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Abstract— Exploration of unknown environments is embed-
ded and essential in many robotics applications. Traditional
algorithms, that decide where to explore by computing the
expected information gain of an incomplete map from future
sensor measurements, are limited to very powerful computa-
tional platforms. In this paper, we describe a novel approach
for computing this expected information gain efficiently, as
principally derived via mutual information. The key idea
behind the proposed approach is a continuous occupancy map
framework and the recursive structure it reveals. This structure
makes it possible to compute the expected information gain of
sensor measurements across an entire map much faster than
computing each measurements’ expected gain independently.
Specifically, for an occupancy map composed of |M | cells and a
range sensor that emits |Θ| measurement beams, the algorithm
(titled FCMI) computes the information gain corresponding to
measurements made at each cell in O(|Θ||M |) steps. To the
best of our knowledge, this complexity bound is better than
all existing methods for computing information gain. In our
experiments, we observe that this novel, continuous approach
is two orders of magnitude faster than the state-of-the-art FSMI
algorithm.

Supplementary video: youtu.be/j O1vOCrUME

I. INTRODUCTION

Robot exploration is an autonomous navigation task with
the goal of charting a map of an unknown environment.
Typical formulations of the problem aim to minimize relevant
metrics, such as, time, travel distance and energy, while
constructing the map.

In this paper, we focus on problem instances that seek
a completed occupancy map, in which the environment is
divided into regions that are each labeled as either free or
occupied. Arguably, the most common realization of such a
map is an occupancy grid [1], where each cell of a regular
grid spanning the environment is labeled with an occupancy
probability. In this framework, the map is inferred from range
sensor measurements, which radially measure distances from
the sensor to the nearest occupied points in space. In practice,
such measurements can be collected by lidar sensors.

In this setting, a useful operation is to determine how
informative each potential measurement location is, since
choosing to measure at a more informative location will
help to minimize the total time, travel distance or energy
required to construct the map. In fact, most existing robot
exploration strategies rely on such a metric. For instance,
greedy approaches find and navigate to the location that
maximizes information gain in an iterative manner [2] and
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(a) An occupancy grid (b) A mutual information surface

Fig. 1. Mutual information in an incomplete map of MIT’s building 31.
In the occupancy grid, black pixels are occupied, white pixels are free and

gray pixels are unknown. In the mutual information surface the brightness
of a pixel indicates how much information is expected to be gained from a
360◦ range sensor measurement made at that pixel.

receding horizon approaches maximize information gain
along paths within a look-ahead window [3]. Oftentimes, the
information gain is combined with path cost [4], localization
uncertainty [5] or measurement dependency [6].

Despite the widespread reference to an “expected informa-
tion gain” function, however, it has no universally accepted
definition. For instance, expected information gain has been
quantified as the solid angle of unknown space visible from
the sensor [2], [7] as well as the volume of unknown space
that is visible to the sensor [3], [4], [8]. The former heuristic
measures the visible frontier [9], and greedily maximizing it
is a slightly stronger variant of frontier exploration, which
states to simply move to the nearest unknown space. Suppose
the range sensor is comprised of |Θ| radial measurement
beams each with a maximum range of l cells. Then, comput-
ing each information heuristic at |M | potential measurement
locations takes time O(l|Θ||M |). Even in two dimensions,
this complexity can be limiting; authors report downsampling
potential measurement locations [4] and using adaptive data
structures [10] to make the computation manageable.

A more principled approach to quantify expected infor-
mation gain was introduced by Bourgault et al. [11]. If the
information content of a map M is measured by its entropy
H , then the expected information to be gained from a sensor
measurement Z is the mutual information [12] between M
and Z, which is denoted by I(M ;Z) and defined as follows:

I(M ;Z) = H(M)−H(M |Z). (1)

Bourgault et al. [11] computed mutual information in a
Monte Carlo fashion, by averaging the resulting map entropy
over random simulated sensor measurements.

Julian et al. [13] derived a deterministic expression for
the computation of mutual information I(M ;Z). Their algo-

https://youtu.be/j_O1vOCrUME


CSQMI or FSMI

FCMI

Fig. 2. Using FSMI or CSQMI to compute the expected information
gain of every map cell above requires scanning over the remaining length
of the array for each cell. Our algorithm, FCMI, computes the expected
information gain at every cell in a single pass by reusing calculations from
already scanned cells.

rithm runs in time O(λzl
2|Θ||M |), where λz is the resolution

of a numerical integral. Charrow et al. [6] improved upon
this in their Cauchy-Schwarz Quadratic Mutual Informa-
tion (CSQMI) algorithm which runs in time O(l|Θ||M |).
However, the mutual information that CSQMI computes is
defined according to a Cauchy-Schwarz cost function [14]
rather than the self-information function originally proposed
by Shannon [15], which is the only local, proper and smooth
cost function for an alphabet of size at least three [16], [17].

More recently, Zhang et al. [18] proposed the Fast Shan-
non Mutual Information (FSMI) algorithm, which computes
mutual information as classically defined by Shannon in
time O(l|Θ||M |), matching both CSQMI and the information
heuristics.

In this paper, we aim to compute a principled mutual
information metric even faster. The main contribution of
this paper is a novel algorithm that computes the mutual
information between a map and sensor measurements made
at all |M | cells in the map in just O(|Θ||M |) time, improving
upon the state-of-the-art by a factor of O(l). The key to
this improvement is a recursive structure, as shown in Fig-
ure 2, that results from a novel, continuous occupancy map
framework. The algorithm is therefore titled Fast Continuous
Mutual Information (FCMI). In realistic experiments, we
observe that this speedup makes FCMI roughly two orders
of magnitude faster than the state-of-the-art. Specifically, we
observe up to a 300 times speed up when compared to the
FSMI algorithm, which was reported to be roughly twice
as fast as CSQMI in experiments [18]. This speedup makes
it practical to exhaustively compute the mutual information
between a map and all possible measurement states as shown
in Figure 1b. These dense information surfaces are applicable
to a zoo of exploration strategies that involve maximizing
expected information gain. We also provide the results of
experiments that verify the correctness of FCMI.

This paper is organized as follows. Section II discusses
certain technical assumptions, introduces our notation and
presents the continuous occupancy map framework. Section
III derives the FCMI algorithm for computing the mutual
information between an occupancy map and sensor measure-
ments made at all cells within that map. Section IV presents
the results of experiments. Section V concludes.

II. ASSUMPTIONS, DEFINITIONS AND NOTATION

A. Technical Assumptions

In this section, we summarize the various technical as-
sumptions of our work, for transparency. Notably, we have
relaxed two assumptions that were necessary in [6], [13],
[18]: we do not assume an inverse sensor model nor that the
intersections between a ray and a grid are of a constant size.

1) Sensor Certainty: We assume that range sensors mea-
surements are distorted by an arbitrarily small but nonzero
amount of additive noise. This contrasts with other rigorously
derived information metrics which consider the sensor noise
to be additive and Gaussian [6], [13], [18]. Our reasoning
is that many modern lidar sensors in use, like the Velodyne
Puck or Hokuyo UST-10, have a very small amount of addi-
tive noise relative to their maximum range. Any perceivable
noise is more likely to be from localization error or object
reflections and won’t necessarily follow a Gaussian model.
Moreover, the authors in [18] observe that changing the
sensor noise distribution from Gaussian to uniform makes
an imperceptible difference in results, which suggests that
accounting for this type of sensor noise may not contribute
much to exploration.

2) Sensor Range: We assume that range sensors have no
maximum range which is necessary to prove the recursive
formula presented in Lemma 1. This assumption is clearly
unrealistic and differs from most previous work. However,
we argue that in a cluttered environment the difference
is irrelevant. We also believe that this assumption can be
relaxed, albeit with some tedious bookkeeping.

3) Occupancy Independence: We assume that the oc-
cupancy probabilities of nonoverlapping map regions are
independent. This is equivalent to the independence as-
sumption used in occupancy grid mapping [1], and it is
also necessary for [6], [13], [18]. In structured, predictable
environments this assumption is weak, however in cases
where robotic exploration is useful, the dissociation becomes
reasonable. Additionally, if the sensor noise is negligible, no
dependencies will be introduced by the measurement process
itself.

4) Occupancy Cells: We assume that the occupancy map
is discrete and that the cells are small enough that rays
passing through a cell approximate rays emanating from a
single point.

5) Localization: Finally, we assume that localization is
perfect. There are several exploration strategies that consider
localization uncertainty in tandem with information gain
which is helpful in Simultaneous Localization and Mapping
(SLAM) applications [19], [20]. While it is important to
consider whether the ideas developed here can be extended
to include localization error, it is out of scope of this paper.

B. Occupancy Maps

The following definitions describe a continuous occupancy
map, generalizing occupancy grids [1].



Definition 1. An occupancy map M is a binary-valued
random field indexed by points x ∈ Rn. The outcome of each
binary random variable Mx is either “free” or “occupied”.

Definition 2. Each point x ∈ Rn in occupancy map M
has an occupancy oM (x) ∈ [0, 1] and a vacancy vM (x) =
1 − oM (x). For any piecewise smooth curve C ⊂ Rn the
probability that MC is free is equal to the continuous product
of vacancies along C,

P (MC is free) =
∏
x∈C

vM (x)ds (2)

= exp

(∫
C

log vM (x) ds

)
. (3)

Remark 1. In occupancy grid mapping, works [6], [13], [18]
intuitively consider the probability that a light beam passes
through cells with occupancy probabilities o1 . . . om to be

m∏
i=1

(1− oi). (4)

Definition 2 generalizes this property to continuous space.
In this generalization however, one cannot equate the

occupancy oM (x) to the probability that Mx is occupied.
To shed some insight on the relation between occupancy as
we’ve defined it and occupancy probability [1], consider a
space with constant vacancy v. By Definition 2,

P (MC is free) = v
∫
C ds. (5)∫

C ds is simply the arc length of C. If C has unit length
then the probability that MC is free is exactly equal to the
vacancy. As C shrinks, the probability that MC is free grows
exponentially and vice versa. A particularly useful conse-
quence is that occupancy and vacancy, unlike dimensionless
occupancy and vacancy probabilities, are invariant to the map
resolution; dividing a region in two decreases the probability
that the region is occupied, but does not effect its occupancy.

C. Range Measurements

Similarly, the following definition generalizes the returns
of many sensors including sonar, radar, and lidar.

Definition 3. R is a random field consisting of range mea-
surements Rx,Θ. Each Rx,Θ evaluates to a set of distances
that measure from source point x ∈ Rn to the nearest
occupied points of M within field of view Θ ⊂ Rn−1. Each
angular coordinate θ = (θ1, . . . , θn−1) ∈ Θ denotes a beam.

In this paper, we make a symbolic distinction between
ground truth range measurements Rx,Θ and distorted range
measurements Zx,Θ. Although we assume that the noise
is arbitrarily small, it must be nonzero, otherwise mutual
information is undefined in a continuous setting [12].

III. COMPUTING MUTUAL INFORMATION

This section derives the FCMI algorithm that computes
the mutual information I(M ;Zx,Θ) between a map M and
range measurements Zx,Θ for all cell centers x in M . The
derivation is organized as follows. Section III-A establishes
a general formula for I(M ;Zx,Θ). Section III-B completes

the formula by deriving an expression for the probability
density function of a range measurement. With the goal of
making the formula computationally tractable, Section III-C
investigates how a piecewise map simplifies the probability
density function. This analysis reveals that components of
I(M ;Zx,Θ) can be recursively defined in terms of compo-
nents of I(M ;Zy,Θ) for points y adjacent to x. This result is
key to giving the FCMI algorithm state-of-the-art complexity
in Section III-D.

Due to space limitations, we only sketch the key points of
each proof.

A. Formulating Mutual Information in a Continuous Setting
Theorem 1. Suppose measurements Zx,Θ are range mea-
surements Rx,Θ with distances distorted by additive, inde-
pendent, identically distributed noise N . Then, the mutual
information between map M and the measurements Zx,Θ is
the sum of the mutual information between M and individual
measurement distances Zx,θ for beams θ ∈ Θ.

I(M ;Zx,Θ) =

∫
θ∈Θ

I(M ;Zx,θ). (6)

Additionally, I(M ;Zx,θ) is equal to the difference of differ-
ential entropies,

I(M ;Zx,θ) = h(Zx,θ)− h(Zx,θ|M), (7)

which can be defined in terms of probability density functions
fZx,θ

(r) and fRx,θ
(r) of the distorted and ground truth

distances as follows:

h(Zx,θ) = −
∫
r∈R

fZx,θ
(r) log fZx,θ

(r) dV (8)

h(Zx,θ|M) =

−
∫
ρ∈R

fRx,θ
(ρ)

∫
r∈R

fN (r − ρ) log fN (r − ρ) dV dρ.

(9)

Equation (6) results from the independence of measure-
ment distances Zx,θ, which is implied by Definition 2 and the
noise assumptions. The definition of differential entropy [12]
provides the rest of the equations, with the additivity of the
noise needed in Equation (9). Note that the volume element
is dV = rn−1drdθ.

B. Density Functions of Range Measurements
Evaluating Equations (8) and (9) from Theorem 1 requires

the knowledge of the probability density functions fZx,θ
,

fRx,θ
, and fN . Since the noise is additive and independent,

the distorted distribution is a convolution of the other two,
i.e., fZx,θ

= fRx,θ
? fN . The noise distribution will be given

explicitly in Section III-D which leaves the distribution of
the range measurement distance fRx,θ

as the only unknown.
In this section, we develop an expression for fRx,θ

. With-
out loss of generality, we consider probability distributions
of measurement made along a line. With a slight abuse of
notation, we index the map and measurement fields by real
numbers with the intent of indicating points along that line
defined by arbitrary angle θ and translation t, i.e.,

vM (x) = vM (xû(θ) + t) and Rx = Rxû(θ)+t,θ. (10)
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Fig. 3. A visualization of the notation presented in Lemma 1
A range measurement, shown in red, is at made from point a and passes

through point b. The region in between a and b shown in grey has width
w and constant vacancy e−λ.

where û(θ) is a unit vector pointing in the θ direction.

Theorem 2. The probability density function of the range
measurement distance Rx is the following for r ≥ 0:

fRx
(r) = − exp

(∫ x+r

x

log vM (s) ds

)
log vM (x+ r).

(11)

The proof follows directly from Definition 2.

C. A Piecewise Vacancy Assumption

Applying the result of Theorem 2 to the equations in
Theorem 1 forms a complete expression for the mutual
information I(M ;Zx,Θ). However, it is by no means prac-
tical to perform a quadruple integration numerically. In this
section, we apply the assumption that the map is discrete,
like an occupancy grid [1], so that vacancies within the map
are piecewise constant. This gives rise to the foreshadowed
recursive structure. In the rest of our derivation, we use the
notation introduced in Lemma 1 to describe a piecewise
region and its vacancy. This notation is visualized in Figure 3.

Lemma 1. Suppose that vM (x) = e−λ, a constant for a ≤
x < b with λ ≥ 0. Let w = b−a be the width of this constant
region. fRa

(r) has the following recursive form.

fRa
(r) =


0 r < 0

λe−λr 0 ≤ r < w

e−λwfRb
(r − w) r ≥ w

(12)

Proof of Lemma 1 follows from Theorem 2. Informally,
Lemma 1 shows that near its source, each measurement
has an exponential distribution. Otherwise, each is defined
recursively in terms of further measurement distributions.

Using Lemma 1 we conclude Corollaries 1 through 4,
which together provide solutions to expected values

E[Rka] =

∫ ∞
0

fRa(r)rk dr and (13)

E[RkaI(Ra)] = −
∫ ∞

0

fRa(r)rk log fRa(r) dr (14)

for any k ∈ Z. These values will be used to compute
the mutual information in Theorem 1; note the similarity
between Equations (14) and (8) and Equations (13) and (9)
(recall that rn−1 is hidden in the volume element, dV ).
Properly defining the sensor noise distribution in Section III-
D will resolve the remaining differences.

Corollaries 1 and 2 have a closed form, while Corollaries 3
and 4 are defined recursively, which makes it possible to
compute E[Rka] and E[RkaI(Ra)] and therefore I(M ;Za) in
constant time if E[Rkb ] and E[Rkb I(Rb)] are known.

Corollary 1. The Ra < w contribution to E[Rka] is∫ w

0

fRa
(r)rk dr = λ−kγ(k + 1, λw). (15)

Corollary 2. The Ra < w contribution to E[RkaI(Ra)] is

−
∫ w

0

fRa(r)rk log fRa(r) dr =

λ−k(γ(k + 2, λw)− γ(k + 1, λw) log λ).

(16)

Corollary 3. The Ra > w contribution to E[Rka] is∫ ∞
w

fRa
(r)rk dr = e−λw

k∑
i=0

(
k

i

)
wk−iE[Rib]. (17)

Corollary 4. The Ra > w contribution to E[RkaI(Ra)] is

−
∫ ∞
w

fRa
(r)rk log fRa

(r) dr =

e−λw
k∑
i=0

(
k

i

)
wk−i(E[RibI(Rb)] + λwE[Rib]).

(18)

Corollaries 1 and 2 reference the following function:

Definition 4. The lower incomplete gamma function is
defined as [21]:

γ(k + 1, x) =

∫ x

0

tke−t dt (19)

The recurrence relation γ(k+ 1, x) = kγa(k)−xke−x gives
the function a closed-form expression for any k ∈ Z≥0, with
base case γ(1, x) = 1− e−x.

D. For Barely Distorted Range Measurements

Given Corollaries 1 through 4, it appears that we have the
resources to compute the mutual information between the
map and distortionless range measurements Rx,θ. Unfortu-
nately, in the absence of any noise h(Rx,θ|M) = −∞, a
bizarre caveat of information in a continuous setting [12].

To solve this, consider range measurements that are barely
distorted as follows.

Lemma 2. Suppose the measurement noise N has probabil-
ity density function fN (r) = Λe−Λr for r ≥ 0 and fN (r) =
0 otherwise. Then, if Λ � λ then fZa(r) approximates
fRa(r) for r ≤ w and if λ � Λ then fZa(r) approximates
fN (r) for r ≤ w.

The barely distorted measurement fZa
can be approx-

imated by clipping values of λ larger than Λ to Λ and
then applying the formula for fRa given by Lemma 1. This
ensures the that both limits in Lemma 2 hold. As Λ grows,
the range of vacancies e−λ that are not well approximated
shrinks exponentially.

A large value of Λ also lets one simplify Equation (9)
from Theorem 1.

Lemma 3. If Zx,θ is barely distorted with sufficiently large
Λ then the following approximation holds.

h(Zx,θ|M) ≈ (1− log Λ)E[Rn−1
x,θ ]dθ. (20)

With that, the main result:



Theorem 3. Suppose map M contains |M | cells that each
have constant vacancy and all other space occupied. Then,
Algorithm 1 (FCMI) approximates the mutual information
I(M ;Zx,Θ) between the map and barely distorted range
measurements Zx,Θ made from every cell center x. The field
of view Θ is constant and quantized into |Θ| beams with
width dθ. The algorithm runs in time O(|Θ||M |).

In Algorithm 1, Ix approximates I(M ;Zx,Θ). αk and
βk approximate E[Zkx,θI(Zx,θ)] and E[Zkx,θ] respectively.
If the noise is small enough then according to Theorem 1,
h(Zx,θ) ≈ αn−1dθ. According to Lemma 2, h(Zx,θ|M) ≈
(1 − log Λ)βn−1dθ. Therefore, according to Theorem 1,
Lines 23 and 24 accumulate the mutual information con-
tribution of beam θ to a measurement at cell x.

To compute αk and βk, Corollaries 1 through 4 are
applied (Lines 17-22). This constant-time update step makes
it possible to compute the mutual information contribution
of beam θ to all cells a ray intersects in a single pass. By
casting rays that touch all |M | cells in all |Θ| orientations,
the algorithm takes O(|Θ||M |).

Remark 2. n is the dimension of the of the space and for
physical exploration n ≤ 3, so it is omitted from FCMI’s
runtime.

Remark 3. FCMI is approximate for two reasons: the
barely distorted approximation and the finite cell size. The
parameter Λ can be made arbitrarily large without effecting
computation time. In practice we set Λ = 10100 which makes
this approximation numerically imperceptible. More subtly,
the beams used to compute the mutual information at each
cell center x are not truly radial. The beams contributing to
mutual information at cell center x start at the boundary of
x’s cell and point through it. This approximates a truly radial
scan if the cells are small as discussed in Section II-A.

Remark 4. FCMI as presented computes I(M ;Zx,Θ) with
a constant field of view Θ. However in many cases it
is valuable to have a variable Θ to account for different
orientations of the sensor. In some cases FCMI can be
augmented to this end with no change to complexity.

For example, consider a planar sensor that has field of view
Θ = [0, dθ . . . π] in one particular orientation. FCMI can
compute I(M ;Zx,Θ) at all cells from this fixed orientation
in O(|Θ||M |). Then to compute I(M ;Zx,Θ+dθ), the mutual
information between the map and measurements with a
slightly rotated field of view, one can add I(M ;Zx,π+dθ)
and subtract I(M ;Zx,0) from all cells. This can be done by
in O(|M |) via two iterations of Loop 5-26. A sweep of all
quantized orientations still takes O(|Θ||M |).

IV. EXPERIMENTAL EVALUATION

In this section, we investigate the proposed FCMI algo-
rithm empirically. Section IV-A measures the speed of FCMI
and compares it to FSMI [18]. Section IV-B verifies the
accuracy of the algorithm, both in terms of the integration
it evaluates and as a measure of actual expected information

Algorithm 1 Fast Continuous Mutual Information (FCMI)
Require: n-dimensional occupancy map M containing |M | con-

stant vacancy cells and all other space occupied; field of view
Θ; large distortion parameter Λ

Initialize the mutual information to zero
1: for each cell center x in map M do
2: Ix ← 0
3: end for

4: for θ ∈ Θ do
5: Trace rays at angle θ that start and end in occupied
6: space such that each cell in M is hit exactly once.
7: for each ray T do

Initialize the expected values
8: for k = 0 to n− 1 do
9: αk ← Λ−k((k + 1)!− k! log Λ)

10: βk ← Λ−kk!
11: end for

12: for each cell that T intersects in reverse do
13: x← the center of the cell
14: w ← the width of T passing through the cell
15: e−λ ← the constant vacancy of the cell

Clip to approximate small distortion
16: λ← min(λ,Λ)

Update the expected values
17: for k = n− 1 to 0 do
18: αk ← e−λw

∑k
i=0

(
k
i

)
wk−i(αi + λwβi)

19: αk ← αk + λ−k(γ(k + 2, λw)− γ(k + 1, λw) log λ)
20: βk ← e−λw

∑k
i=0

(
k
i

)
wk−iβi

21: βk ← βk + λ−kγ(k + 1, λw)
22: end for

Accumulate mutual information
23: Ix ← Ix + αn−1dθ
24: Ix ← Ix − (1− log Λ)βn−1dθ
25: end for
26: end for
27: end for

gain. Finally, Section IV-C studies a hidden parameter of the
algorithm, occupancy probability initialization.

The software is available open-source at https://

github.com/sportdeath/range_mi.

A. The Speed of FCMI

In our first timing experiment we use a single threaded
1.9GHz i7-8650U CPU, comparable with the 2.10GHz Intel
Xeon E5-2695 CPU used in the FSMI experiments [18]. Our
implementation of FCMI computes the mutual information
contribution of a single beam pointing in the positive direc-
tion at every cell in a random, 1-dimensional, 100-cell map
in 2.3 microseconds on average. For comparison, the fastest
reported variant of the FSMI algorithm (Uniform FSMI)
computes the mutual information contribution at a single cell
with a beam length of 100 cells in 10 microseconds [18]. By
extrapolating, computing the mutual information at every cell
takes FSMI 505 microseconds, making the FCMI 219 times
faster than FSMI, in this case.

https://github.com/sportdeath/range_mi
https://github.com/sportdeath/range_mi
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Fig. 4. Timing on square maps with |Θ| = 200 beam angles

(a) An incomplete map (b) FCMI output (c) Simulated info gain

Fig. 5. Comparison of FCMI to average simulated information gain

In our second experiment we look at the time it takes
to compute 2D mutual information surfaces as a function
of map area on a 3.7GHz i7-8700K CPU. Figure 4 shows
that FCMI computes mutual information surfaces of sizes
up to 1000×1000 in seconds with computation time scaling
linearly with map area. Compared to our optimized imple-
mentation of the FSMI algorithm, Figure 4 shows that FCMI
is hundreds of times faster with a speedup that scales with
the root of the map area.

B. The Accuracy of FCMI

We performed two experiments to verify that the compu-
tation from FCMI actually produces the correct result.

In the first, we compute the mutual information numer-
ically in random, 1-dimensional, 100-cell maps according
the to the integrals provided in Theorems 1 and 2. When
the integration step size is 10−6, the difference is on aver-
age < 0.02% of FCMI’s output. Decreasing the step size
reduces the error further. Similar results hold for dimensions
1 < n ≤ 5 (what 5-dimensional exploration could is used
for is another question). The experiment also verifies that
the mutual information is always non-negative as required
axiomatically [12].

In the second experiment, we compare the output of
FCMI to average simulated information gain. To compute the
average simulated information gain of a single measurement
location, we randomly generate “ground truth” values for
an incomplete occupancy map based on the map’s occu-
pancy probabilities. Then, we use those values to simulate
a measurement from the desired location and update the
map accordingly. Averaging the change in entropy of the
map (computed as the sum of binary entropies) over many

(a) Two cubicles (b) 50% occupied (c) 1% occupied

Fig. 6. The effect of occupancy initialization on mutual information

possible map assignments gives the claimed result.
Figure 5 shows how the average simulated information

gain converges to values that are practically indistinguish-
able from the output of the FCMI algorithm. Some noise
remains in the simulated surface because of its Monte Carlo
computation and long runtime.

C. The Effect of the Unknown Prior on Mutual Information

It is common practice to initialize occupancy probabilities
to 1/2 which authors claim is a state of zero information [1],
[6], [13], [18]. However it is apparent from definition 2 or the
discrete equivalent mentioned in remark 1 that this practice is
synonymous to the assumption that a measurement beam is
expected to pass through ≈ 2 cells before hitting an obstacle.
2 cells is an entirely arbitrary number and in a map with a
fine resolution, a very small distance.

Now, treating this initialization value as a free parameter,
we study how it effects mutual information.

Figure 6a features two cubicles, the top one partially
explored and the bottom one unexplored. If the initialized
vacancy is relatively low, the mutual information is high in
the top cubicle. This is because measurement beams are not
expected to travel very far into unknown space and so mutual
information effectively measures the perimeter of unknown
space visible to the sensor. Conversely, if the vacancy is high,
the most information is gained by viewing the largest volume
of unknown space which is found in the bottom cubicle.
Effectively, the initialization parameter interpolates between
the two classic information gain heuristics discussed in the
introduction — no wonder they work!

V. CONCLUSION

In this work we derived the FCMI algorithm for computing
the mutual information between an occupancy map and a
range sensor measurement that has a lower complexity and is
hundreds of times faster than the state of the art. This makes
it possible to exhaustively compute the measurement state
that maximizes expected information gain which is useful
for a host of exploration strategies.

It would be interesting for future work to consider making
the information metric account for various types of noise like
localization error or sensor distortion while maintaining the
same complexity. The algorithm presented is also ripe for
parallelism and we believe with a GPU implementation, it
would be possible to evaluate mutual information surfaces at
sensor rate.
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