How to Evaluate Efficient
Deep Neural Network Approaches

Vivienne Sze (% @eems_mit)
Massachusetts Institute of Technology

In collaboration with Yu-Hsin Chen, Joel Emer, Yannan Wu, TRy
Tien-Ju Yang, Google Mobile Vision Team @-l&?ﬂ-_g
Slides available at fq":,,..,;r}"
https: //tinyurl.com/SzeMITDL2020 DS

Vivienne Sze (¥ @eems_mit)

Website: http://sze.mit.edu


https://tinyurl.com/SzeMITDL2020

Book on Efficient Processing of DNNs

Part I Understanding Deep Neural Networks
Introduction
Overview of Deep Neural Networks

aVA Y MORGAN &CLAYPOOL PUBLISHERS

Efficient Processing
of Deep Neural Part II Design of Hardware for Processing DNNs
Networks Key Metrics and Design Objectives
Kernel Computation
Designing DNN Accelerators
Operation Mapping on Specialized Hardware

Part III Co-Design of DNN Hardware and Algorithms
. Reducing Precision

Vivienne Sze, Yu-Hsin Chen, . EXp/OItIng Sparsity

el o Designing Efficient DNN Models

revenced Tecnobale
COMPUTER ARCHITECTURE

https://tinyurl.com/EfficientDNNBook

Vivienne Sze (¥ @eems_mit) Website: http://sze.mit.edu 2


https://tinyurl.com/EfficientDNNBook

How to Evaluate these DNN Approaches?

[0 Many Deep Neural Networks (DNN) accelerators and approaches
for efficient DNN processing.

B Too many to cover!

O We will focus on how to evaluate approaches for efficient
processing of DNNs

B Approaches include the design of DNN accelerators and DNN
models

B What are the key metrics that should be measured and
compared?
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TOPS or TOPS/W?

0 TOPS = tera (1012) operations per second

OO0 TOPS/Watt or TOPS/Watt commonly reported in hardware
literature to show efficiency of design

[0 However, does not provide sufficient insights on hardware

capabilities and limitations (especially if based on peak
throughput/performance)

Example: high TOPS per watt
can be achieved with inverter
(ring oscillator)
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Key Metrics: Much more than OPS/W!

Accuracy sy
B Quality of result i,?(i:{;i :ggg
Throughput 2533237438
B Analytics on high volume data FrEsneTel)

B Real-time performance (e.g., video at 30 fps)

Latency

B For interactive applications (e.g., autonomous navigation)
Energy and Power

B Embedded devices have limited battery capacity

B Data centers have a power ceiling due to cooling cost

Embedded Device

CIFAR-10
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Flexibility e

B Range of DNN models and tasks

Scalability

B Scaling of performance with amount of resources

[Sze, CICC 2017]
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Key Designh Objectives of DNN Accelerators

0 Increase Throughput and Reduce Latency

B Reduce time per MAC
[0 Reduce critical path - increase clock frequency
[0 Reduce instruction overhead
Avoid unnecessary MACs (save cycles)
B Increase number of processing elements (PE) > more MACs in parallel
[0 Increase area density of PE or area cost of system
B Increase PE utilization* > keep PEs busy
[0 Distribute workload to as many PEs as possible
O Balance the workload across PEs
[0 Sufficient memory bandwidth to deliver workload to PEs (reduce idle cycles)

O Low latency has an additional constraint of small batch size

*(100% = peak performance)
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Eyexam: Performance Evaluation Framework

MAC/cycle
A
................................................. — Step 1 max Workload parallelism (Depends on DNN Model)
k ................................................. — Step 2: max dataﬂOW parallelism
perfor mgﬁie R —> Number of PEs (Theoretical Peak Performance)

A systematic way of understanding the
performance limits for DNN hardware
as a function of specific characteristics of

the DNN model and hardware design

> MAC/data

[Chen, arXiv 2019: https://arxiv.org/abs/1807.07928 ]
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Eyexam: Performance Evaluation Framework

MAC/cycle
A

peak
performance

Slope = BW to PEs

—> Number of PEs (Theoretical Peak Performance)

Based on Roofline Model

> MAC/data
v
Bandwidth (BW) Compute .
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Eyexam: Performance Evaluation Framework

MAC/cycle

peak
performance

https://arxiv.orq/abs/1807.07928

ooooooooooooooooooooooooooooooooooooooooooooooooo

. —> Number of PEs (Theoretical Peak Performance)
................................................ Step 3: # of active PEs under a finite PE array size
............................................... Step 4: # of active PEs under fixed PE array dimension
------------------------- —> Step 5: # of active PEs under fixed storage capacity

> MAC/data

Slope = BW to only active PE
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Eyexam: Performance Evaluation Framework

MAC/cycle

peak
performance

ooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooo

. —> Number of PEs (Theoretical Peak Performance)

oooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooo

B — Step 6: lower act. PE util. due to insufficient average BW

'''''''''''''''''''''''''''''''''''' — Step 7: lower act. PE util. due to insufficient instantaneous BW
> MAC/data

workload operational intensity

https://arxiv.orq/abs/1807.07928
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Key Designh Objectives of DNN Accelerators

[0 Reduce Energy and Power
Consumption

B Reduce data movement as it
dominates energy consumption

O Exploit data reuse
B Reduce energy per MAC

O Reduce switching activity and/or
capacitance

0 Reduce instruction overhead
B Avoid unnecessary MACs

0 Power consumption is limited by
heat dissipation, which limits the
maximum # of MACs in parallel
(i.e., throughput)

Operation: Energy
(pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Multiply 0.2
32b Multiply 3.1
16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

[Horowitz, ISSCC 2014]

Relative Energy Cost

1 10 102 103

104

Vivienne Sze (¥ @eems_mit)

Website: http://sze.mit.edu

11



DNN Processor Evaluation Tools

[0 Require systematic way to

Timeloop

B Evaluate and compare wide range of |  (DNN Mapping Tool &
DNN processor designs _ Performance Simulator)
. . Architecture
B Rapidly explore design space description
[0 Accelergy [wu, ICCAD 2019] >
B Early stage energy estimation tool at \_/
the architecture level Accelergy
O Estimate energy consumption based on Compound (Energy Estimator Tool)
architecture level components (e.g., g‘;’:cﬁf’p”tfor‘: >
# of PEs, memory size, on-chip network)
B Evaluate architecture level energy 4 4 \ 4
i i i Ene Energ
ImpaCt Of emer_glng devices . estim;gt?;n estim;t?;n Energy
O Plug-ins for different technologies plug-in 0 plug-in 1 estimation

[0 Timeloop [Parashar, ISPASS 2019]
® DNN mapping tool
B Performance Simulator > Action counts

Open-source code available at:
http://accelergy.mit.edu

Vivienne Sze (¥ @eems_mit) Website: http://sze.mit.edu
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Accelergy Estimation Validation

[0 Validation on Eyeriss [chen, I1SSscc 2016]
B Achieves 95% accuracy compared to post-layout simulations
B Can accurately captures energy breakdown at different granularities

PsumRdNoC PsumRdNoC
PsumWrNoC 1.3% SharedBuffer PsumWrNoC  q o SharedBuffer
0.6% 3 6% 0.6% 3.9%
WeightsNoC 070

WeightsBuffer WeightsNoC WeightsBuffer

0.1%
) 0.2% 0.1% 0.2%
IfmapNoC IfmapNoC
0.5% 0.5%
Ground Truth Energy Breakdown Accelergy Energy Breakdown
Open-source code available at: http://accelergy.mit.edu [Wu, ICCAD 2019]
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Performing MAC with Memory Storage Element

Activation is input voltage (V) O Analog Compute
Weight is resistor conductance (Gj) B Activations, weights and/or partial sums are
encoded with analog voltage, current, or resistance

B Increased sensitivity to circuit non-idealities:
non-linearities, process, voltage, and temperature
variations

B Require A/D and D/A peripheral circuits to interface
with digital domain

O Multiplication
B eNVM (RRAM, STT-RAM, PCM) use resistive device
B Flash and SRAM use transistor (I-V curve) or local cap

O Accumulation
=V,XG;+V,XG, B Current summing
B Charge sharing

Psum —
| =1, +1,
IS output
current

Image Source: [Shafiee, ISCA 2016]

Vivienne Sze (¥ @eems_mit) Website: http://sze.mit.edu 14



Pro CeSSi n g I n M e m O ry ( PI M *) * a.k.a. In-Memory Computing (IMC)

Implement as matrix-vector multiply

m Typically, matrix composed of stored weights
and vector composed of input activations

Reduce weight data movement by

moving compute into the memory

B Perform MAC with storage element or in
peripheral circuits

B Read out partial sums rather than weights >
fewer accesses through peripheral circuits

Increase weight bandwidth

B Multiple weights accessed in parallel to keep
MACs busy (high utilization)

Increase amount of parallel MACs

B Storage element can be higher area density
than digital MAC

m Reduce routing capacitance

DAC

input
activations

YYVY VYV Y

22228222

weight
stationary
dataflow

eNVM:[Yu, PIEEE 2018], SRAM:[Verma, SSCS 2019]

Storage Element

222 2R 221

Analog logic
(mult/add/shift)

YYVy v¥Vy

[T T

oav

YYVY v¥Vy

psum/
output activations

Vivienne Sze (¥ @eems_mit)

Website: http://sze.mit.edu

15



Accelergy for PIM

Open-source code available at:
http://accelergy.mit.edu

Energy breakdown across layers

~ 1.E+4
Z 9.E+3
S 8.E+3
'48_ 7.E+3
£ 6.E+3
7 O.E+3
S 4.E+3
O 3.E+3
§ 2.E+3
o 1.E+3
S oevo W L1 L.

1 2 3 4

5 6 7 3

VGG Layers

mA2D Conver. Sys. EDigital Accu.
OPE Array Input Buffer

1 D2A Conver. Sys.

Achieves ~95% accuracy
0.037]

0.035J
66.9% 67.9%
2.6% J11.4%
17.7% 17.4%
rra3-0% - 3.1%

(o)
This WoIl_O'Ol 7 Cascade
[MICRO 2019]

[Wu, ISPASS 2020]
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Website: http://sze.mit.edu

16


http://accelergy.mit.edu/

Key Designh Objectives of DNN Accelerators

O Flexibility
B Reduce overhead of supporting flexibility

B Maintain efficiency across wide range of DNN models

O Different layer shapes impact the amount of
B Required storage and compute
B Available data reuse that can be exploited
O Different precision across layers & data types (weight, activation, partial sum)
O Different degrees of sparsity (number of zeros in weights or activations)
O Types of DNN layers and computation beyond MACs (e.g., activation functions)

[0 Scalability

B Increase how performance (i.e., throughput, latency, energy, power)
scales with increase in amount of resources (e.g., number of PEs, amount
of memory, etc.)

Vivienne Sze (¥ @eems_mit) Website: http://sze.mit.edu 17



Many Efficient DNN Design Approaches

Network Pruning Efficient Network Architectures

Il l
R
l 4 1’c
Reduce Precision

R RILLl 1 0100110100000000001101/000000000100

No guarantee that DNN algorithm

8-bit fixed [o/fAERe /(o KUEE designer will use a given approach.
EIIEEIIE Need flexible DNN processor!

Binary E [Chen, SysML 2018]
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Limitations of Existing DNN Accelerators

[0 Specialized DNN processors often rely on certain properties of the
DNN model in order to achieve high energy-efficiency

[0 Example: Reduce memory access by amortizing across PE array

Activation
Memory

> Weight reuse

PE array

Activation reuse

7
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Limitations of Existing DNN Accelerators

[0 Reuse depends on # of channels, feature map/batch size
B Not efficient across all DNN models (e.qg., efficient network architectures)

Example mapping for
Depth-wise layer ’
Number of feature map

input channels or batch size
< >
r | —
Number of filters P(E artr_a}/ Number of filters PE array
(output channels) spatial output channels (temporal
l iccumulatmﬂ)) ( P l ) accumulation)

Vivienne Sze (W @eems_mit) Website: http://sze.mit.edu 20



Eyeriss v2: Balancing Flexibility and Efficiency

® v1.5 & MobileNet = v2 & MobileNet = v2 & sparse MobileNet

[0 Uses a flexible hierarchical mesh
on-chip network to efficiently

7 109
E
support | || “ I| || | I “ I|
B Wide range of filter shapes TS T
B D
Dl_fferent layers _ Speed up over Eyeriss v1 scales with
B Wide range of sparsity number of PEs
#of PEs | 256 | 1024 | 16384
O Scalable architecture AlexNet | 17.9x | 71.5x |1086.7x
GooglLeNet | 10.4x 37.8X 448.8x
Over an order of magnitude MobileNet | 15.7x | 57.9x | 873.0x
faster and more energy efficient
than Eyeriss v1 [Chen, JETCAS 2019]

Vivienne Sze (¥ @eems_mit) Website: http://sze.mit.edu 21



Specifications to Evaluate Metrics

NIST CIFAR-10 ImageNet

SEET . EEED- Caoateale
”ﬁaﬂﬁuh.:t e

tmll NE" FEEW
EESHEErE P £S
EMATEY VRS
HE<NsDne R
EEENREOOEE =
:.ﬁiunﬂﬂﬂﬁ] pha >
BN ERT - e - Y
dRGESESOSN C = }

O Accuracy
B Difficulty of dataset and/or task should be considered
B Difficult tasks typically require more complex DNN models

O Throughput
B Number of PEs with utilization (not just peak performance)

NOeohkurrLbaly
SLQOPANQINN
CENUPR =~ 9

J o & £ o
SR U%o NI xA
NONONO LY —~

S QRN PpWo

PN w0IN
QNS & —

B Runtime for running specific DNN models Off-chip
O Latency memory
access

B Batch size used in evaluation
O Energy and Power
B Power consumption for running specific DNN models
B Off-chip memory access (e.g., DRAM)
O Hardware Cost
B On-chip storage, # of PEs, chip area + process technology

0 Flexibility
B Report performance across a wide range of DNN models
B Define range of DNN models that are efficiently supported [Sze, CICC 2017]

Computer Speech
Vision Recognltlon
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Comprehensive Coverage for Evaluation

0 All metrics should be reported for fair evaluation of design
tradeoffs

[0 Examples of what can happen if a certain metric is omitted:

B Without the accuracy given for a specific dataset and task, one could
run a simple DNN and claim low power, high throughput, and low cost -
however, the processor might not be usable for a meaningful task

B Without reporting the off-chip memory access, one could build a
processor with only MACs and claim low cost, high throughput, high
accuracy, and low chip power — however, when evaluating system power,
the off-chip memory access would be substantial

O Are results measured or simulated? On what test data?
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Example Evaluation Process

The evaluation process for whether a DNN processor is a viable
solution for a given application might go as follows:

[l

Accuracy determines if it can perform the given task

2. Latency and throughput determine if it can run fast enough
and in real-time

3. Energy and power consumption will primarily dictate the
form factor of the device where the processing can operate

4. Cost, which is primarily dictated by the chip area, determines
how much one would pay for this solution

5. Flexibility determines the range of tasks it can support

Vivienne Sze (¥ @eems_mit) Website: http://sze.mit.edu
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Design Considerations for Co-Design

[l Impact on accuracy
B Consider quality of baseline (initial) DNN model, difficulty of task and dataset
B Sweep curve of accuracy versus latency/energy to see the full tradeoff

0 Does hardware cost exceed benefits?

B Need extra hardware to support variable precision and shapes or to identify
sparsity
B Granularity impacts hardware overhead as well as accuracy

0 Evaluation

B Avoid only evaluating impact based on number of weights or MACs as they
may not be sufficient for evaluating energy consumption and latency
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Design of Efficient DNN Algorithms

Popular efficient DNN algorithm approaches

Network Pruning Efficient Network Architectures

before pruning after pruning

pruning
synapses

-->

pruning .
neurons

... also reduced precision

[0 Focus on reducing number of MACs and weights
0 Does it translate to energy savings and reduced latency?

Vivienne Sze (W @eems_mit) Website: http://sze.mit.edu 26



Data Movement is Expensive

E

E

PlPE
P

ALU

0.5-1.0 k8 [ig—>

ALU

NoC: 200 - 1000 PEs | PE —>

ALU

ALU

ALU

Specialized hardware with small (< 1kB)
low cost memory near compute

fetch data to run

a MAC here

Normalized Energy Cost’

1% (Reference)

1%
2%

6%

{

Farther and larger memories
consume more power

Energy of weight depends on
memory hierarchy and dataflow

200x%

* measured from a commercial 65nm process

Vivienne Sze (¥ @eems_mit)
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Energy-Evaluation Methodology

ﬁ/

DNN Shape Configuration
(# of channels, # of filters, etc.)

Hardware Energy Costs of each
MAC and Memory Access
|

# acc. at mem. level 1

Memory # acc. at mem. level 2

Accesses :

Optimization # acc. at mem. level n Edata

#of MACs  [EXGAVINON Ecomp

Calculation

v
DNN Weights and Input Data Energy T -
[0.3,0,-04,0.7,0,0,0.1, ...] ETITIE
Tool available at https://energyestimation.mit.edu/ [Yang, CVPR 2017]
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Key Observations

O Number of weights alone is not a good metric for energy

O All data types should be considered ¢omputation

10% Input Feature Map
25%

Weights

] 22%
Energy Consumption of
GooglLeNet
Tool available at https://energyestimation.mit.edu/ [Yang, CVPR 2017]
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Energy-Aware Pruning

Directly target energy
and incorporate it into the
optimization of DNNs to provide
greater energy savings

« Sort layers based on energy and prune
layers that consume the most energy first

 Energy-aware pruning reduces AlexNet
energy by 3.7x and outperforms the
previous work that uses magnitude-
based pruning by 1.7x

[Yang, CVPR 2017]

4.5
4
3.5
3
2.5
2
1.5
1
0.5
0

x10°

Magnitude
Based Pruning

2.1x

Normalized Energy (AlexNet)

Energy Aware
Pruning

Pruned models available at

http://everiss.mit.edu/energy.html

Vivienne Sze (¥ @eems_mit)

Website: http://sze.mit.edu
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# of Operations versus Latency

# of operations (MACs) does not approximate latency well

30
) .' Similar latency, 3x range in # MACs
o~ - " ----------------------- ~
® 1. 1 __ .l 7 T ¢
/ .\
7 20 o —
é Q'@
9 2 .
c I
1 10 e 0!
€ o0 ! Similar # MACs,
Q é ‘0 ~ = 2xrange in latency
&
0
25 50 75 100 125 150 175

# MACs (Million)

Source: Google (https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)
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NetAdapt: Platform-Aware DNN Adaptation

 Automatically adapt DNN to Pretrained Budget o : Platform
a mobile platform to reach a Networ e [ e | T T -
target latency or energy budget cedil]
l Energy 41. 46 I
* Use empirical measurements NetAdapt | Measure
to guide optimization (avoid | Neworkproposals
modeling of tool chain or seenseis |
. ) A A )
platform architecture) ENEmEmES |
EoEmEm .
R lEREE
. d d
. Requires very few b
hyperparameters to tune
In collaboration with Google’s Mobile Vision Team
Code available at http://netadapt.mit.edu [Yang, ECCV 2018]
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NetAdapt: Simplified Example of One Iteration

1. Input 2. Meet Budget 3. Maximize 4. Output
: :  Accuracy

. . |

. . |

. 1 | . |

=== = HE

Network from E i E
Previous : : |
Iteration : ! !
E L

» _______

Acc: 60%)]

Network for
Next Iteration

Code available at

_ Layer 4 . http://netadapt.mit.edu
Latency: 100ms 100msi“8_0_n-1;_i Acc: 40% Latency: 80ms
Budget: 80ms 4 i ! e . Budget: 60ms
E | : . .
et
| |
) )
o
Selected [Yang, ECCV 2018]
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Top-1 Accuracy

Improved Latency vs. Accuracy Tradeoff

0 NetAdapt boosts the measured inference speed of MobileNet by up to 1.7x

with higher accuracy

59%

570/0 N @ A
55% - - .
51% - o® A +0.3% accuracy
49% - o A 1.7x faster
&
47% = <
o/ o
it ® 4.40.3% accuracy
3% T8 1.6x faster
410A) 1 L L} L L}
3 5 7 9 11 13

Latency (ms)

Code available at http://netadapt.mit.edu

® NetAdapt (This Work)
A MobileNet Family [Howard, arXiv 2017]
#MorphNet [MorphNet, CVPR 2018]

*Tested on the ImageNet dataset
and a Google Pixel 1 CPU

[Yang, ECCV 2018]

Vivienne Sze (¥ @eems_mit) Website: http://sze.mit.edu
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FastDepth: Fast Monocular Depth Estimation

RGB Prediction

Depth estimation from a single

RGB image desirable, due to
the relatively low cost and size

of monocular cameras

Auto Encoder DNN Architecture (Dense Output)

upsample  upsample ‘upsample l upsample é upsample 1x1
””” layer 1 layer2 D layer3 2 layer4 layer 5 conv Dense
_> — — —_— —_— —_— Depth
Map
(MobileNet) 75741024 14x14x512  28x28x256 56x56x128  112x112x64 it

224 x224x3

224x224x1

i < Encoding Layers —» < Decoding Layers
] |\ J
|
Reduction ]
Expansion

(similar to classification)
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FastDepth: Fast Monocular Depth Estimation

Apply NetAdapt, compact network design, and depth wise decomposition to enable depth
estimation at high frame rates on an embedded platform while maintaining accuracy

Q.50 > 10x
8 < >
|8 %
é‘ 0.75 A
5 * This Work
© i Eigen'l4
« 0.70
8 ® @® Eigen'l5 (AlexNet) N40fpS on
O ® Eigen'l5 (VGG) -
= e ® Laina'l6 (UpConv) an iPhone
Laina'l6 (UpProj)
® Xian'l8
0.60

0 25 50 75 100 125 150 175
Frames per second (on Jetson TX2 GPU)
Configuration: Batch size of one (32-bit float)

Models available at http://fastdepth.mit.edu [Wofk, ICRA 2019]
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Design Considerations for PIM Accelerators

0 Prediction Accuracy
HE non-idealities of analog compute

O per chip training > expensive in practice
lower bit widths for data and computation
O multiple devices per weight > decrease area

density

O bit serial processing - increase cycles per MAC

0 Hardware Efficiency
B Data movement into/from array

O A/D and D/A conversion increase energy

consumption and reduce area density

H Array utilization

O Large array size can amortize conversion cost >
increase area density and data reuse - DNNs

need to take advantage of this property

Activation is input voltage (V)
Weight is resistor conductance (G;)

Partial sum | = l, + 1,

is output  _
current = V1X G+ VX G,

Image Source: [Shafiee, ISCA 2016]

Vivienne Sze (¥ @eems_mit)

Website: http://sze.mit.edu
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Design Considerations for DNNs on PIM

=@= alexnet
Designing DNNs for PIM may differ from £ 80 g || ugars
DNNs for digital processors 2 260 e i
Highest accuracy DNN on digital processor %;340- - restitis?
may be different on PIM £2. ~ oo e
m  Accuracy drops based on robustness to non- "~ o dgu;lll

idealities 0.0 0.1
Reducing number of weights is less desirable

B Since PIM is weight stationary, may be better
to reduce number of activations

B PIM tend to have larger arrays - fewer
weights may lead to low utilization on PIM

Current trend is deeper and smaller filters

B For PIM, may be preferable to do shallower
and larger filters

0.2 0.3 == mobilenetv2
Noise Std

Storage Element

«— RxSxC —

[Yang, IEDM 2019]
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Design Considerations for Co-Design

0 Time required to perform co-design
B e.qg., Difficulty of tuning affected by
O Number of hyperparameters

[0 Uncertainty in relationship between hyperparameters and impact on
performance

[0 Other aspects that affect accuracy, latency or energy
B Type of data augmentation and preprocessing

B Optimization algorithm, hyperparameters, learning rate schedule, batch size
B Training and finetuning time

B Deep learning libraries and quality of the code

[0 How does the approach perform on different platforms?
B Is the approach a general method, or applicable on specific hardware?

Vivienne Sze (W @eems_mit) Website: http://sze.mit.edu 39



Summary

0 The number of weights and MACs are not sufficient for evaluating the
energy consumption and latency of DNNs

B Designers of efficient DNN algorithms should directly target direct metrics such as
energy and latency and incorporate into the design

[0 Many of the existing DNN processors rely on certain properties of the
DNN which cannot be guaranteed as the wide range of efficient DNN
algorithm design techniques has resulted in a diverse set of DNNs

B DNN hardware used to process these DNNs should be sufficiently flexible to
support a wide range of techniques efficiently

[0 Evaluate DNN hardware on a comprehensive set of benchmarks and
metrics
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Proceedings: IEEE

Efficient Processing of Deep
Neural Networks: A Tutorial and Survey
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“Efficient Processing of Deep Neural
Networks: A Tutorial and Survey,”
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Networks Key Metrics and Design Objectives
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CHAPTER 3

Key Metrics and Design
Objectives

Over the past few years, there has been a significant amount of research on efficient process-
ing of DNNs. Accordingly, it is important to discuss the key metrics that one should consider
when comparing and evaluating the strengths and weaknesses of different designs and proposed
techniques and that should be incorporated into design considerations. While efficiency is often
only associated with the number of operations per second per Watt (e.g., floating-point opera-
tions per second per Watt as FLOPS/W or tera-operations per second per Watt as TOPS/W),
it is actually composed of many more metrics including accuracy, throughput, latency, energy
consumption, power consumption, cost, flexibility, and scalability. Reporting a comprehensive
set of these metrics is important in order to provide a complete picture of the trade-offs made
by a proposed design or technique.
In this chapter, we will

« discuss the importance of each of these metrics;

* breakdown the factors that affect each metric. When feasible, present equations that de-
scribe the relationship between the factors and the metrics;

* describe how these metrics can be incorporated into design considerations for both the
DNN hardware and the DNN model (i.e., workload); and

* specify what should be reported for a given metric to enable proper evaluation.

Finally, we will provide a case study on how one might bring all these metrics together for a
holistic evaluation of a given approach. But first, we will discuss each of the metrics.

3.1 ACCURACY

Aeccuracy is used to indicate the quality of the result for a given task. The fact that DNNs can
achieve state-of-the-art accuracy on a wide range of tasks is one of the key reasons driving the
popularity and wide use of DNNs today. The units used to measure accuracy depend on the
task. For instance, for image classification, accuracy is reported as the percentage of correctly
classified images, while for object detection, accuracy is reported as the mean average precision
(mAP), which is related to the trade off between the true positive rate and false positive rate.

CHAPTER 10

Advanced Technologies

As highlighted throughout the previous chapters, data movement dominates energy consump-
tion. The energy is consumed both in the access to the memory as well as the transfer of the
data. The associated physical factors also limit the bandwidth available to deliver data between
memory and compute, and thus limits the Illmughpul of the overall system. This is commonly
referred to by computer architects as the “memory wall.”!

To address the challenges associated with data movement, there have been various efforts
to bring compute and memory closer together. Chapters 5 and 6 primarily focus on how to
design spatial architectures that distribute the on-chip memory closer to the computation (e.g.,

scratch pad memory in the PE). This chapter will describe various other architectures that usc

advanced memory, process, undj[l/'rimnwr technologies to bri

First, we will deseribe efforts to bring the off-chi 1 H H
e et o i et 50 f Ay gilable DNN tutorial website

near-data processing, and include memory technologies

A

SkaC‘llh[')x?\\‘tI\.vill describe efforts to integrate the comp h tt D : //eye ri SS - m it : ed U/t u to ri a I - h t m I

approaches are often referred to as processing in memory S— By

memory technologics such as Static Random Access Memorics (SRAM), Dynamic Random
Access Memories (DRAM), and emerging non-volatile memory (NVM). Since these ap-
proaches rely on mixed-signal circuit design to enable processing in the analog domain, we will
also discuss the design challenges related to handling the increased sensitivity to circuit and de-
vice non-idealities (e.g., nonlinearity, process and temperature variations), as well as the impact

on area density, which is critical for memory.

Significant data movement also occurs between the sensor that collects the data and the
DNN processor. The same principles that are used to bring compute near the memory, where
the weights are stored, can be used to bring the compute near the sensor, where the input data is
collected. Therefore, we will also discuss how o integrate some of the compute infs the sensor.

Finally, since photons travel much faster than electrons and the cost of moving a photon
can be independent of distance, processing in the optical domain using light may provide signifi-
cant improvements in encrgy cfficiency and throughput over the clectrical domain. Accordingly,
we will conclude this chaprer by discussing the recent work that performs DNN processing in
the optical domain, referred to as Optical Newral Networks.

!Specifically, the memory wall refers to data moving between the off-chip memory (g, DRAM) and the processor
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