How to Evaluate Deep Neural Network Accelerators

Vivienne Sze (@eems_mit)
Massachusetts Institute of Technology

In collaboration with Yu-Hsin Chen, Joel Emer, Yannan Wu, Tien-Ju Yang, Google Mobile Vision Team

Slides available at https://tinyurl.com/SzeMITDL2020

Increasing Number of Deep Neural Network Accelerators

Machine Learning Arxiv Papers per Year

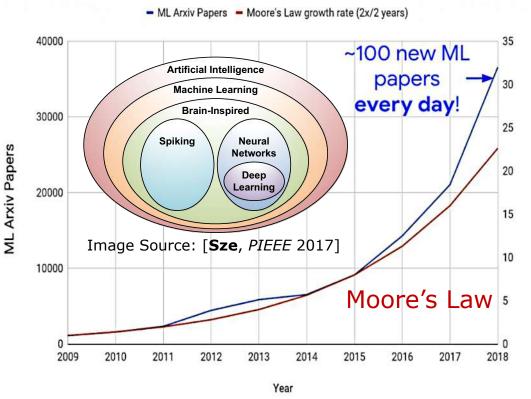
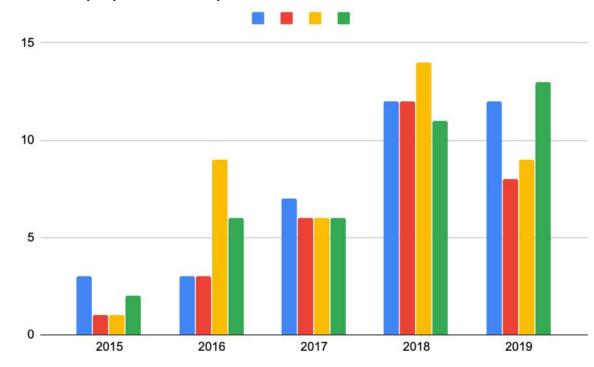


Image Source: [Dean, ISSCC 2020]

Number of Deep Neural Network (DNN) Accelerator papers at top-tier hardware conferences

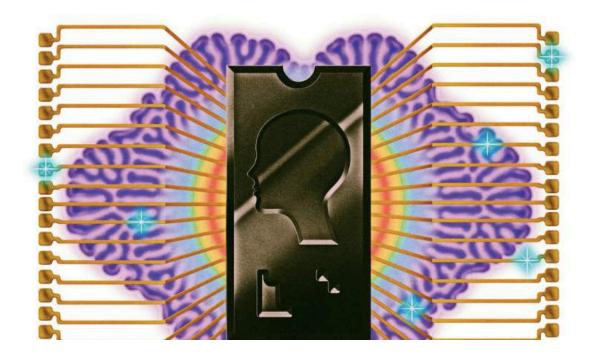


2009 ML

Relative to

A Lot of Money at Stake!

The New York Times



Big Bets On A.I. Open a New Frontier for Chips Start-Ups, Too. (January 14, 2018)

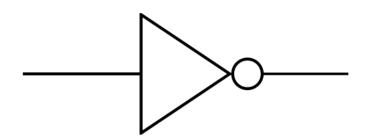
"Today, at least 45 start-ups are working on chips that can power tasks like speech and self-driving cars, and at least five of them have raised more than \$100 million from investors. Venture capitalists invested more than \$1.5 billion in chip start-ups last year, nearly doubling the investments made two years ago, according to the research firm CB Insights."

How to Evaluate these DNN Accelerators?

- □ Many Deep Neural Networks (DNN) accelerators and approaches for efficient DNN processing.
 - Too many to cover!
- We will focus on how to **evaluate** approaches for efficient processing of DNNs
 - Approaches include the design of DNN accelerators and DNN models
 - What are the **key metrics** that should be measured and compared?

TOPS or TOPS/W?

- \square TOPS = tera (10¹²) operations per second
- □ TOPS/Watt or TOPS/Watt commonly reported in hardware literature to show efficiency of design
- However, does not provide sufficient insights on hardware capabilities and limitations (especially if based on peak throughput/performance)



Example: high TOPS per watt can be achieved with inverter (ring oscillator)

Key Metrics: Much more than OPS/W!

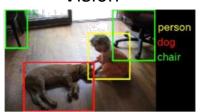
- Accuracy
 - Quality of result
- □ Throughput
 - Analytics on high volume data
 - Real-time performance (e.g., video at 30 fps)
- □ Latency
 - For interactive applications (e.g., autonomous navigation)
- Energy and Power
 - Embedded devices have limited battery capacity
 - Data centers have a power ceiling due to cooling cost
- ☐ Hardware Cost
 - **\$\$\$**
- Flexibility
 - Range of DNN models and tasks
- □ Scalability
 - Scaling of performance with amount of resources

MNIST CIFAR-10 ImageNet

Embedded Device

Data Center

Computer Vision



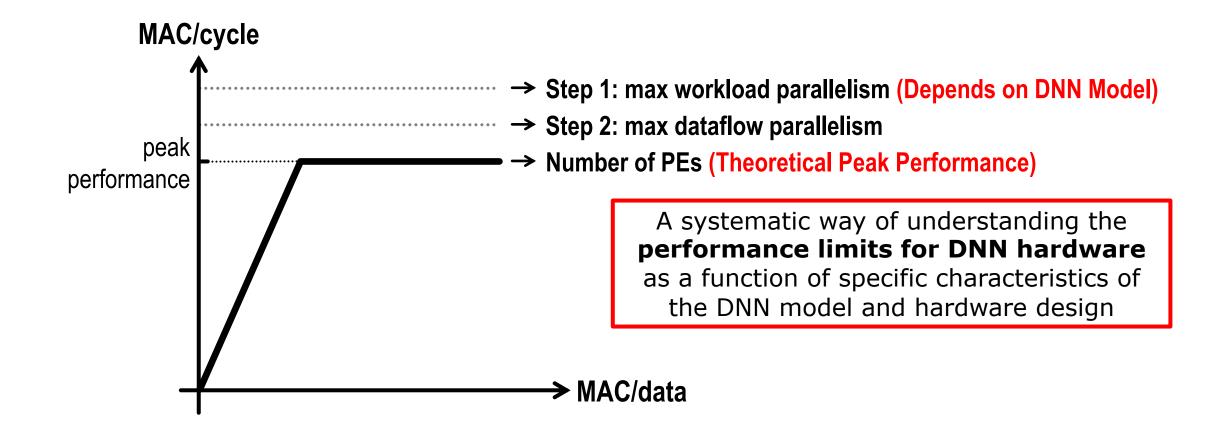
Speech Recognition

[Sze, CICC 2017]

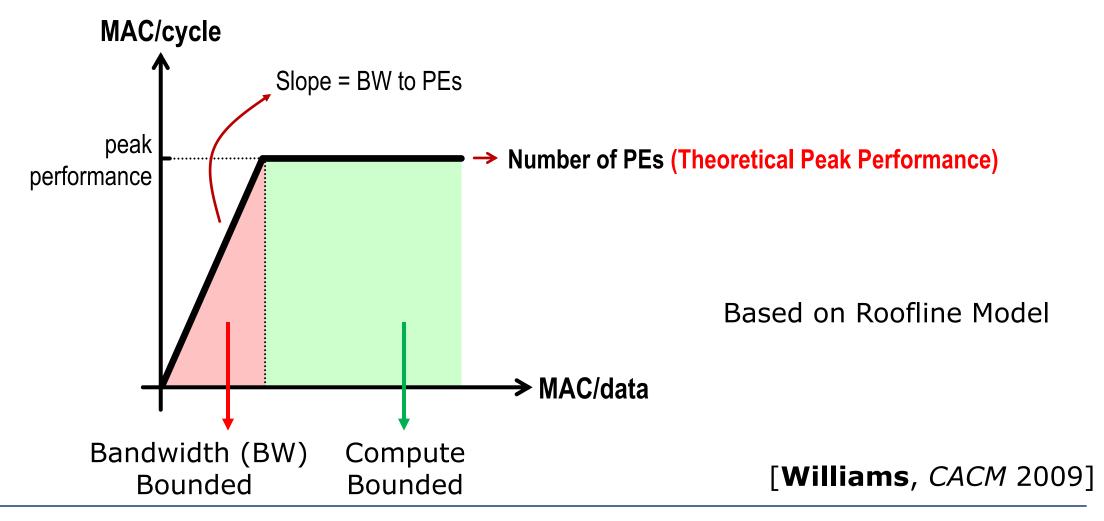
Key Design Objectives of DNN Accelerators

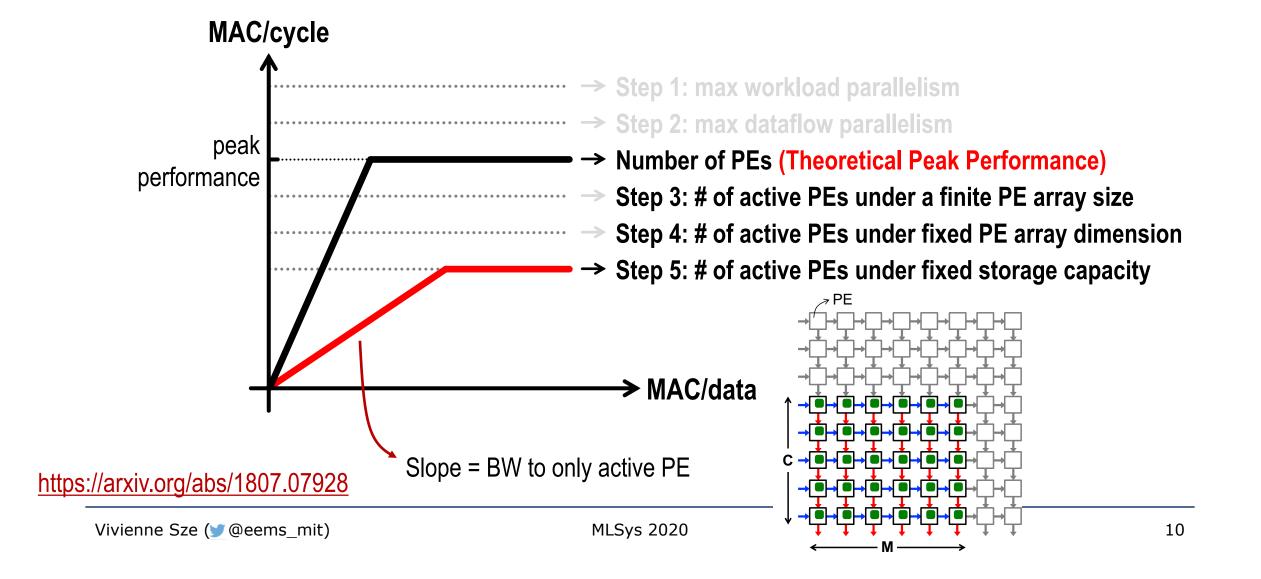
- Increase Throughput and Reduce Latency
 - Reduce time per MAC
 - \square Reduce critical path \rightarrow increase clock frequency
 - Reduce instruction overhead
 - Avoid unnecessary MACs (save cycles)
 - Increase number of processing elements (PE) \rightarrow more MACs in parallel
 - □ Increase area density of PE or area cost of system
 - Increase PE utilization* → keep PEs busy
 - ☐ Distribute workload to as many PEs as possible
 - □ Balance the workload across PEs
 - ☐ Sufficient memory bandwidth to deliver workload to PEs (reduce idle cycles)
- □ Low latency has an additional constraint of small batch size

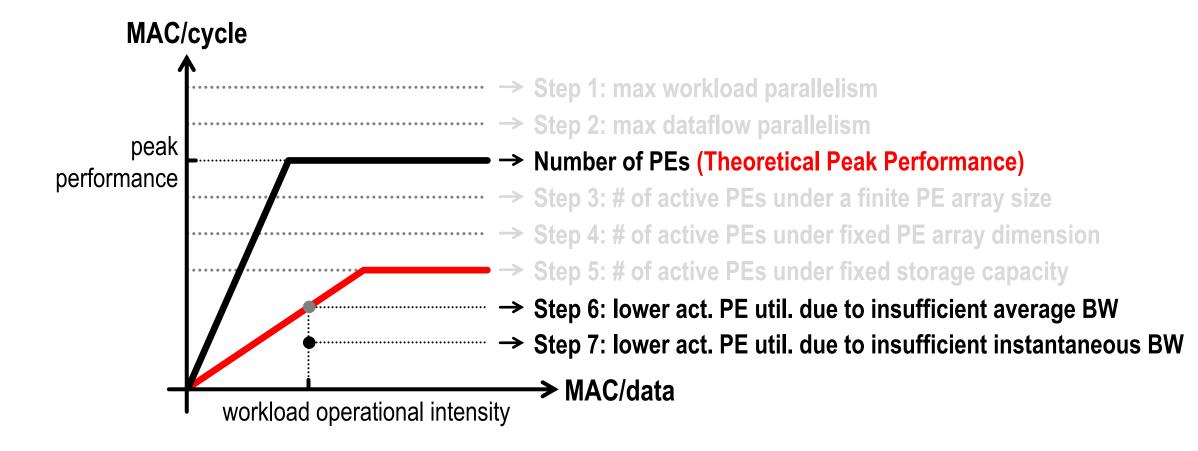
*(100% = peak performance)



[Chen, arXiv 2019: https://arxiv.org/abs/1807.07928]



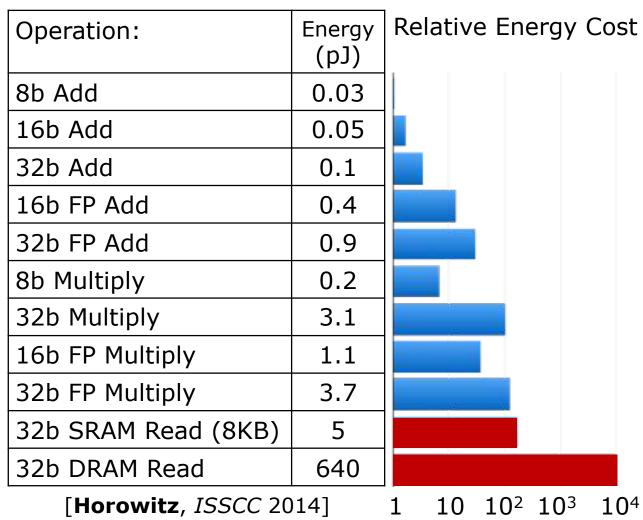




https://arxiv.org/abs/1807.07928

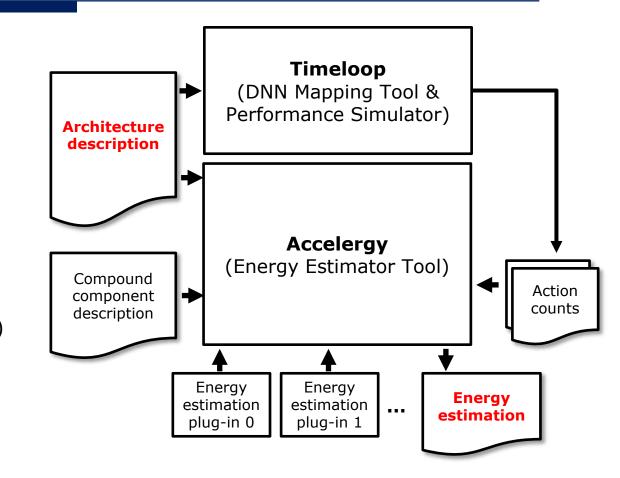
Key Design Objectives of DNN Accelerators

- **Reduce Energy and Power** Consumption
 - Reduce data movement as it dominates energy consumption
 - □ Exploit data reuse
 - Reduce energy per MAC
 - Reduce switching activity and/or capacitance
 - Reduce instruction overhead
 - Avoid unnecessary MACs
- Power consumption is limited by heat dissipation, which limits the maximum # of MACs in parallel (i.e., throughput)



DNN Processor Evaluation Tools

- Require systematic way to
 - Evaluate and compare wide range of DNN processor designs
 - Rapidly explore design space
- ☐ Accelergy [Wu, ICCAD 2019]
 - Early stage energy estimation tool at the architecture level
 - Estimate energy consumption based on architecture level components (e.g., # of PEs, memory size, on-chip network)
 - Evaluate architecture level energy impact of emerging devices
 - □ Plug-ins for different technologies
- ☐ **Timeloop** [Parashar, ISPASS 2019]
 - DNN mapping tool
 - Performance Simulator → Action counts

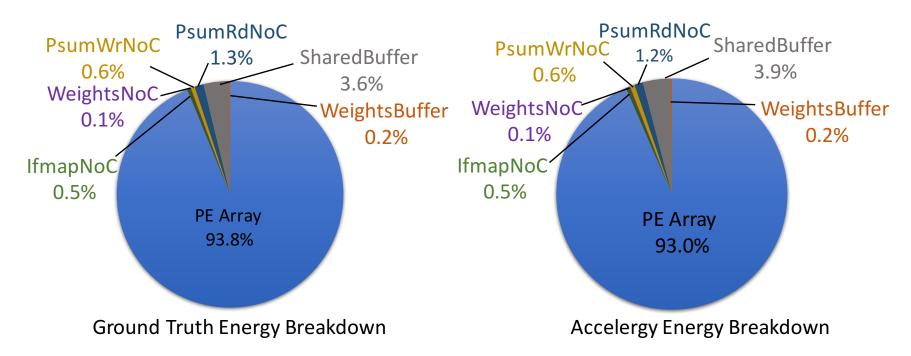


Open-source code available at:

http://accelergy.mit.edu

Accelergy Estimation Validation

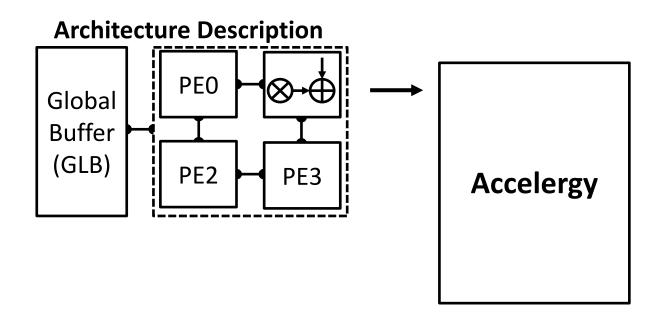
- □ Validation on Eyeriss [Chen, ISSCC 2016]
 - Achieves 95% accuracy compared to post-layout simulations
 - Can accurately captures energy breakdown at different granularities



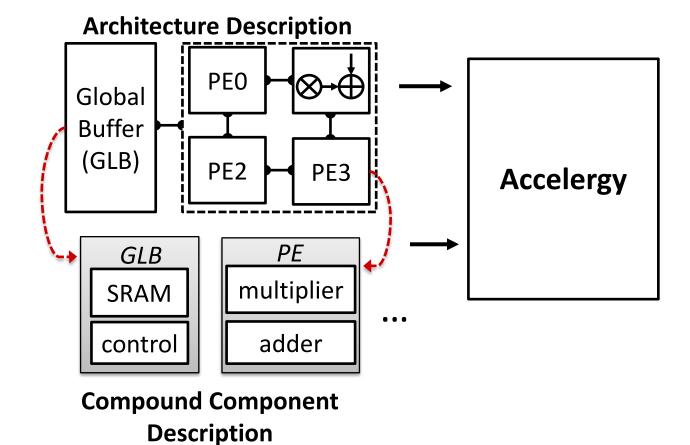
Open-source code available at: http://accelergy.mit.edu

Open-source code available at:

http://accelergy.mit.edu

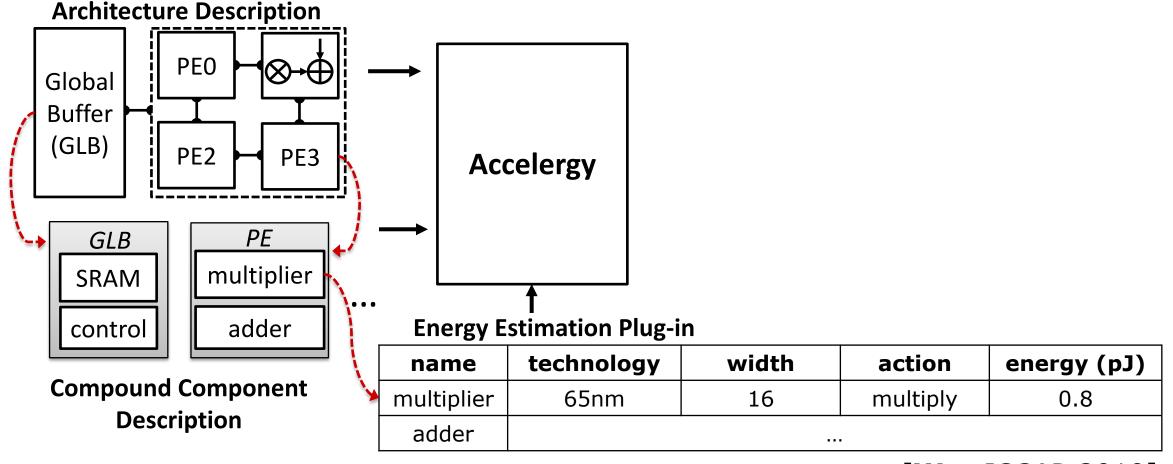


http://accelergy.mit.edu



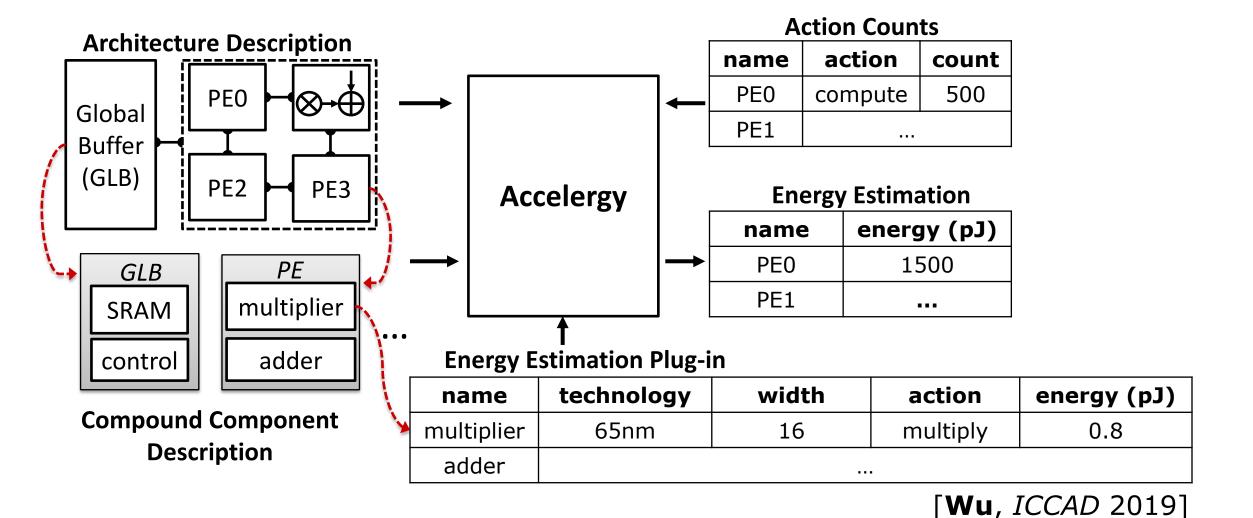
Open-source code available at:

http://accelergy.mit.edu



Open-source code available at:

http://accelergy.mit.edu



Performing MAC with Memory Storage Element

Activation is input voltage (V_i) Weight is resistor conductance (G_i)

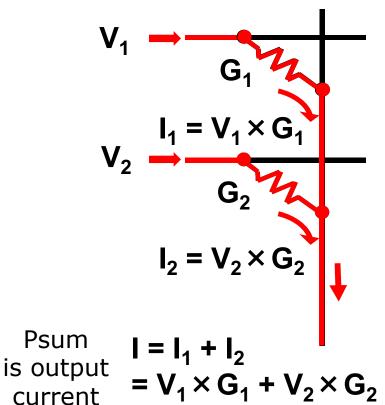


Image Source: [Shafiee, ISCA 2016]

Analog Compute

- Activations, weights and/or partial sums are encoded with analog voltage, current, or resistance
- **Increased sensitivity** to circuit non-idealities: non-linearities, process, voltage, and temperature variations
- Require A/D and D/A peripheral circuits to interface with digital domain

Multiplication

- eNVM (RRAM, STT-RAM, PCM) use **resistive device**
- Flash and SRAM use **transistor** (I-V curve) or **local cap**

□ Accumulation

- Current summing
- Charge sharing

Processing In Memory (PIM*)

* a.k.a. In-Memory Computing (IMC)

- Implement as matrix-vector multiply
 - Typically, matrix composed of stored weights and vector composed of input activations
- Reduce weight data movement by moving compute into the memory
 - Perform MAC with storage element or in peripheral circuits
 - Read out partial sums rather than weights → fewer accesses through peripheral circuits
- □ Increase weight bandwidth
 - Multiple weights accessed in parallel to keep MACs busy (high utilization)
- Increase amount of parallel MACs
 - Storage element can be higher area density than digital MAC
 - Reduce routing capacitance

input activations

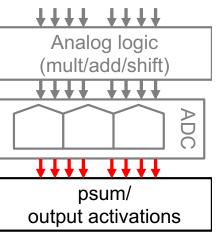
Storage Element

DAC

OHOMOTOR

OHOMO

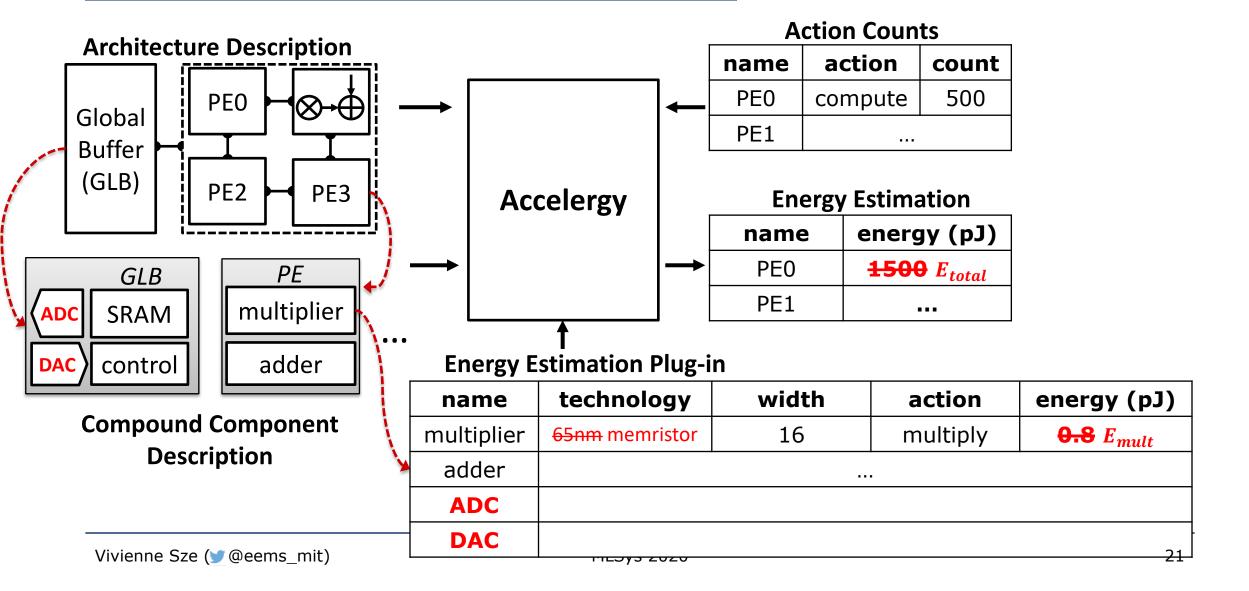
weight stationary dataflow



eNVM:[Yu, PIEEE 2018], SRAM:[Verma, SSCS 2019]

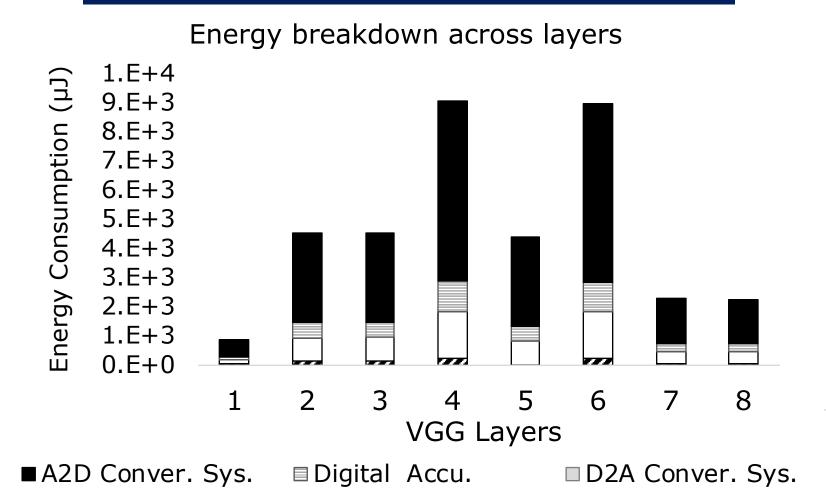
Accelergy for PIM

Open-source code available at: http://accelergy.mit.edu

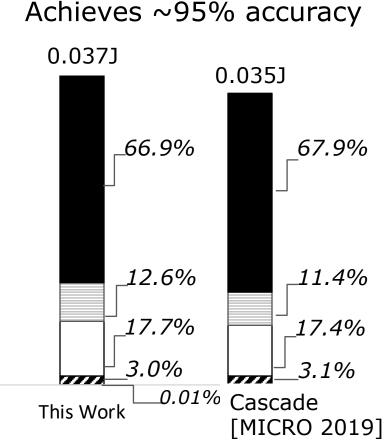


Accelergy for PIM

Open-source code available at: http://accelergy.mit.edu



☑ Input Buffer



[**Wu**, *ISPASS* 2020]

□ PE Array

Tools for Evaluating DNN Accelerator Designs

- □ Upcoming Timeloop/Accelergy Tutorials
 - 2020 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)
 - Boston, MA April 5 (early registration by March 10)
 - □ https://www.ispass.org/ispass2020/
 - 2020 International Symposium on Computer Architecture (ISCA)
 - □ Valencia, Spain **May 31** (early registration by April 16)
 - □ https://www.iscaconf.org/isca2020/
- More info and exercises from previous tutorials
 - http://accelergy.mit.edu/tutorial.html
 - Contact us about <u>accelergy@mit.edu</u> for any questions on the tools

Key Design Objectives of DNN Accelerators

Flexibility

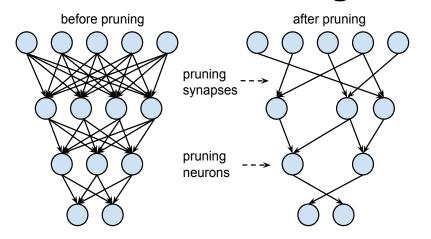
- Reduce overhead of supporting flexibility
- Maintain efficiency across wide range of DNN models
 - □ Different layer shapes impact the amount of
 - Required storage and compute
 - Available data reuse that can be exploited
 - □ Different precision across layers & data types (weight, activation, partial sum)
 - □ Different degrees of sparsity (number of zeros in weights or activations)
 - ☐ Types of DNN layers and computation beyond MACs (e.g., activation functions)

□ Scalability

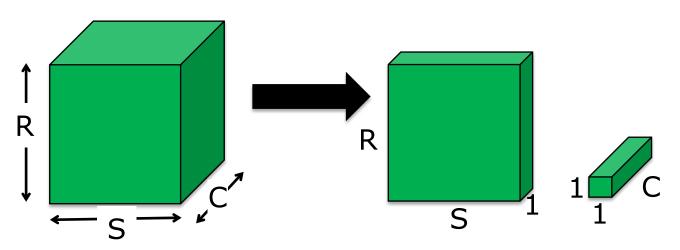
■ Increase how performance (i.e., throughput, latency, energy, power) scales with increase in amount of resources (e.g., number of PEs, amount of memory, etc.)

Many Efficient DNN Design Approaches

Network Pruning



Efficient Network Architectures



Reduce Precision

8-bit fixed

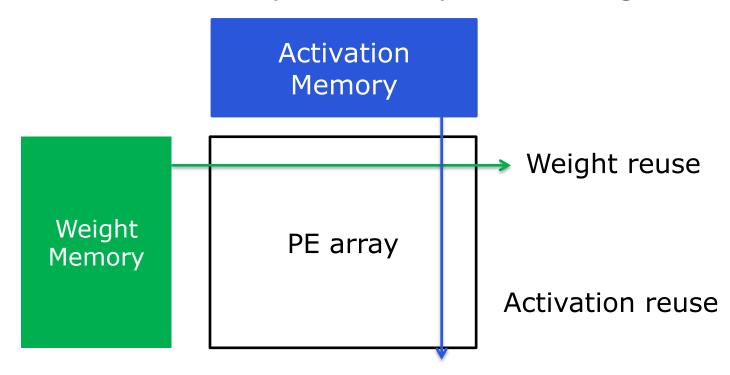
Binary

No guarantee that DNN algorithm designer will use a given approach. **Need flexible DNN processor!**

[Chen, SysML 2018]

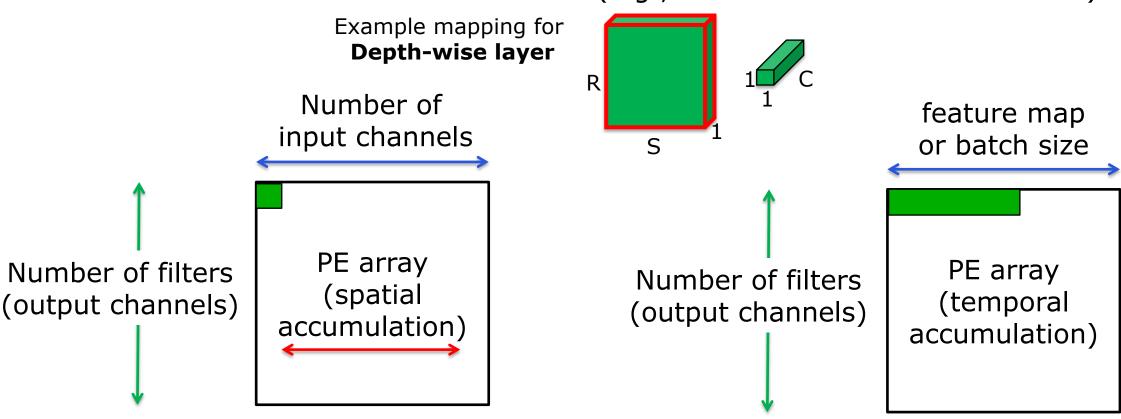
Limitations of Existing DNN Accelerators

- ☐ Specialized DNN processors often rely on certain properties of the DNN model in order to achieve high energy-efficiency
- ☐ Example: Reduce memory access by amortizing across PE array



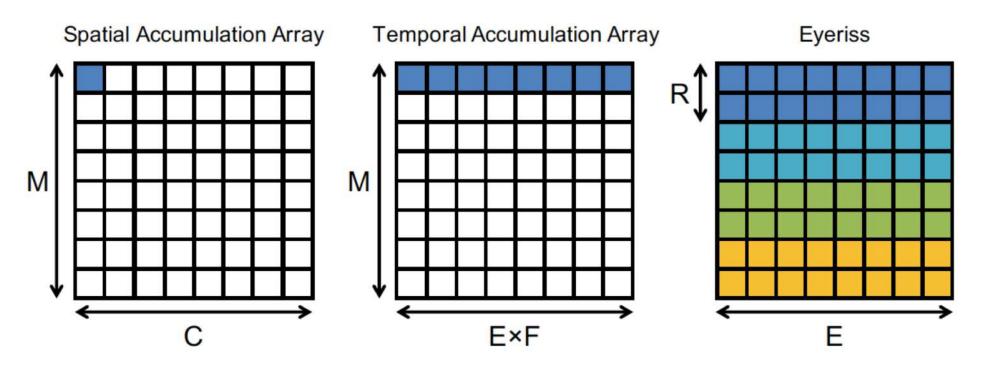
Limitations of Existing DNN Accelerators

- □ Reuse depends on # of channels, feature map/batch size
 - Not efficient across all DNN models (e.g., efficient network architectures)



Need Flexible Dataflow

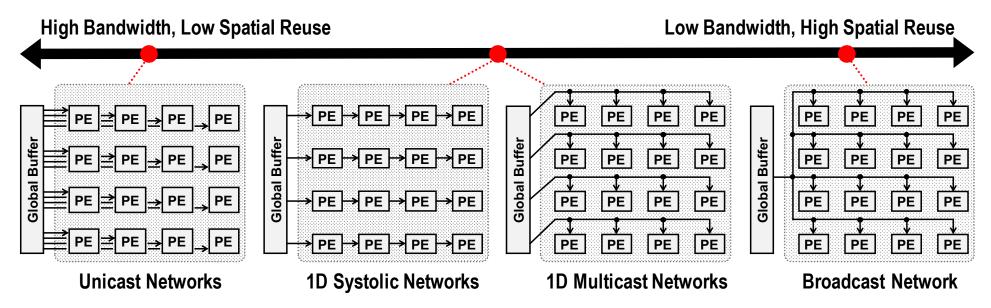
Use flexible dataflow (Row Stationary) to exploit reuse in any dimension of DNN to increase energy efficiency and array utilization



Example: Depth-wise layer

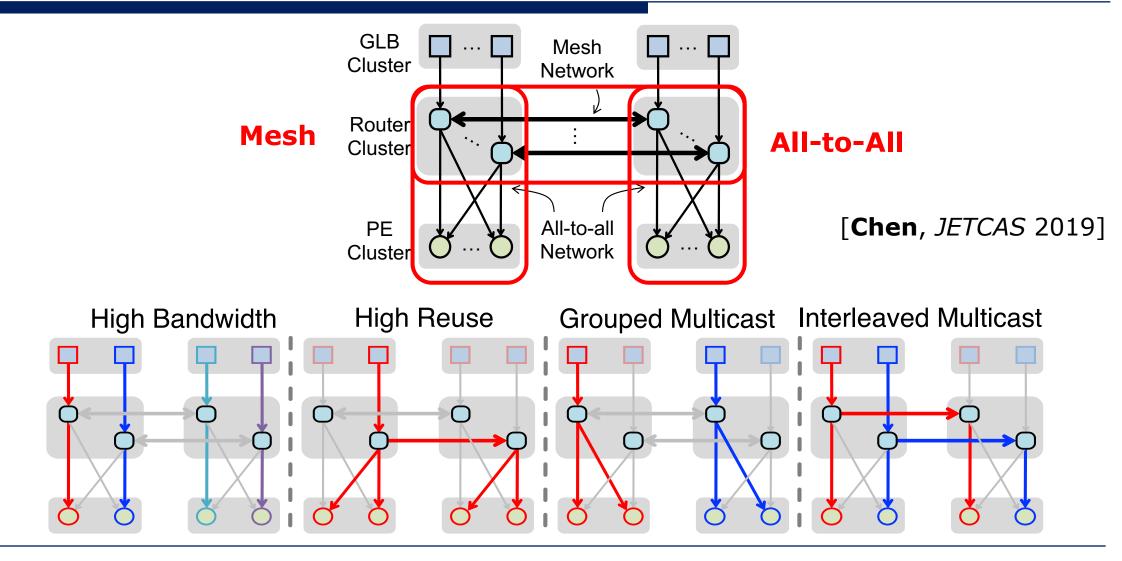
Need Flexible On-Chip Network for Varying Reuse

- □ When reuse available, need multicast to exploit spatial data reuse for energy efficiency and high array utilization
- When reuse not available, need unicast for high BW for weights for FC and weights & activations for high PE utilization
- ☐ An all-to-all on-chip network satisfies above but too expensive and not scalable



[Chen, JETCAS 2019]

Hierarchical Mesh

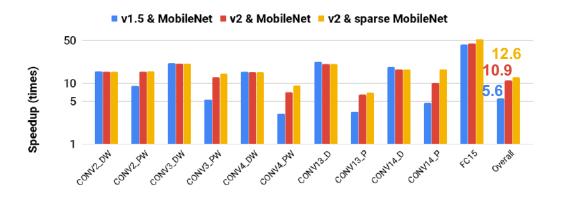


Eyeriss v2: Balancing Flexibility and Efficiency

Efficiently supports

- Wide range of filter shapes
 - Large and Compact
- □ Different Layers
 - CONV, FC, depth wise, etc.
- Wide range of sparsity
 - Dense and Sparse
- Scalable architecture

Over an order of magnitude faster and more energy efficient than Eyeriss v1



Speed up over Eyeriss v1 scales with number of PEs

# of PEs	256	1024	16384
AlexNet	17.9x	71.5x	1086.7x
GoogLeNet	10.4x	37.8x	448.8x
MobileNet	15.7x	57.9x	873.0x

[Chen, JETCAS 2019]

Specifications to Evaluate Metrics

Accuracy

- Difficulty of dataset and/or task should be considered
- Difficult tasks typically require more complex DNN models

□ Throughput

- Number of PEs with utilization (not just peak performance)
- Runtime for running specific DNN models

Latency

Batch size used in evaluation

Energy and Power

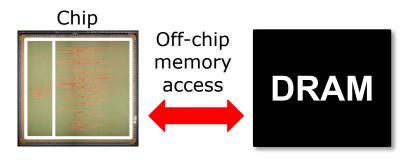
- Power consumption for running specific DNN models
- Off-chip memory access (e.g., DRAM)

☐ Hardware Cost

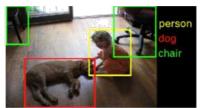
On-chip storage, # of PEs, chip area + process technology

Flexibility

- Report performance across a wide range of DNN models
- Define range of DNN models that are efficiently supported



Computer Vision



Speech Recognition

[Sze, CICC 2017]

Comprehensive Coverage for Evaluation

- All metrics should be reported for fair evaluation of design tradeoffs
- □ Examples of what can happen if a certain metric is omitted:
 - Without the accuracy given for a specific dataset and task, one could run a simple DNN and claim low power, high throughput, and low cost however, the processor might not be usable for a meaningful task
 - Without reporting the off-chip memory access, one could build a processor with *only* MACs and claim low cost, high throughput, high accuracy, and low chip power however, when evaluating system power, the off-chip memory access would be substantial
- ☐ Are results measured or simulated? On what test data?

Example Evaluation Process

The evaluation process for whether a DNN processor is a viable solution for a given application might go as follows:

- 1. Accuracy determines if it can perform the given task
- 2. Latency and throughput determine if it can run fast enough and in real-time
- 3. Energy and power consumption will primarily dictate the form factor of the device where the processing can operate
- **4. Cost**, which is primarily dictated by the chip area, determines how much one would pay for this solution
- 5. Flexibility determines the range of tasks it can support

Design Considerations for Co-Design

□ Impact on accuracy

- Consider quality of baseline (initial) DNN model, difficulty of task and dataset
- Sweep curve of accuracy versus latency/energy to see the full tradeoff

Does hardware cost exceed benefits?

- Need extra hardware to support variable precision and shapes or to identify sparsity
- Granularity impacts hardware overhead as well as accuracy

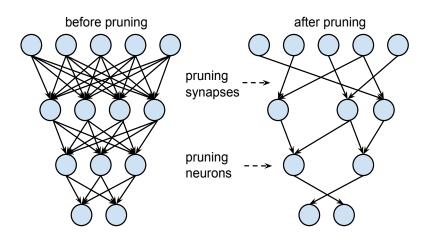
Evaluation

 Avoid only evaluating impact based on number of weights or MACs as they may not be sufficient for evaluating energy consumption and latency

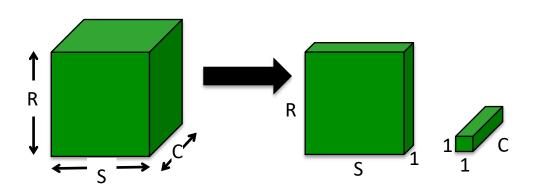
Design of Efficient DNN Algorithms

Popular efficient DNN algorithm approaches

Network Pruning



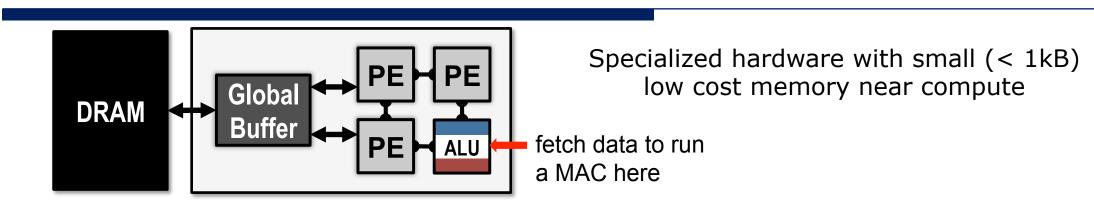
Efficient Network Architectures

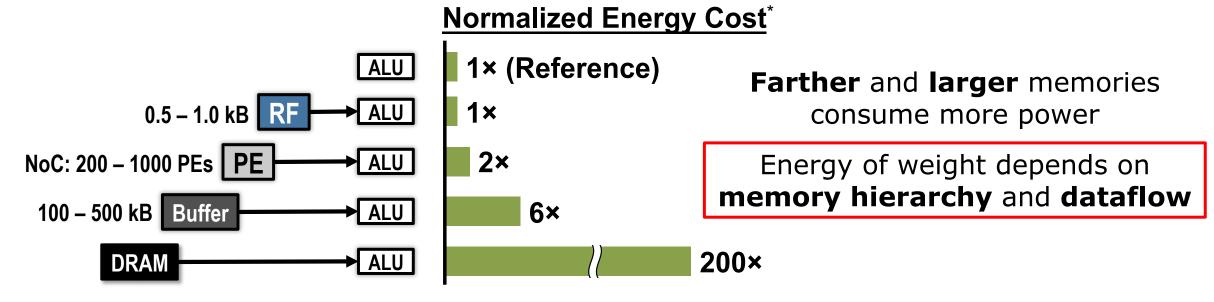


... also reduced precision

- Focus on reducing number of MACs and weights
- Does it translate to energy savings and reduced latency?

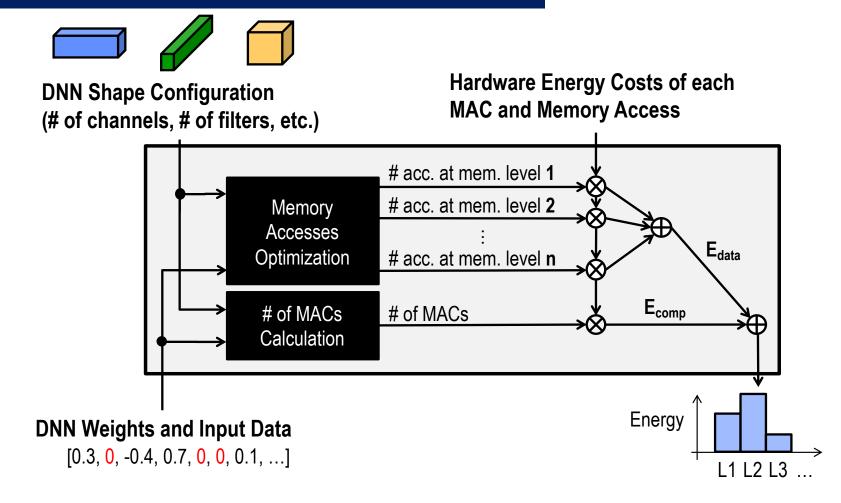
Data Movement is Expensive





^{*} measured from a commercial 65nm process

Energy-Evaluation Methodology



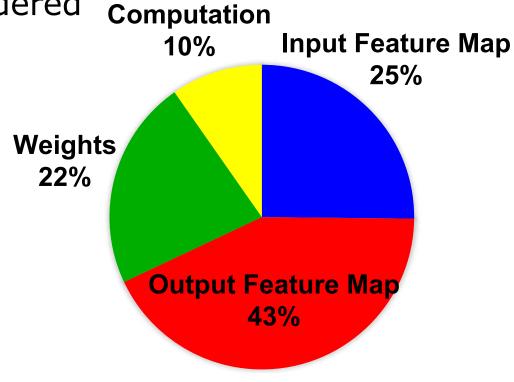
Tool available at https://energyestimation.mit.edu/

[**Yang**, *CVPR* 2017]

Key Observations

- □ Number of weights *alone* is not a good metric for energy
- ☐ All data types should be considered Con

Energy Consumption of GoogLeNet



Tool available at https://energyestimation.mit.edu/

[**Yang**, *CVPR* 2017]

Energy-Aware Pruning

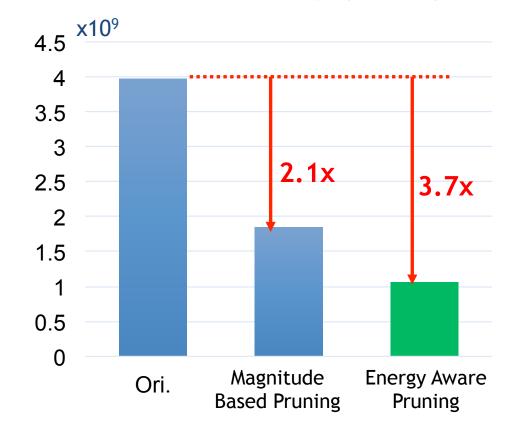
Directly target energy

and incorporate it into the optimization of DNNs to provide greater energy savings

- Sort layers based on energy and prune layers that consume the most energy first
- Energy-aware pruning reduces AlexNet energy by 3.7x and outperforms the previous work that uses magnitudebased pruning by 1.7x

[Yang, CVPR 2017]

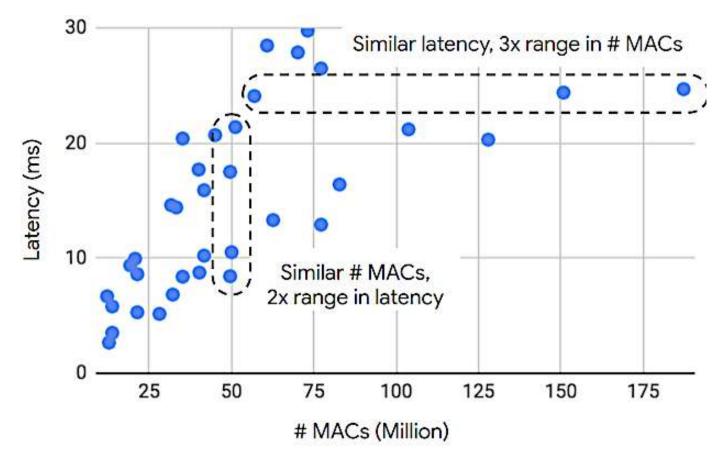
Normalized Energy (AlexNet)



Pruned models available at http://eyeriss.mit.edu/energy.html

of Operations versus Latency

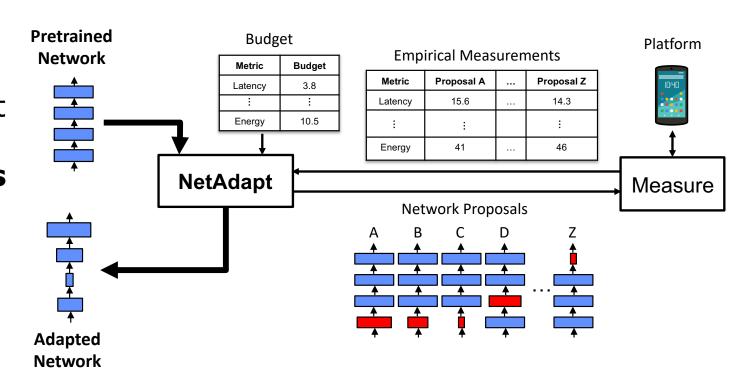
of operations (MACs) does not approximate latency well



Source: Google (https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)

NetAdapt: Platform-Aware DNN Adaptation

- Automatically adapt DNN to a mobile platform to reach a target latency or energy budget
- Use empirical measurements to guide optimization (avoid modeling of tool chain or platform architecture)
- Requires very few hyperparameters to tune



In collaboration with Google's Mobile Vision Team

Code available at http://netadapt.mit.edu

[**Yang**, *ECCV* 2018]

NetAdapt: Problem Formulation

 $\max_{Net} Acc(Net) \text{ subject to } Res_j(Net) \leq Bud_j, j = 1, \cdots, m$

Break into a set of simpler problems and solve iteratively

 $\max_{Net_i} Acc(Net_i) \ subject \ to \ Res_j(Net_i) \leq Res_j(Net_{i-1}) - \Delta R_{i,j}, j = 1, \cdots, m$

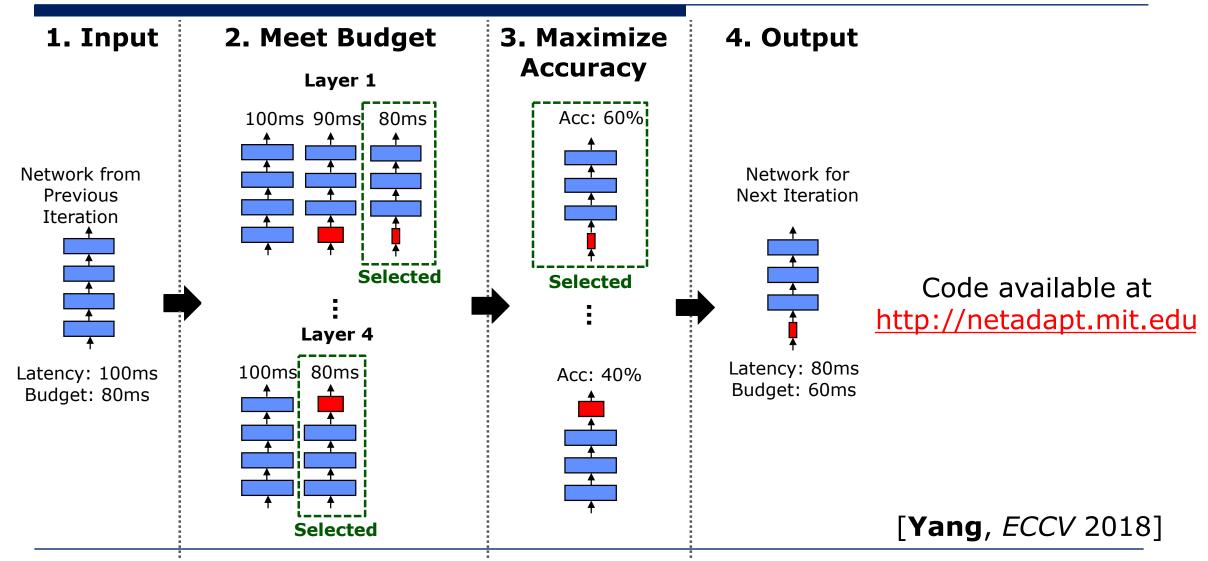
*Acc: accuracy function, Res: resource evaluation function, Bud: given budget

 ΔR : resource reduction, Budget incrementally tightens $Res_{j}(Net_{i-1}) - \Delta R_{i,j}$

Advantages

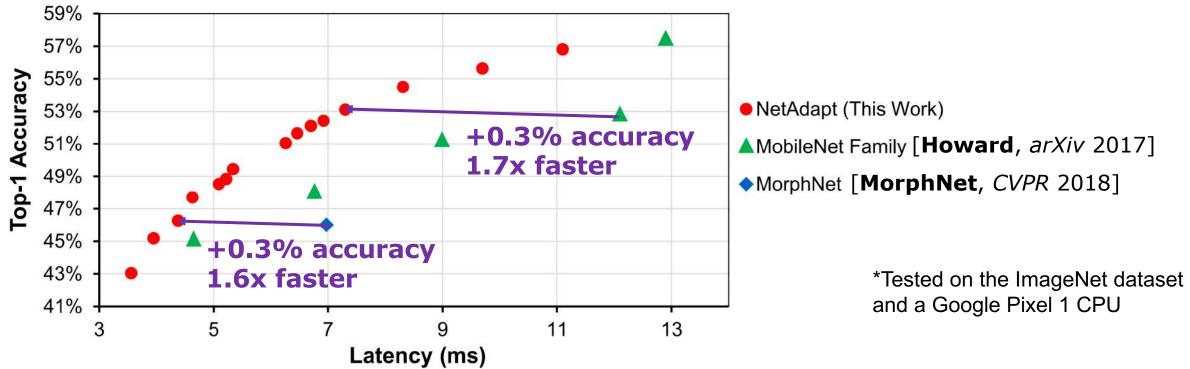
- Supports multiple resource budgets at the same time
- Guarantees that budget will be satisfied because the resource consumption decreases monotonically
- Generates a family of networks (from each iteration) with different resource versus accuracy trade-offs
- Intuitive and can easily set a few additional hyperparameters $(\Delta R_{i,j})$

NetAdapt: Simplified Example of One Iteration



Improved Latency vs. Accuracy Tradeoff

□ NetAdapt boosts the measured inference speed of MobileNet by up to 1.7x with higher accuracy



Code available at http://netadapt.mit.edu

[**Yang**, *ECCV* 2018]

Design Considerations for PIM Accelerators

- Prediction Accuracy
 - non-idealities of analog compute
 - \square per chip training \rightarrow expensive in practice
 - lower bit widths for data and computation
 - □ multiple devices per weight → decrease area density
 - \square bit serial processing \rightarrow increase cycles per MAC
- Hardware Efficiency
 - Data movement into/from array
 - □ A/D and D/A conversion increase energy consumption and reduce area density
 - Array utilization
 - □ Large array size can amortize conversion cost → increase area density and data reuse → DNNs need to take advantage of this property

Activation is input voltage (V_i) Weight is resistor conductance (G_i)

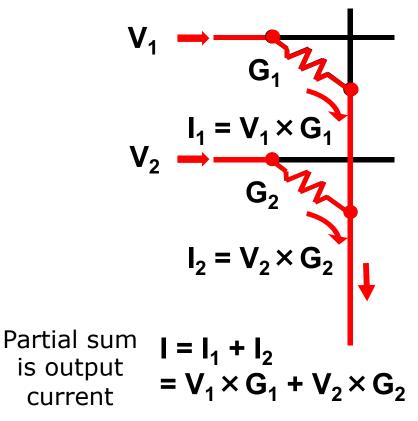
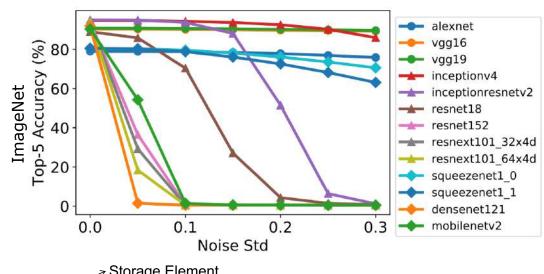
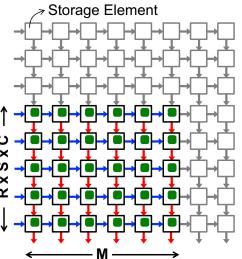


Image Source: [Shafiee, ISCA 2016]

Design Considerations for DNNs on PIM

- Designing DNNs for PIM may differ from DNNs for digital processors
- Highest accuracy DNN on digital processor may be different on PIM
 - Accuracy drops based on robustness to nonidealities
- □ Reducing number of weights is less desirable
 - Since PIM is weight stationary, may be better to reduce number of activations
 - PIM tend to have larger arrays → fewer weights may lead to low utilization on PIM
- ☐ Current trend is deeper and smaller filters
 - For PIM, may be preferable to do shallower and larger filters





[**Yang**, *IEDM* 2019]

Design Considerations for Co-Design

- □ Time required to perform co-design
 - e.g., Difficulty of tuning affected by
 - Number of hyperparameters
 - □ Uncertainty in relationship between hyperparameters and impact on performance
- □ Other aspects that affect accuracy, latency or energy
 - Type of data augmentation and preprocessing
 - Optimization algorithm, hyperparameters, learning rate schedule, batch size
 - Training and finetuning time
 - Deep learning libraries and quality of the code
- □ How does the approach perform on different platforms?
 - Is the approach a general method, or applicable on specific hardware?

Summary

- □ The number of weights and MACs are not sufficient for evaluating the energy consumption and latency of DNNs
 - Designers of efficient DNN algorithms should directly target direct metrics such as energy and latency and incorporate into the design
- Many of the existing DNN processors rely on certain properties of the DNN which cannot be guaranteed as the wide range of efficient DNN algorithm design techniques has resulted in a diverse set of DNNs
 - DNN hardware used to process these DNNs should be sufficiently flexible to support a wide range of techniques efficiently
- Evaluate DNN hardware on a comprehensive set of benchmarks and metrics

Acknowledgements

Thomas Heldt Sertac Karaman

Research conducted in the **MIT Energy-**Efficient Multimedia Systems Group would not be possible without the support of the following organizations:

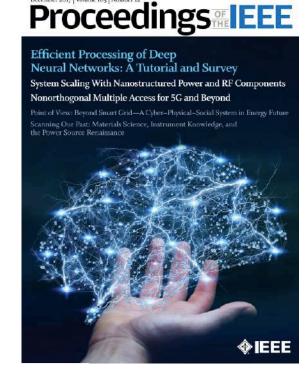
For updates on our research

Additional Resources

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey," Proceedings of the IEEE, Dec. 2017

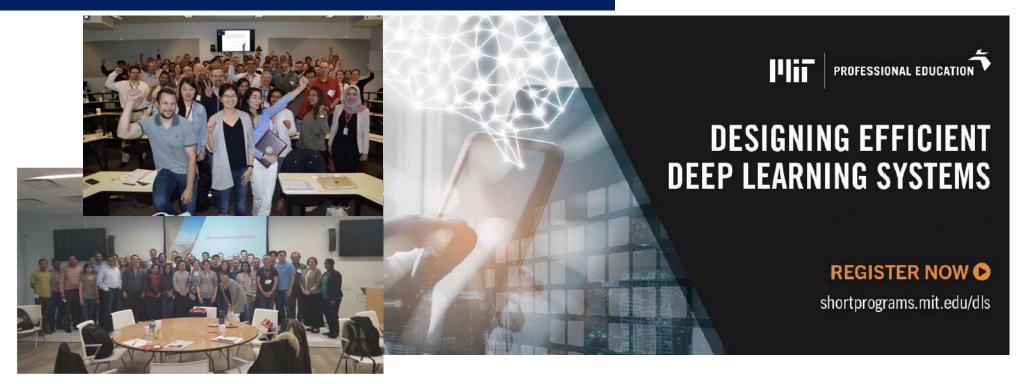
Book Coming Spring 2020! (excerpt available on DNN tutorial website)

DNN tutorial website http://eyeriss.mit.edu/tutorial.html



For updatesEEMS Mailing List

Additional Resources



MIT Professional Education Course on "Designing Efficient Deep Learning Systems"

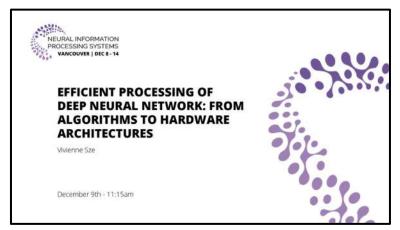
http://shortprograms.mit.edu/dls

Next Offering: July 20-21, 2020 on MIT Campus

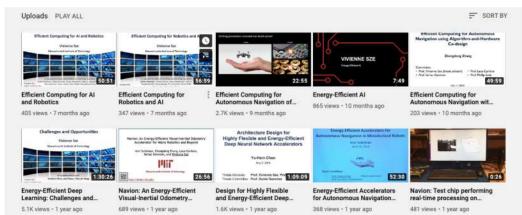
Additional Resources

Talks and Tutorial Available Online

https://www.rle.mit.edu/eems/publications/tutorials/



YouTube Channel **EEMS Group – PI: Vivienne Sze**



References

□ Limitations of Existing Efficient DNN Approaches

- Y.-H. Chen*, T.-J. Yang*, J. Emer, V. Sze, "Understanding the Limitations of Existing Energy-Efficient Design Approaches for Deep Neural Networks," SysML Conference, February 2018.
- V. Sze, Y.-H. Chen, T.-J. Yang, J. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey," Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, December 2017.
- Hardware Architecture for Deep Neural Networks: http://eyeriss.mit.edu/tutorial.html

□ Co-Design of Algorithms and Hardware for Deep Neural Networks

- T.-J. Yang, Y.-H. Chen, V. Sze, "Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
- Energy estimation tool: http://eyeriss.mit.edu/energy.html
- T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, V. Sze, H. Adam, "NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications," European Conference on Computer Vision (ECCV), 2018. http://netadapt.mit.edu/

Processing In Memory

T.-J. Yang, V. Sze, "Design Considerations for Efficient Deep Neural Networks on Processing-in-Memory Accelerators," IEEE International Electron Devices Meeting (IEDM), Invited Paper, December 2019.

References

■ Energy-Efficient Hardware for Deep Neural Networks

- Project website: http://eyeriss.mit.edu
- Y.-H. Chen, T. Krishna, J. Emer, V. Sze, "Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks," IEEE Journal of Solid State Circuits (JSSC), ISSCC Special Issue, Vol. 52, No. 1, pp. 127-138, January 2017.
- Y.-H. Chen, J. Emer, V. Sze, "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks," International Symposium on Computer Architecture (ISCA), pp. 367-379, June 2016.
- Y.-H. Chen, T.-J. Yang, J. Emer, V. Sze, "Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices," IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS), June 2019.
- Eyexam: https://arxiv.org/abs/1807.07928

■ DNN Processor Evaluation Tools

- Wu et al., "Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs," ICCAD 2019, http://accelergy.mit.edu
- Wu et al., "An Architecture-Level Energy and Area Estimator for Processing-In-Memory Accelerator Designs," ISPASS 2020, http://accelergy.mit.edu
- Parashar et al., "Timeloop: A Systematic Approach to DNN Accelerator Evaluation," ISPASS 2019