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How to Evaluate these DNN Approaches?

o Many Deep Neural Networks (DNN) accelerators and approaches 
for efficient DNN processing. 
n Too many to cover!

o We will focus on how to evaluate approaches for efficient 
processing of DNNs
n Approaches include the design of DNN accelerators and DNN 

models
n What are the key metrics that should be measured and 

compared? 
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TOPS or TOPS/W?

o TOPS = tera (1012) operations per second
o TOPS/Watt or TOPS/Watt commonly reported in hardware 

literature to show efficiency of design
o However, does not provide sufficient insights on hardware 

capabilities and limitations (especially if based on peak 
throughput/performance)
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Example: high TOPS per watt 
can be achieved with inverter 
(ring oscillator)
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Key Metrics: Much more than OPS/W!
o Accuracy

n Quality of result
o Throughput

n Analytics on high volume data
n Real-time performance (e.g., video at 30 fps)

o Latency
n For interactive applications (e.g., autonomous navigation)

o Energy and Power
n Embedded devices have limited battery capacity
n Data centers have a power ceiling due to cooling cost

o Hardware Cost
n $$$

o Flexibility 
n Range of DNN models and tasks

o Scalability
n Scaling of performance with amount of resources

ImageNet

Computer 
Vision

Speech 
Recognition

[Sze, CICC 2017]

MNIST

Data CenterEmbedded Device

CIFAR-10
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Key Design Objectives of DNN Accelerators

o Increase Throughput and Reduce Latency
n Reduce time per MAC 

o Reduce critical path à increase clock frequency
o Reduce instruction overhead

n Avoid unnecessary MACs (save cycles)
n Increase number of processing elements (PE) à more MACs in parallel

o Increase area density of PE or area cost of system
n Increase PE utilization* à keep PEs busy

o Distribute workload to as many PEs as possible
o Balance the workload across PEs
o Sufficient memory bandwidth to deliver workload to PEs (reduce idle cycles)

o Low latency has an additional constraint of small batch size 

*(100% = peak performance)
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Eyexam: Performance Evaluation Framework

Step 1: max workload parallelism (Depends on DNN Model)
Step 2: max dataflow parallelism
Number of PEs (Theoretical Peak Performance)peak

performance

MAC/cycle

MAC/data

[Chen, arXiv 2019: https://arxiv.org/abs/1807.07928 ] 

A systematic way of understanding the 
performance limits for DNN hardware 
as a function of specific characteristics of 

the DNN model and hardware design
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Eyexam: Performance Evaluation Framework

Number of PEs (Theoretical Peak Performance)peak
performance

Slope = BW to PEs

MAC/cycle

MAC/data

Bandwidth (BW)
Bounded 

Compute
Bounded [Williams, CACM 2009] 

Based on Roofline Model
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Eyexam: Performance Evaluation Framework

Step 1: max workload parallelism
Step 2: max dataflow parallelism

Step 3: # of active PEs under a finite PE array size
Number of PEs (Theoretical Peak Performance)

Step 4: # of active PEs under fixed PE array dimension

peak
performance

Step 5: # of active PEs under fixed storage capacity

Slope = BW to only active PE

MAC/cycle

MAC/data

https://arxiv.org/abs/1807.07928

PE

C

M
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Eyexam: Performance Evaluation Framework

Step 1: max workload parallelism
Step 2: max dataflow parallelism

Step 3: # of active PEs under a finite PE array size
Number of PEs (Theoretical Peak Performance)

Step 4: # of active PEs under fixed PE array dimension

peak
performance

Step 5: # of active PEs under fixed storage capacity

workload operational intensity

Step 6: lower act. PE util. due to insufficient average BW
Step 7: lower act. PE util. due to insufficient instantaneous BW

MAC/cycle

MAC/data

https://arxiv.org/abs/1807.07928
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Key Design Objectives of DNN Accelerators
o Reduce Energy and Power 

Consumption
n Reduce data movement as it 

dominates energy consumption
o Exploit data reuse

n Reduce energy per MAC 
o Reduce switching activity and/or 

capacitance
o Reduce instruction overhead

n Avoid unnecessary MACs

o Power consumption is limited by 
heat dissipation, which limits the 
maximum # of MACs in parallel 
(i.e., throughput)

Operation: Energy 
(pJ)

8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Multiply 0.2
32b Multiply 3.1
16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Relative Energy Cost

1 10 102 103 104[Horowitz, ISSCC 2014]
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DNN Processor Evaluation Tools
o Require systematic way to

n Evaluate and compare wide range of 
DNN processor designs

n Rapidly explore design space
o Accelergy [Wu, ICCAD 2019]

n Early stage energy estimation tool at 
the architecture level
o Estimate energy consumption based on 

architecture level components (e.g.,      
# of PEs, memory size, on-chip network)

n Evaluate architecture level energy 
impact of emerging devices
o Plug-ins for different technologies

o Timeloop [Parashar, ISPASS 2019]

n DNN mapping tool 
n Performance Simulator à Action counts

Open-source code available at: 
http://accelergy.mit.edu

Accelergy
(Energy Estimator Tool)

Architecture
description

Action 
countsAction 
counts

Compound 
component
description

… Energy 
estimation

Energy
estimation 
plug-in 0

Energy 
estimation 
plug-in 1

Timeloop
(DNN Mapping Tool & 

Performance Simulator)
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Accelergy Estimation Validation
o Validation on Eyeriss [Chen, ISSCC 2016]

n Achieves 95% accuracy compared to post-layout simulations
n Can accurately captures energy breakdown at different granularities

PE	Array	
93.8%

WeightsBuffer
0.2%

SharedBuffer
3.6%

PsumRdNoC
1.3%PsumWrNoC

0.6%
WeightsNoC

0.1%

Ground	Truth	Energy	Breakdown Accelergy Energy	Breakdown

IfmapNoC
0.5%

PE	Array	
93.0%

PsumRdNoC
1.2%

IfmapNoC
0.5%

WeightsNoC
0.1%

SharedBuffer
3.9%

WeightsBuffer
0.2%

PsumWrNoC
0.6%

Open-source code available at: http://accelergy.mit.edu [Wu, ICCAD 2019]
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Performing MAC with Memory Storage Element 
o Analog Compute

n Activations, weights and/or partial sums are 
encoded with analog voltage, current, or resistance

n Increased sensitivity to circuit non-idealities: 
non-linearities, process, voltage, and temperature 
variations

n Require A/D and D/A peripheral circuits to interface 
with digital domain

o Multiplication
n eNVM (RRAM, STT-RAM, PCM) use resistive device 
n Flash and SRAM use transistor (I-V curve) or local cap

o Accumulation
n Current summing 
n Charge sharing

V1
G1

I1 = V1×G1
V2

G2

I2 = V2×G2

I = I1 + I2
= V1×G1 + V2×G2

Image Source: [Shafiee, ISCA 2016]

Activation is input voltage (Vi)
Weight is resistor conductance (Gi)
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Psum
is output 
current
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Processing In Memory (PIM*)
o Implement as matrix-vector multiply

n Typically, matrix composed of stored weights 
and vector composed of input activations

o Reduce weight data movement by 
moving compute into the memory
n Perform MAC with storage element or in 

peripheral circuits
n Read out partial sums rather than weights à

fewer accesses through peripheral circuits
o Increase weight bandwidth 

n Multiple weights accessed in parallel to keep 
MACs busy (high utilization) 

o Increase amount of parallel MACs 
n Storage element can be higher area density 

than digital MAC
n Reduce routing capacitance 

weight 
stationary 
dataflow

input
activations 

DAC

AD
C

psum/
output activations

Analog logic 
(mult/add/shift)

Columns in Array (A)

Rows in 
Array (B)

Vivienne Sze (   @eems_mit) Website: http://sze.mit.edu 

* a.k.a. In-Memory Computing (IMC)

eNVM:[Yu, PIEEE 2018], SRAM:[Verma, SSCS 2019]

Storage Element
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Accelergy for PIM 
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(µ
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A2D Conver. Sys. Digital  Accu. D2A Conver. Sys.
PE Array Input Buffer

VGG Layers

Energy breakdown across layers

This Work [7]

0.037J
0.035J

66.9% 67.9%

11.4%

17.4%

3.1%

12.6%

17.7%

3.0%
0.01% N/ACascade 

[MICRO 2019]

[Wu, ISPASS 2020]

Achieves ~95% accuracy

Open-source code available at: 
http://accelergy.mit.edu
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Key Design Objectives of DNN Accelerators

o Flexibility
n Reduce overhead of supporting flexibility 
n Maintain efficiency across wide range of DNN models 

o Different layer shapes impact the amount of
n Required storage and compute
n Available data reuse that can be exploited

o Different precision across layers & data types (weight, activation, partial sum)
o Different degrees of sparsity (number of zeros in weights or activations)
o Types of DNN layers and computation beyond MACs (e.g., activation functions)

o Scalability
n Increase how performance (i.e., throughput, latency, energy, power) 

scales with increase in amount of resources (e.g., number of PEs, amount 
of memory, etc.)

Vivienne Sze (   @eems_mit) Website: http://sze.mit.edu 17



Many Efficient DNN Design Approaches

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV
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Network Pruning
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S

R

1

R

S
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Efficient Network Architectures

10100101000000000101000000000100

01100110

Reduce Precision

32-bit float

8-bit fixed

Binary 0

No guarantee that DNN algorithm 
designer will use a given approach.
Need flexible DNN processor!

[Chen, SysML 2018]
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Limitations of Existing DNN Accelerators

o Specialized DNN processors often rely on certain properties of the 
DNN model in order to achieve high energy-efficiency

o Example: Reduce memory access by amortizing across PE array

PE arrayWeight
Memory

Activation
Memory

Weight reuse

Activation reuse

Vivienne Sze (   @eems_mit) Website: http://sze.mit.edu 19



Limitations of Existing DNN Accelerators

o Reuse depends on # of channels, feature map/batch size 
n Not efficient across all DNN models (e.g., efficient network architectures)

PE array
(spatial 

accumulation)

Number of filters
(output channels)

Number of
input channels

PE array
(temporal

accumulation)

Number of filters
(output channels)

feature map
or batch size1

C
1

1R

Example mapping for 
Depth-wise layer

S
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Eyeriss v2: Balancing Flexibility and Efficiency

o Uses a flexible hierarchical mesh 
on-chip network to efficiently 
support 
n Wide range of filter shapes 
n Different layers 
n Wide range of sparsity

o Scalable architecture

Over an order of magnitude 
faster and more energy efficient 

than Eyeriss v1

Speed up over Eyeriss v1 scales with 
number of PEs 

# of PEs 256 1024 16384

AlexNet 17.9x 71.5x 1086.7x

GoogLeNet 10.4x 37.8x 448.8x

MobileNet 15.7x 57.9x 873.0x

5.6
10.9
12.6

[Chen, JETCAS 2019]
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Specifications to Evaluate Metrics
o Accuracy

n Difficulty of dataset and/or task should be considered
n Difficult tasks typically require more complex DNN models

o Throughput
n Number of PEs with utilization (not just peak performance)
n Runtime for running specific DNN models

o Latency
n Batch size used in evaluation

o Energy and Power
n Power consumption for running specific DNN models
n Off-chip memory access (e.g., DRAM)

o Hardware Cost 
n On-chip storage, # of PEs, chip area + process technology

o Flexibility 
n Report performance across a wide range of DNN models
n Define range of DNN models that are efficiently supported 

DRAM

Chip

[Sze, CICC 2017]

Computer 
Vision

Speech 
Recognition

Off-chip 
memory 
access

ImageNetMNIST CIFAR-10
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Comprehensive Coverage for Evaluation

o All metrics should be reported for fair evaluation of design 
tradeoffs

o Examples of what can happen if a certain metric is omitted:
n Without the accuracy given for a specific dataset and task, one could 

run a simple DNN and claim low power, high throughput, and low cost –
however, the processor might not be usable for a meaningful task

n Without reporting the off-chip memory access, one could build a 
processor with only MACs and claim low cost, high throughput, high 
accuracy, and low chip power – however, when evaluating system power, 
the off-chip memory access would be substantial

o Are results measured or simulated? On what test data?
Vivienne Sze (   @eems_mit) Website: http://sze.mit.edu 23



Example Evaluation Process

The evaluation process for whether a DNN processor is a viable 
solution for a given application might go as follows: 

1. Accuracy determines if it can perform the given task 
2. Latency and throughput determine if it can run fast enough 

and in real-time
3. Energy and power consumption will primarily dictate the 

form factor of the device where the processing can operate 
4. Cost, which is primarily dictated by the chip area, determines 

how much one would pay for this solution
5. Flexibility determines the range of tasks it can support

Vivienne Sze (   @eems_mit) Website: http://sze.mit.edu 24



Design Considerations for Co-Design

o Impact on accuracy 
n Consider quality of baseline (initial) DNN model, difficulty of task and dataset
n Sweep curve of accuracy versus latency/energy to see the full tradeoff

o Does hardware cost exceed benefits?
n Need extra hardware to support variable precision and shapes or to identify 

sparsity
n Granularity impacts hardware overhead as well as accuracy

o Evaluation 
n Avoid only evaluating impact based on number of weights or MACs as they 

may not be sufficient for evaluating energy consumption and latency 
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Design of Efficient DNN Algorithms

o Focus on reducing number of MACs and weights
o Does it translate to energy savings and reduced latency?

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Network Pruning
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1
S

R

1

R

S
C

Efficient Network Architectures

... also reduced precision

Popular efficient DNN algorithm approaches 
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Data Movement is Expensive

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 

Specialized hardware with small (< 1kB) 
low cost memory near compute

Farther and larger memories 
consume more power

Energy of weight depends on 
memory hierarchy and dataflow
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Energy-Evaluation Methodology

DNN Shape Configuration
(# of channels, # of filters, etc.)

DNN Weights and Input Data
[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …] L1 L2 L3

Energy

…

Memory 
Accesses

Optimization

# of MACs
Calculation

…

# acc. at mem. level 1
# acc. at mem. level 2

# acc. at mem. level n

# of MACs

Hardware Energy Costs of each 
MAC and Memory Access

Ecomp

Edata

[Yang, CVPR 2017]Tool available at https://energyestimation.mit.edu/
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Key Observations

o Number of weights alone is not a good metric for energy
o All data types should be considered 

Output Feature Map
43%

Input Feature Map
25%

Weights
22%

Computation
10%

Energy Consumption of 
GoogLeNet

[Yang, CVPR 2017]Tool available at https://energyestimation.mit.edu/
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Energy-Aware Pruning

Directly target energy 
and incorporate it into the 

optimization of DNNs to provide 
greater energy savings

• Sort layers based on energy and prune 
layers that consume the most energy first

• Energy-aware pruning reduces AlexNet
energy by 3.7x and outperforms the 
previous work that uses magnitude-
based pruning by 1.7x

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 
4.5 

Ori. DC EAP 

Normalized Energy (AlexNet) 

2.1x 3.7x 

x109 

Magnitude 
Based Pruning 

Energy Aware 
Pruning 

Pruned models available at 
http://eyeriss.mit.edu/energy.html[Yang, CVPR 2017]
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# of Operations versus Latency
# of operations (MACs) does not approximate latency well

Source: Google (https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)
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NetAdapt: Platform-Aware DNN Adaptation

• Automatically adapt DNN to 
a mobile platform to reach a 
target latency or energy budget

• Use empirical measurements 
to guide optimization (avoid 
modeling of tool chain or 
platform architecture) 

• Requires very few 
hyperparameters to tune

In collaboration with Google’s Mobile Vision Team

NetAdapt Measure

…

Network Proposals

Empirical Measurements
Metric Proposal A … Proposal Z

Latency 15.6 … 14.3

Energy 41 … 46

…… …

Pretrained
Network Metric Budget

Latency 3.8

Energy 10.5

Budget

Adapted
Network

… …

Platform

A B C D Z

[Yang, ECCV 2018]Code available at http://netadapt.mit.edu
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NetAdapt: Simplified Example of One Iteration

Code available at  
http://netadapt.mit.edu

Latency: 100ms
Budget: 80ms

100ms 90ms 80ms

100ms 80ms

Selected

Selected

Layer 1

Layer 4

…

Acc: 60%

Acc: 40%

…Selected

2. Meet Budget

Latency: 80ms
Budget: 60ms

1. Input 4. Output3. Maximize 
Accuracy

Network from 
Previous 
Iteration

Network for 
Next Iteration

[Yang, ECCV 2018]
Vivienne Sze (   @eems_mit) Website: http://sze.mit.edu 33

http://netadapt.mit.edu/


Improved Latency vs. Accuracy Tradeoff
o NetAdapt boosts the measured inference speed of MobileNet by up to 1.7x 

with higher accuracy

+0.3% accuracy
1.7x faster

+0.3% accuracy
1.6x faster *Tested on the ImageNet dataset 

and a Google Pixel 1 CPU

[Howard, arXiv 2017]

[MorphNet, CVPR 2018]

[Yang, ECCV 2018]Code available at http://netadapt.mit.edu
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FastDepth: Fast Monocular Depth Estimation

Depth estimation from a single 
RGB image desirable, due to 

the relatively low cost and size 
of monocular cameras

RGB Prediction

Auto Encoder DNN Architecture (Dense Output)

Reduction 
(similar to classification) Expansion
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FastDepth: Fast Monocular Depth Estimation
Apply NetAdapt, compact network design, and depth wise decomposition to enable depth 
estimation at high frame rates on an embedded platform while maintaining accuracy

[Wofk, ICRA 2019]
Configuration: Batch size of one (32-bit float)

Models available at http://fastdepth.mit.edu

> 10x

~40fps on 
an iPhone
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Design Considerations for PIM Accelerators
o Prediction Accuracy

n non-idealities of analog compute
o per chip training à expensive in practice

n lower bit widths for data and computation
o multiple devices per weight à decrease area 

density
o bit serial processing à increase cycles per MAC

o Hardware Efficiency
n Data movement into/from array

o A/D and D/A conversion increase energy 
consumption and reduce area density

n Array utilization
o Large array size can amortize conversion cost à

increase area density and data reuse à DNNs 
need to take advantage of this property

V1
G1

I1 = V1×G1
V2

G2

I2 = V2×G2

I = I1 + I2
= V1×G1 + V2×G2

Image Source: [Shafiee, ISCA 2016]

Activation is input voltage (Vi)
Weight is resistor conductance (Gi)

Partial sum 
is output 
current
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Design Considerations for DNNs on PIM

o Designing DNNs for PIM may differ from 
DNNs for digital processors

o Highest accuracy DNN on digital processor 
may be different on PIM
n Accuracy drops based on robustness to non-

idealities
o Reducing number of weights is less desirable

n Since PIM is weight stationary, may be better 
to reduce number of activations

n PIM tend to have larger arrays à fewer 
weights may lead to low utilization on PIM

o Current trend is deeper and smaller filters
n For PIM, may be preferable to do shallower 

and larger filters

Vivienne Sze (   @eems_mit) Website: http://sze.mit.edu 
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Design Considerations for Co-Design

o Time required to perform co-design
n e.g., Difficulty of tuning affected by

o Number of hyperparameters
o Uncertainty in relationship between hyperparameters and impact on 

performance

o Other aspects that affect accuracy, latency or energy 
n Type of data augmentation and preprocessing
n Optimization algorithm, hyperparameters, learning rate schedule, batch size
n Training and finetuning time
n Deep learning libraries and quality of the code

o How does the approach perform on different platforms? 
n Is the approach a general method, or applicable on specific hardware?

Vivienne Sze (   @eems_mit) Website: http://sze.mit.edu 39



Summary 

o The number of weights and MACs are not sufficient for evaluating the 
energy consumption and latency of DNNs
n Designers of efficient DNN algorithms should directly target direct metrics such as 

energy and latency and incorporate into the design  

o Many of the existing DNN processors rely on certain properties of the 
DNN which cannot be guaranteed as the wide range of efficient DNN 
algorithm design techniques has resulted in a diverse set of DNNs
n DNN hardware used to process these DNNs should be sufficiently flexible to 

support a wide range of techniques efficiently

o Evaluate DNN hardware on a comprehensive set of benchmarks and 
metrics

Vivienne Sze (   @eems_mit) Website: http://sze.mit.edu 40
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Additional Resources

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, 
“Efficient Processing of Deep Neural 
Networks: A Tutorial and Survey,” 

Proceedings of the IEEE, Dec. 2017

For updatesDNN tutorial website
http://eyeriss.mit.edu/tutorial.html EEMS Mailing List
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Book on Efficient Processing of DNNs
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Excerpts of Book
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Additional Resources

MIT Professional Education Course on 
“Designing Efficient Deep Learning Systems” 

http://shortprograms.mit.edu/dls
Next Offering: July 20-21, 2020 (Live Virtual)
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Additional Resources
Talks and Tutorial Available Online

https://www.rle.mit.edu/eems/publications/tutorials/

YouTube Channel
EEMS Group – PI: Vivienne Sze
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