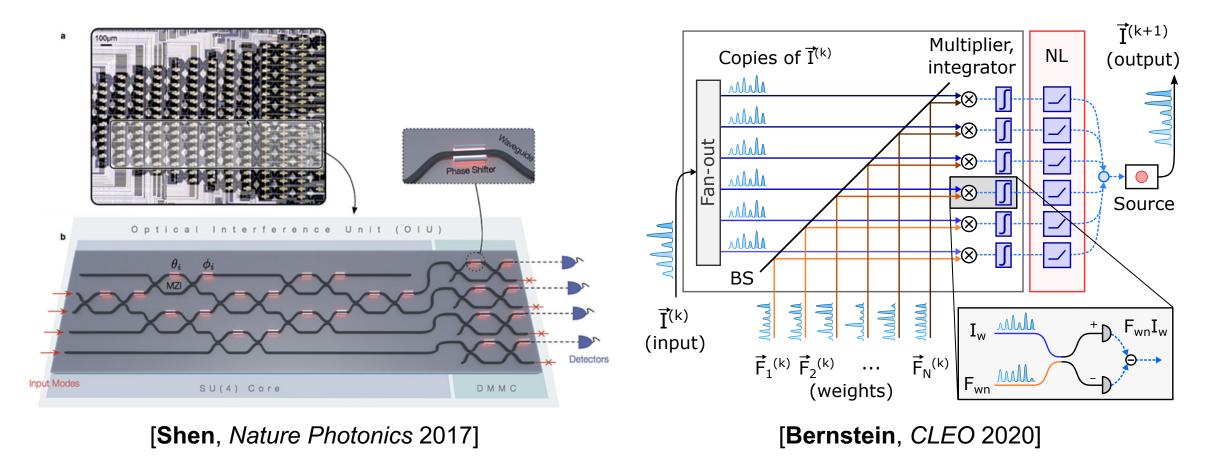
- Reduce data movement by moving compute into memory
- Compute with memory storage elements

### Analog Compute

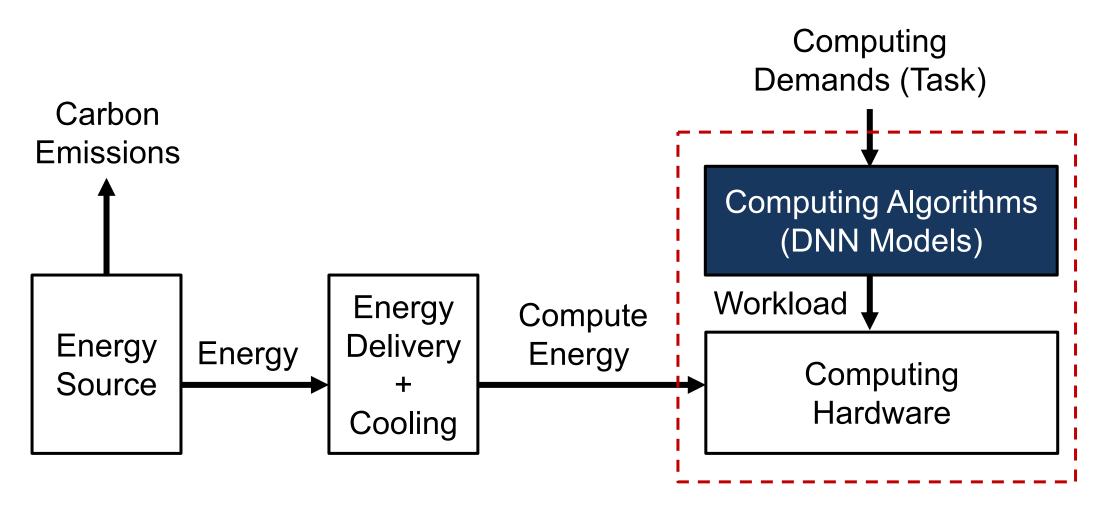
- Activations, weights and/or partial sums are encoded with analog voltage, current, or resistance
- Increased sensitivity to circuit non-idealities
- A/D and D/A circuits to interface with digital domain
- Leverage emerging memory device technology

## Computing With Light

- Cost of moving a photon can be **independent** of distance
- Multiplication can be performed **passively**



## <sup>12</sup> From Compute to Carbon Emissions

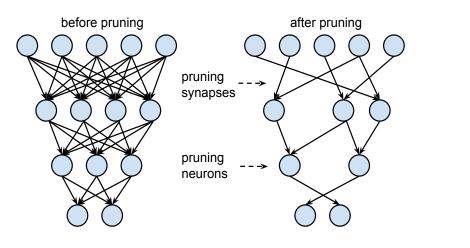


### How to compute

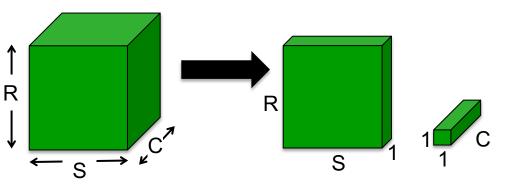
# Design of Efficient DNN Algorithms

Popular efficient DNN algorithm approaches

**Network Pruning** 



**Efficient Network Architectures** 

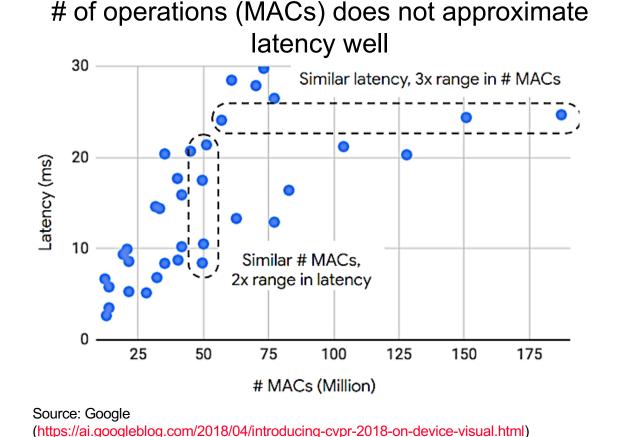


Examples: SqueezeNet, MobileNet

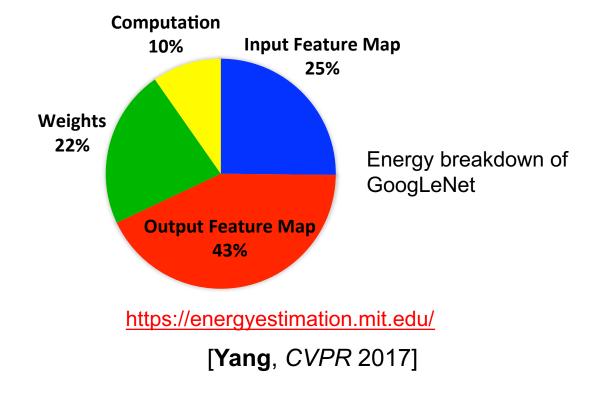
... also reduced precision

- Focus on reducing number of MACs and weights
- Does it translate to energy savings and reduced latency?

## Number of MACs and Weights are Not Good Proxies



#### # of weights *alone* is not a good metric for energy (All data types should be considered)

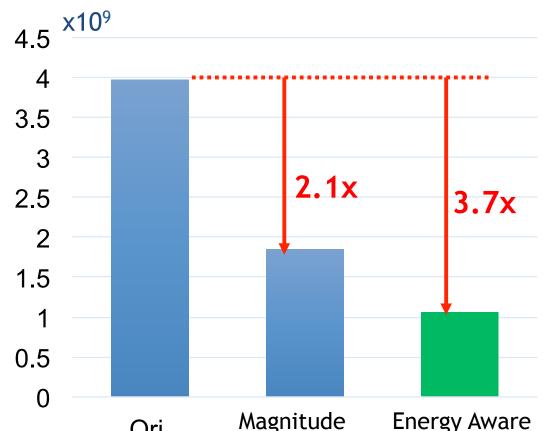


## **Energy-Aware Pruning**

**Directly target energy** and incorporate it into the optimization of DNNs to provide greater energy savings

- Sort layers based on energy and prune layers that consume the most energy first
- **Energy-aware pruning** reduces AlexNet energy by 3.7x w/ similar accuracy
- Outperforms magnitude-based pruning by **1.7x**

#### [**Yang**, *CVPR* 2017]



Pruned models available at http://eyeriss.mit.edu/energy.html

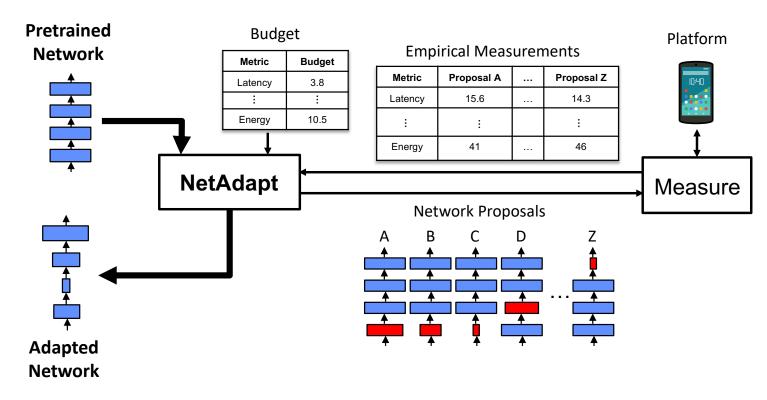
**Based Pruning** 

Ori.

Pruning

# NetAdapt: Platform-Aware DNN Adaptation

- Automatically adapt DNN to a mobile platform to reach a target latency or energy budget
- Use **empirical measurements** to guide optimization (avoid modeling of tool chain or platform architecture)
- >1.7x speed up on MobileNet w/ similar accuracy
- Few hyperparameters to reduce tuning effort

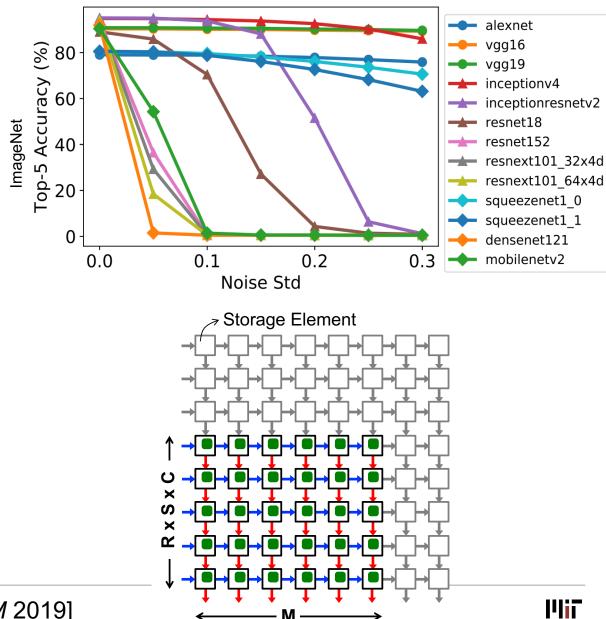


[Yang, ECCV 2018]

Code available at <u>http://netadapt.mit.edu</u>

# Designing DNNs for In-Memory Computing (IMC)

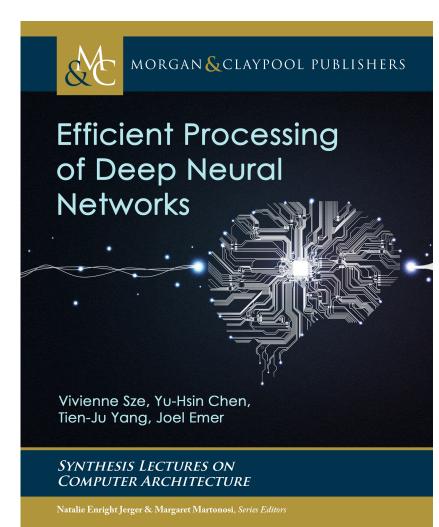
- Designing DNNs for IMC may differ from DNNs for digital processors
- Highest accuracy DNN on digital processor may be different on IMC
  - Accuracy drops based on robustness to nonidealities
- Reducing number of weights is less desirable
  - Since IMC is weight stationary, may be better to reduce number of activations
  - IMC tend to have larger arrays → fewer weights may lead to low utilization on IMC
- For IMC, may be preferable to do shallower and larger filters
  - Differs from current trend of deeper and smaller filters



17

[Yang, IEDM 2019]

# Book on "How to Compute" Efficiently



Part I Understanding Deep Neural Networks

Introduction Overview of Deep Neural Networks

#### Part II Design of Hardware for Processing DNNs

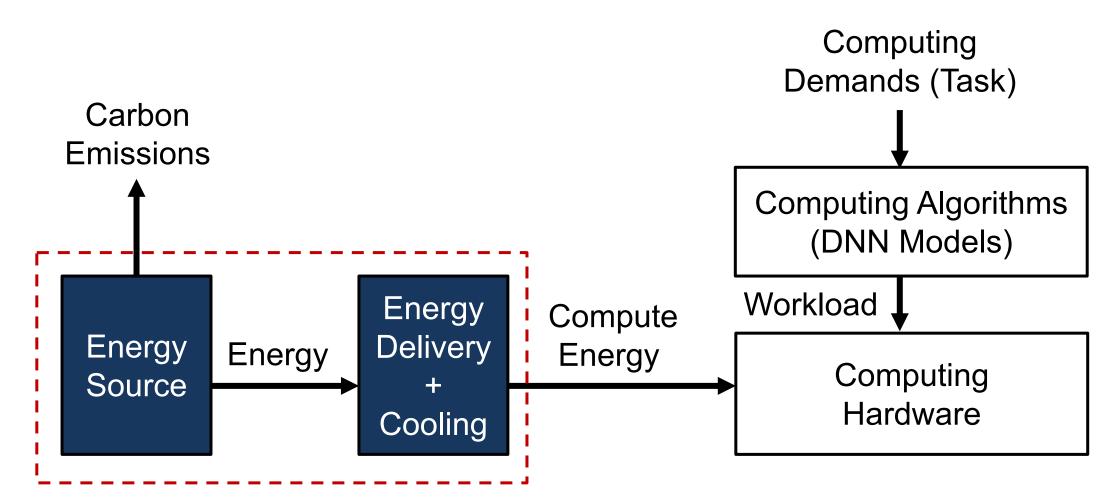
Key Metrics and Design Objectives Kernel Computation Designing DNN Accelerators Operation Mapping on Specialized Hardware

#### Part III Co-Design of DNN Hardware and Algorithms

Reducing Precision Exploiting Sparsity Designing Efficient DNN Models Advanced Technologies

https://tinyurl.com/EfficientDNNBook

## <sup>19</sup> From Compute to Carbon Emissions



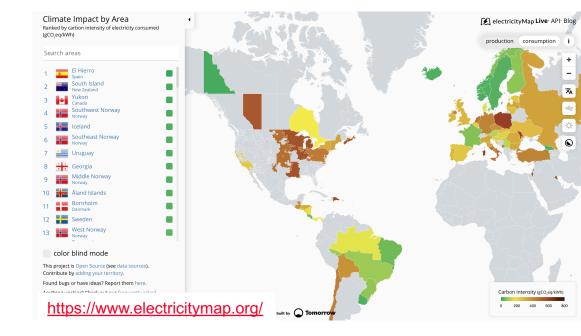
### Where to compute

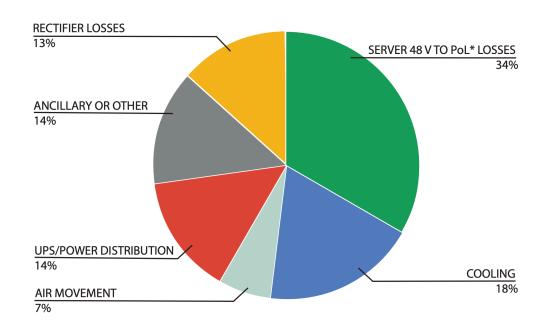
#### Plii

# Where to Compute?

- Energy Source (Carbon Emissions → Energy)
  - Carbon Intensity (gCO<sub>2eq</sub> / kWh) of Energy Source
    - Varies by region

- Percentage of Renewable Energy
  - Varies with time of day
- Energy Delivery (Energy → Compute Energy)
  - Power Conversion & Cooling Cost
  - Example: Data Centers
    - Power Usage Effectiveness (PUE)
      = Energy/Compute Energy
    - Typically in the range of 2.0 to 1.1 (1.0 is optimal)
  - Use ML to improve efficiency

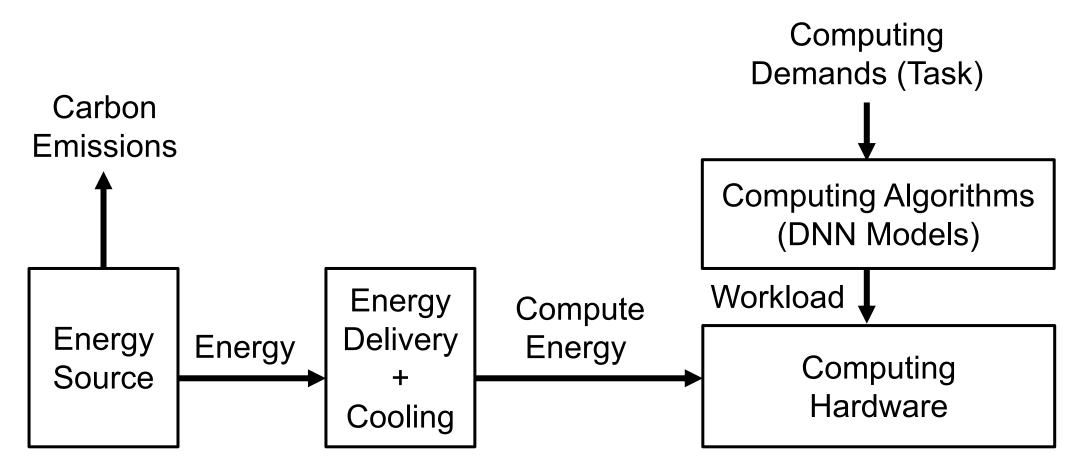






### **From Compute to Carbon Emissions**

### What to compute



## What to Compute?

- Compute demands depend on number of requests, amount of data, and required quality of result (e.g., accuracy)
- Reduce number of requests
  - Make hyper-parameter tuning easier (e.g., reduce the number of hyper-parameters to tune)
  - Reproducibility is critical for reducing unnecessary requests due to replication difficulties → also good for advancing research in ML
    - On-going efforts in ML (Reproducibility Challenges) and Systems (Artifact Evaluation Badges)
- Reduce amount of needed data
  - Exploit data reuse since data movement is expensive
  - Explore data-efficient ML techniques & ML models that incorporate prior knowledge
- Evaluate carbon emissions versus quality of result tradeoffs
  - Cost-benefit evaluation (e.g., Is the accuracy improvement worth the carbon emissions?)
  - Deeper consideration of quality of result for a given task

## Recommended Best Practices

- Make energy-efficient settings the default setting or easy to set
  - Software and framework support for reduced precision and specialized hardware
- Measure and report energy consumption and carbon emissions
  - Software and hardware support for measuring energy consumption
  - System support for reporting carbon intensity of energy source
  - Frameworks for standardized reporting [Henderson, arXiv preprint arXiv:2002.05651, 2020]
    - https://github.com/Breakend/experiment-impact-tracker
- Run experiments in locations / at times with low carbon intensity
- Ensure reproducibility to avoid unnecessary experiments
- We can do much of this today (or in the very near future)!

# **24 Key Takeaways**

- Jointly consider energy efficiency and accuracy in ML research
  - Consider the accuracy-energy tradeoffs and data-efficient ML techniques
  - Design ML algorithms that directly target energy consumption
  - Design specialized ML hardware to reduce data movement

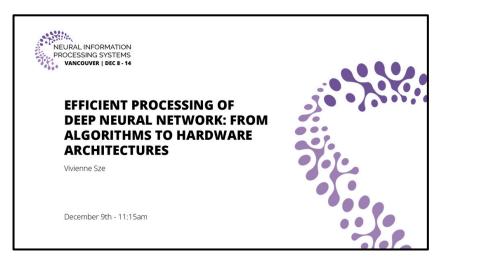
### • Incorporate energy efficiency considerations into best practices

- Lower the barrier to using existing energy-efficient computing options and reporting/measuring energy consumption and carbon emissions
- Compute at locations with lowest carbon intensity and highest power efficiency
- Reduce unnecessary computing demands by ensuring reproducibility

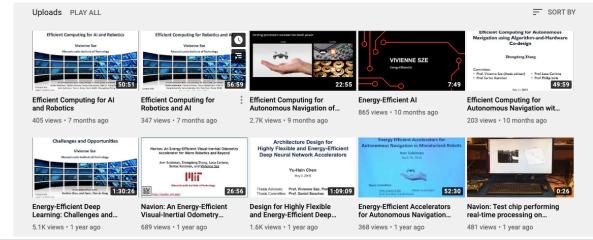
## Additional Resources

### **Talks and Tutorial Available Online**

https://www.rle.mit.edu/eems/publications/tutorials/



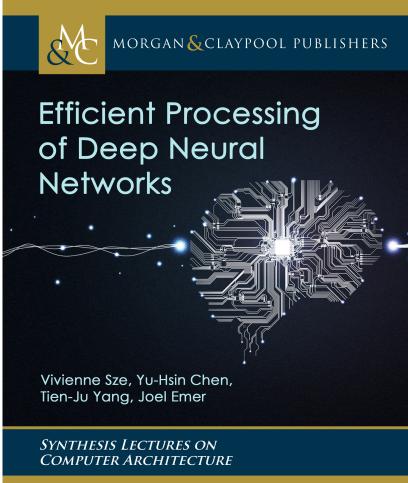






YouTube Channel EEMS Group – PI: Vivienne Sze

## Book on Efficient Processing of DNNs



Natalie Enright Jerger & Margaret Martonosi, Series Editor

Part I Understanding Deep Neural Networks

Introduction Overview of Deep Neural Networks

#### Part II Design of Hardware for Processing DNNs

Key Metrics and Design Objectives Kernel Computation Designing DNN Accelerators Operation Mapping on Specialized Hardware

#### Part III Co-Design of DNN Hardware and Algorithms

Reducing Precision Exploiting Sparsity Designing Efficient DNN Models Advanced Technologies

https://tinyurl.com/EfficientDNNBook



#### Computing Hardware

- Y.-H. Chen, T. Krishna, J. Emer, V. Sze, "Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks," IEEE Journal of Solid-State Circuits (JSSC), ISSCC Special Issue, Vol. 52, No. 1, pp. 127-138, January 2017. <u>http://eyeriss.mit.edu</u>
- Y.-H. Chen, J. Emer, V. Sze, "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks," International Symposium on Computer Architecture (ISCA), pp. 367-379, June 2016.
- Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and Marin Soljačić, "Deep learning with coherent nanophotonic circuits," Nature Photonics, 2017
- L. Bernstein, A. Sludds, R. Hamerly, V. Sze, J. Emer, and D. Englund, Digital optical neural networks for largescale machine learning, Conference on Lasers and Electro-Optics (CLEO), 2020



### Computing Algorithm

- Y.-H. Chen\*, T.-J. Yang\*, J. Emer, V. Sze, "Understanding the Limitations of Existing Energy-Efficient Design Approaches for Deep Neural Networks," SysML Conference, February 2018.
- V. Sze, Y.-H. Chen, T.-J. Yang, J. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey," Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, December 2017. http://eyeriss.mit.edu/tutorial.html
- T.-J. Yang, Y.-H. Chen, V. Sze, "Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
- T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, V. Sze, H. Adam, "NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications," European Conference on Computer Vision (ECCV), 2018. http://netadapt.mit.edu/
- T.-J. Yang, V. Sze, "Design Considerations for Efficient Deep Neural Networks on Processing-in-Memory Accelerators," IEEE International Electron Devices Meeting (IEDM), Invited Paper, December 2019.
- Sze, V., Chen, Y. H., Yang, T. J., & Emer, J. S. (2020). Efficient Processing of Deep Neural Networks. Synthesis Lectures on Computer Architecture, 15(2), 1-341. <u>https://tinyurl.com/EfficientDNNBook</u>



#### Where & What to Compute

- Barroso, L. A., Hölzle, U., & Ranganathan, P. (2018). The datacenter as a computer: Designing warehousescale machines. Synthesis Lectures on Computer Architecture, 13(3), i-189.
- Henderson, P., Hu, J., Romoff, J., Brunskill, E., Jurafsky, D. and Pineau, J., 2020. Towards the Systematic Reporting of the Energy and Carbon Footprints of Machine Learning. arXiv preprint arXiv:2002.05651.