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9,000 terawatt hours (TWh)

20.9% of projected~
electricity demand

ENERGY FORECAST
Widely cited forecasts suggest that the

total electricity demand of information and

Growing Demand for Computing
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Source: Nature (https://www.nature.com/articles/d41586-018-06610-y) Source: Open Al (https://openai.com/blog/ai-and-compute/)
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Transistors Are Not Getting More Efficient
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Slowdown of Moore’s Law and
Dennard Scaling

General purpose microprocessors are
not getting faster or more efficient

Slowdown

Need specialized /
domain-specific hardware for
significant improvements in speed
and energy efficiency




Il Energy Consumption Dominated by Data Movement

Operation: Energy | Relative Energy Cost
(pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9 Memory access is orders
8b Multiply 0.2 of magnitude higher
32b Multiply 31 energy than compute
16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

1 10 102 103 104
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Exploit Data Reuse Opportunities in DNNs
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EEl Exploit Data Reuse at Low-Cost Memories

PE H PE : Specialized hardware
Global Reg File with small (< 1kB)
Buffer low cost memory near
Control compute
Normalized Enerqy Cost’
ALU 1% (Reference)
0.5-1.0k8 [lRg—[A] I 1x Farther and larger
memori nsum
NoC: 200 - 1000 PEs | PE o[ ALU 2% emories consume
more power
»ALU 6%
»[ ALU { 200x

* measured from a commercial 65nm process
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Ell Energy-Efficient Dataflow

Eyeriss
Link Clock! Core Clock DCNN Accelerator
-
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Filter
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Eyeriss Project Website: http://eyeriss.mit.edu [Chen, ISSCC 2016],[Chen, ISCA 2016] Micro Top Picks

4dmm

o o

Exploits data reuse for 100x reduction in memory accesses from global
buffer and 1400x reduction in memory accesses from off-chip DRAM

Overall >10x energy reduction compared to a mobile GPU
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In-Memory Computing

" Acrt]i;/?tion .iStinput Vdoltige (Vi)G - Reduce data movement by moving compute
eight is resistor conductance (G)) into memory

« Compute with memory storage elements

 Analog Compute
— Activations, weights and/or partial sums are encoded

I, = V,xG, with analog voltage, current, or resistance
— Increased sensitivity to circuit non-idealities
Psum =1, +1, — A/D and D/A circuits to interface with digital domain
is output  _
current = V1%¥Gy + VpxGy

» Leverage emerging memory device technology
Image Source: [Shafiee, ISCA 2016]
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Computing With Light

« Cost of moving a photon can be independent of distance

« Multiplication can be performed passively
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[Shen, Nature Photonics 2017] [Bernstein, CLEO 2020]
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From Compute to Carbon Emissions
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Design of Efficient DNN Algorithms

Popular efficient DNN algorithm approaches

Network Pruning Efficient Network Architectures

before pruning after pruning

o e | —
pruning s ’
neurons l C’ S 1 1 1 C

«— —> ¥

S
Examples: SqueezeNet, MobileNet

... also reduced precision

* Focus on reducing number of MACs and weights
* Does it translate to energy savings and reduced latency?
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Number of MACs and Weights are Not Good Proxies

# of operations (MACs) does not approximate # of weights alone is not a good metric for energy
latency well (All data types should be considered)
%0 ® o  Similar latency, 3x range in # MACs
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# MACs (Million) https://energyestimation.mit.edu/

S : Googl

(h(:tl:)rs(i(/a/ai.ggquebloq.com/ZM8/04/introducinq-cvpr-2018—on-device-visual.html) [Yang, CVPR 201 7]
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Energy-Aware Pruning

Directly target energy
and incorporate it into the
optimization of DNNs to provide
greater energy savings

« Sort layers based on energy and prune layers
that consume the most energy first

* Energy-aware pruning reduces AlexNet
energy by 3.7x w/ similar accuracy
« Outperforms magnitude-based pruning by 1.7x

[Yang, CVPR 2017]
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Pruned models available at
http://eyeriss.mit.edu/energy.html
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NetAdapt: Platform-Aware DNN Adaptation

 Automatically adapt DNN toa  pretrained

mobile platform to reach a Network i T enesements_ et
target latency or energy budget % e T P T i

* Use empirical measurements | : e | 1] !
to guide optimization (avoid NetAdapt — | Measure
modeling of tool chain or \ A B C D 2
platform architecture) E i g s s el

|:||:||:|+m|$|

« >1.7x speed up on MobileNet Adapted Em R B2 B

w/ similar accuracy Network

[Yang, ECCV 2018]
 Few hyperparameters to

reduce tuning effort Code available at

http://netadapt.mit.edu

Vivienne Sze (¥ @eems_mit) [In collaboration with Google’s Mobile Vision Team] i


http://netadapt.mit.edu/

Desighing DNNs for In-Memory Computing (IMC)

=@ alexnet
. . . . = | =0= vggle6
DeS|_gr_1|ng DNNs for IMC may differ from DNNs < 80 e
for digital processors > —— inceptionva
© 60 1 == inceptionresnetv?2
« Highest accuracy DNN on digital processor may s 2 =i resnetl8
i S < 40+ resnet152
be different on IMC > = —h— resnext101_32x4d
£ A 50| resnext101_64x4d
— Accuracy drops based on robustness to non- L =0~ squeezenetl 0
idealities —9— squeezenetl_1
01 . - . . densenetl21
. . . . 0.0 0.1 0.2 0.3 =#— mobilenetv2
« Reducing number of weights is less desirable Noise Std

— Since IMC is weight stationary, may be better to
reduce number of activations

Storage Element

— IMC tend to have larger arrays - fewer weights
may lead to low utilization on IMC

* For IMC, may be preferable to do shallower and
larger filters

— Differs from current trend of deeper and smaller
filters

«— RxSxC —

Vivienne Sze (¥ @eems_mit) [Yang, IEDM 2019] < M > Mir




Book on “How to Compute” Efficiently
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From Compute to Carbon Emissions
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Climate Impact by Area ‘ [#] electricityMap Live: API- Blog
Ranked by carbon intensity of electricity consumed

Where to Compute? = — . 4"“ """""" o
« Energy Source (Carbon Emissions = Energy) g ?;‘i‘ 3
— Carbon Intensity (gCO,,, / kWh) of Energy Source s \
- Varies by region : : )
— Percentage of Renewable Energy ' |
- Varies with time of day hitps:/Www.eleCtricitymAp.org/ . g f Y ==
RECTIFIER LOSSES
* Energy Delivery (Energy = Compute Energy) > b e
— Power Conversion & Cooling Cost ANCILLARY OR OTHER

14%

— Example: Data Centers

- Power Usage Effectiveness (PUE)
= Energy/Compute Energy
« Typically in the range of 2.0 to 1.1 (1.0 is optimal) UPS/POWER DISTRIBUTION
— Use ML to improve efficiency ::MOVEMENT P ST

7%
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From Compute to Carbon Emissions

What to compute
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What to Compute?

Compute demands depend on number of requests, amount of data, and required
quality of result (e.g., accuracy)

* Reduce number of requests

— Make hyper-parameter tuning easier (e.g., reduce the number of hyper-parameters to tune)

— Reproducibility is critical for reducing unnecessary requests due to replication difficulties 2
also good for advancing research in ML

« On-going efforts in ML (Reproducibility Challenges) and Systems (Artifact Evaluation Badges)

e Reduce amount of needed data

— Exploit data reuse since data movement is expensive

— Explore data-efficient ML technigues & ML models that incorporate prior knowledge

* Evaluate carbon emissions versus quality of result tradeoffs

— Cost-benefit evaluation (e.g., Is the accuracy improvement worth the carbon emissions?)
— Deeper consideration of quality of result for a given task

Vivienne Sze (¥ @eems_mit) [Henderson, arXiv preprint arXiv:2002.05651, 2020] Mir



Recommended Best Practices

* Make energy-efficient settings the default setting — or easy to set

— Software and framework support for reduced precision and specialized hardware

* Measure and report energy consumption and carbon emissions

— Software and hardware support for measuring energy consumption
— System support for reporting carbon intensity of energy source

— Frameworks for standardized reporting [Henderson, arXiv preprint arXiv:2002.05651, 2020]
* https://github.com/Breakend/experiment-impact-tracker

* Run experiments in locations / at times with low carbon intensity
* Ensure reproducibility to avoid unnecessary experiments

 We can do much of this today (or in the very near future)!
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Key Takeaways

* Jointly consider energy efficiency and accuracy in ML research
— Consider the accuracy-energy tradeoffs and data-efficient ML techniques
— Design ML algorithms that directly target energy consumption

— Design specialized ML hardware to reduce data movement

* Incorporate energy efficiency considerations into best practices

— Lower the barrier to using existing energy-efficient computing options and
reporting/measuring energy consumption and carbon emissions

— Compute at locations with lowest carbon intensity and highest power efficiency

— Reduce unnecessary computing demands by ensuring reproducibility

Vivienne Sze (¥ @eems_mit) Slides available at http://sze.mit.edu/ Mir
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Additional Resources

Talks and Tutorial Available Online
https://www.rle.mit.edu/eems/publications/tutorials/
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