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Abstract—Processing-in-memory (PIM) deep neural network
(DNN) accelerators, which aim to improve energy/area efficiency
of DNN processing by integrating computation into data stor-
age, have gained popularity in recent years. Therefore, it is
attractive to have a generally applicable framework that is able
to quickly provide insights into the various trade-offs involved
in PIM accelerator designs. We present an architecture-level
design estimation framework for PIM accelerators that allows
easy representations of the designs with provided architecture
templates and component design templates, performs analytical
runtime simulations, and produces technology-dependent area
and energy estimations. We show that the framework can be
easily used to evaluate state of the art PIM accelerator designs;
it achieves 95% accurate total energy estimations and reproduces
exact area breakdowns of the components in the design. Related
open-source code is available at http://accelergy.mit.edu/.

Index Terms—Architecture-Level Design Evaluations, Deep
Neural Network Accelerators, Processing-in-Memory

I. INTRODUCTION

In recent years, many DNN accelerators have been pro-
posed [1]-[8] to improve the energy efficiency of DNN
applications by exploiting the application-specific properties.
A class of these proposed accelerators [5]-[8] are designed
to reduce the amount of data movement by integrating the
computation into SRAM, DRAM, emerging non-volatile mem-
ory, etc. As a result of the integration, these accelerators are
able to perform the computations at the location where the
weights are stored and only read/write the input data/computed
partial sums from/to memories. We refer to them as PIM
accelerators. Since building a physical PIM accelerator is time-
consuming, it is attractive for designers to perform early-stage
design estimations of a PIM architecture without developing
the physical design layout of the memory bit-cells and the
integrated mixed-signal circuits. We refer to these early design
stage estimations as architecture-level estimations. Although
some existing works report architecture-level estimations of
their PIM accelerators [5], [6], each of them performs estima-
tions with different evaluation frameworks, which are often
not publicly available. This lack of generally applicable open-
source PIM accelerator estimation framework makes it hard
to quickly perform design space estimations on new designs,
as well as to compare to existing designs. To address the
above mentioned problems, we propose a generally applicable
architecture-level energy and area estimation framework for
PIM accelerators; the framework extends two existing works:
Timeloop [9] and Accelergy [10].
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Fig. 1: The block diagram of the design estimation framework
for PIM accelerators. The black-shaded blocks show the
extensions added to the existing frameworks.
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Fig. 2: The block diagram of the architecture template (shaded
in dark gray) and the component design templates (shaded in

light gray).

II. ESTIMATION FRAMEWORK

Figure 1 shows the high-level block diagram of our
PIM accelerator estimation framework, which contains a
Timeloop-based mapping space explorer and Accelergy-based
energy/area estimator. The existing tools are extended and
integrated to allow architecture-level energy/area estimations.
There are four inputs to the framework: (1) a DNN model
shape that specifies the dimensions of the workload; (2) map-
space constraints file that describes the hardware resource



allocation limitations; (3) an architecture that describes the
high-level components in the design; (4) a set of component
designs that describes the hardware details of each component.
As shown in Figure 1, we provide templates for (2), (3),
and (4) to allow much easier PIM design representations.
Figure 2 shows a block diagram of the architecture template
and the set of component design templates. Each processing
element (PE) in the architecture is responsible for performing
multiply accumulate (MAC) operations. The analog-to-digital
(A2D) and digital-to-analog (D2A) conversion systems are
responsible for converting between digital and analog signals.
An example design of the A2D conversion system, as shown
in Figure 2, consists of multiple ADCs and sample-and-hold
(S+H) units. Both the architecture and the component design
templates are associated with parameters (e.g., the number of
PE rows/cols are parameters associated with the architecture
template) that can be set by the designer to easily represent
different designs. Finally, since many PIM accelerators im-
plement weight stationary (WS) dataflow [11]. We provide
an example map-space constraints file that describes the WS
dataflow in terms of the the components described in the
provided architecture template. The constraints file can be
easily modified to represent other types of dataflows and its
detailed format can be found in Timeloop [9]. With the avail-
able templates, designers only need to provide the necessary
parameters associated with the templates to define a PIM
accelerator. If the designs have unique features that are not
captured by default, the templates are also easily customizable
to represent the additional features. Additionally, we provide
a primitive component library and a set of estimation plug-ins
to allow easy incorporation of energy and area charaterizations
of the unique devices used in a particular design.

III. EXPERIMENTAL RESULTS

We first use the proposed framework to evaluate the energy
consumption of the 65nm ADC-based architecture described
in CASCADE [7], which consists of 80 tiles of memristor
arrays. Each tile consists of 80 64-by-64 1-bit memristor arrays
(represented as a 64-by-320 16-bit PE array), an A2D conver-
sion system with 6-bit ADCs and S+Hs, a D2A conversion
system with 1-bit DACs, and a digital accumulation system
with 16-bit shift-and-add accumulators (SA). To fully define
each IMA architecture, we only need the specify 2 architecture
template parameters: # of PE rows/columns and input buffer
size. We specified 11 more parameters for the component
design templates. Other parameters are either set to default
values or auto-derived. Figure 3 (a) shows the layer by layer
absolute energy consumption of the convolutional layers in
the VGG workload [12]. The total energy consumption is
linearly related to the number of MACs in each layer. This
relationship is expected as most of the energy is consumed
by the A2D conversion system and the PE array, as shown
in the figure, which are both linearly related to the number
of analog MAC computations. Figure 3 (b) shows the total
energy consumption and component-wise energy breakdown
comparing to the results presented in CASCADE [7]. We are
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able to achieve approximately 95% match for total energy
estimation, and closely capture the energy breakdown of the
components in the design.

Since CASCADE deos not present exact area breakdowns,
we then perform an area estimation validation on the 32nm
ISAAC design’s in-situ multiply-accumulate (IMA) units [6].
Each IMA is composed of eight 128x128 2-bit memory cells,
eight 8-bit ADCs, 1024 S+Hs, 1024 1-bit DACs and 1024 16-
bit SAs. The related parameters in the architecture template are
updated to represent this new architecture. Figure 4 shows the
area breakdown reported by the estimation framework for each
type of components in an IMA. The reported architecture’s
area breakdown matches with the data presented in ISAAC,
showing that our framework correctly interprets the user-
specified parameters and performs accurate area estimations.

IV. CONCLUSION

This work proposes a generally applicable architecture-level
energy and area estimation framework for PIM accelerator
designs. To simplify the design representation, the proposed
framework provides users a parameterized architecture tem-
plate, a set of parameterizable component design templates,
a library of primitive components, and a set of table-based
estimation plug-ins. To simplify the dataflow representation,
the proposed framework provides a constraint file that specifies
a WS dataflow. We perform energy and area validations on
PIM architecture to demonstrate the accuracy, simplicity, and
flexibility of the proposed framework.
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