
How to Understand and Evaluate Deep Learning Processors

Vivienne Sze
Massachusetts Institute of Technology

February 16, 2020Contact Info
email: sze@mit.edu
website: http://sze.mit.edu
https://twitter.com/eems_mit

In collaboration with 
Yu-Hsin Chen, Joel Emer, Tien-Ju Yang

Vivienne Sze ISSCC 2020 1 of 91

mailto:sze@mit.edu
http://sze.mit.edu/
https://twitter.com/eems_mit


Image Source: [Dean, ISSCC 2020]

Goals of this Tutorial

o Many existing Deep Learning Processors. Too many to cover!

Vivienne Sze ISSCC 2020

Number of DL processor papers at
ISSCC, VLSI, ISCA, MICRO

Artificial Intelligence

Machine Learning

Brain-Inspired

Spiking Neural
Networks

Deep
Learning

Image Source: [Sze, PIEEE 2017]

2 of 91



Goals of this Tutorial

o Many existing Deep Learning Processors. Too many to cover!

o In this tutorial, we focus on how to evaluate DL processors
n What are the key questions to ask?

o Specifically, we will discuss
n What are the key metrics that should be measured and compared? 
n What are the challenges towards achieving these metrics?
n What are the design considerations and tradeoffs? 
n How do these challenges and design considerations differ across 

platforms (e.g., CPU, GPU, ASIC, PIM, FPGA)? 

o We will focus on inference, but many concepts covered also apply to training

Vivienne Sze ISSCC 2020 3 of 91



Tutorial Overview

o Deep Learning Overview
o Key Metrics and Design Objectives
o Design Considerations

n CPU and GPU Platforms
n Specialized / Domain Specific Hardware (ASICs)

o Efficient Dataflows
o Algorithm (DNN Model) and Hardware Co-Design
o Flexibility and Scalability

n Other Platforms
o Processing In Memory / In Memory Computing
o Field Programmable Gate Arrays (FPGAs)

o Tools for Systematic Evaluation of DL Processors
o Should I Use Deep Learning for a Given Task?

Vivienne Sze ISSCC 2020 4 of 91



What is Deep Learning (aka Deep Neural Networks)?

Input:
Image

Output:
“Volvo XC90”

Modified Image Source: [Lee, CACM 2011]

Low Level Features High Level Features

Vivienne Sze ISSCC 2020 5 of 91



Weighted Sums

Key operation is 
multiply and accumulate (MAC)
Accounts for > 90% of computation 

Yj = activation Wij × Xi
i=1

3

∑
⎛

⎝
⎜

⎞

⎠
⎟

Input Layer

Output Layer

Hidden Layer

X1

X2

X3

Y1

Y2

Y3

Y4

W11

W34

Vivienne Sze ISSCC 2020

Nonlinear 
Activation
Function

Sigmoid
1

-1

0

0 1-1

Rectified Linear Unit (ReLU)
1

-1

0

0 1-1

y=max(0,x)y=1/(1+e-x)

6 of 91



Popular Types of Layers in DNNs
o Fully Connected Layer

n Feed forward, fully connected

n Multilayer Perceptron (MLP)
o Convolutional Layer

n Feed forward, sparsely-connected w/ weight sharing
n Convolutional Neural Network (CNN)
n Typically used for images

o Recurrent Layer
n Feedback
n Recurrent Neural Network (RNN)
n Typically used for sequential data (e.g., speech, language)

o Attention Layer/Mechanism
n Attention (matrix multiply) + feed forward, fully connected 
n Transformer [Vaswani, NeurIPS 2017]

Fully
Connected

Vivienne Sze ISSCC 2020

Sparsely
Connected

FeedbackFeed 
Forward

Input Layer

Output Layer

Hidden Layer

Input Layer
Output Layer

Hidden Layer

7 of 91



High-Dimensional Convolution in CNN

R 

S 

H 

a plane of input activations 
a.k.a. input feature map (fmap) 

filter (weights) 

W 

Vivienne Sze ISSCC 2020 8 of 91



High-Dimensional Convolution in CNN

R 

filter (weights) 

input fmap 

S 

Element-wise 
Multiplication 

H 

W 

Vivienne Sze ISSCC 2020 9 of 91



High-Dimensional Convolution in CNN

R 

filter (weights) 

S 

E 

F 
Partial Sum (psum) 

Accumulation 

input fmap output fmap 

Element-wise 
Multiplication 

H 

W 

an output  
activation 

Vivienne Sze ISSCC 2020 10 of 91



High-Dimensional Convolution in CNN

H 
R 

filter (weights) 

S 

E 

Sliding Window Processing 

input fmap 
an output  
activation 

output fmap 

W F 

Vivienne Sze ISSCC 2020 11 of 91



High-Dimensional Convolution in CNN

AlexNet: 3 – 192 Channels (C) 

H 
R 

S 

…
 

…
 

…
 

C 

input fmap 

output fmap 

…
 

…
 

…
 

…
 C …

 
filter 

…
 

Many Input Channels (C) 

E 

W F 

Vivienne Sze ISSCC 2020 12 of 91



High-Dimensional Convolution in CNN

…
 

E 

output fmap 

…
 

…
 

many 
filters (M) 

Many 
Output Channels (M) 

M 
…

 
R 

S 
1 

R 

S 

…
 

…
 

…
 

C …
 

M 

H 

input fmap 

…
 

…
 

…
 

…
 C …

 

C …
 

…
 

…
 

W F 

Vivienne Sze

AlexNet: 96 – 384 Filters (M) 
ISSCC 2020 13 of 91



ISSCC 2020

High-Dimensional Convolution in CNN

Image 
batch size: 
1 – 256 (N)

…
 

M 

…
 

Many 
Input fmaps (N) Many 

Output fmaps (N) 

…
 

R 

S 

R 

S 

…
 

…
 

…
 

C …
 

C …
 

…
 

…
 

filters 

…
 

E 

F 
…

 

…
 

H 

…
 

…
 C …

H 

W 

…
 

…
 

…
 

…
 C …

 

…
 

E 
…

 

…
 

1 1 

N N 

  

  

  

  

W F 

Vivienne Sze 14 of 91



Define Shape for Each Layer

H – Height of input fmap (activations) 
W – Width of input fmap (activations)
C – Number of 2-D input fmaps /filters
(channels)
R – Height of 2-D filter (weights)
S – Width of 2-D filter (weights)
M – Number of 2-D output fmaps (channels)
E – Height of output fmap (activations)
F – Width of output fmap (activations)
N – Number of input fmaps/output fmaps
(batch size)

Shape varies across layers

Vivienne Sze ISSCC 2020

Filters

R

S

…

…

…C

H

W

…

…

…C

…
E

F

…

…

…M

…

…

…M

…

R

S

…

…

…C

H

W
…

…C

1

N

1

M

1

…

…

Input fmaps
Output fmaps

…

E

F
N

15 of 91



Large Sizes with Varying Shapes

Layer Filter Size (R) # Filters (M) # Channels (C) Stride
1 11x11 96 3 4
2 5x5 256 48 1
3 3x3 384 256 1
4 3x3 384 192 1
5 3x3 256 192 1

AlexNet Convolutional Layer Configurations

[Krizhevsky, NeurIPS 2012]

34k	Params	 307k	Params	 885k	Params	

Layer	1	 Layer	2	 Layer	3	

105M	MACs	 224M	MACs	 150M	MACs	
Vivienne Sze ISSCC 2020 16 of 91



Popular DNNs
Metrics LeNet-5 AlexNet VGG-16 GoogLeNet

(v1)
ResNet-50 EfficientNet-B4

Top-5 error (ImageNet) n/a 16.4 7.4 6.7 5.3 3.7*
Input Size 28x28 227x227 224x224 224x224 224x224 380x380
# of CONV Layers 2 5 16 21 (depth) 49 96
# of Weights 2.6k 2.3M 14.7M 6.0M 23.5M 14M
# of MACs 283k 666M 15.3G 1.43G 3.86G 4.4G
# of FC layers 2 3 3 1 1 65**
# of Weights 58k 58.6M 124M 1M 2M 4.9M
# of MACs 58k 58.6M 124M 1M 2M 4.9M
Total Weights 60k 61M 138M 7M 25.5M 19M
Total MACs 341k 724M 15.5G 1.43G 3.9G 4.4G
Reference Lecun, 

PIEEE 1998
Krizhevsky, 
NeurIPS 2012

Simonyan, 
ICLR 2015

Szegedy, 
CVPR 2015

He, 
CVPR 2016

Tan, 
ICML 2019

Vivienne Sze ISSCC 2020 17 of 91*   Does not include multi-crop and ensemble
** Increase in FC layers due to squeeze-and-excitation layers (much smaller than FC layers for classification)

DNN models getting larger and deeper



Tutorial Overview

o Deep Learning Overview
o Key Metrics and Design Objectives
o Design Considerations

n CPU and GPU Platforms
n Specialized / Domain Specific Hardware (ASICs)

o Efficient Dataflows
o Algorithm (DNN Model) and Hardware Co-Design
o Flexibility and Scalability

n Other Platforms
o Processing In Memory / In Memory Computing
o Field Programmable Gate Arrays (FPGAs)

o Tools for Systematic Evaluation of DL Processors
o Should I Use Deep Learning for a Given Task?

Vivienne Sze ISSCC 2020 18 of 91



Key Metrics: Much more than TOPS/W!
o Accuracy

n Quality of result
o Throughput

n Analytics on high volume data
n Real-time performance (e.g., video at 30 fps)

o Latency
n For interactive applications (e.g., autonomous navigation)

o Energy and Power
n Embedded devices have limited battery capacity
n Data centers have power ceiling due to cooling cost

o Hardware Cost
n $$$

o Flexibility 
n Range of DNN models and tasks

o Scalability
n Scaling of performance with amount of resources

ImageNet

Computer 
Vision

Speech 
Recognition

[Sze, CICC 2017]

MNIST

Vivienne Sze ISSCC 2020

Data Center / 
High Throughput

Embedded Device / 
Low Latency

19 of 91



Key Design Objectives of DL Processors

o Increase Throughput and Reduce Latency
n Reduce time per MAC 

o Reduce critical path à increase clock frequency
o Reduce instruction overhead

n Avoid unnecessary MACs (save cycles)
n Increase number of processing elements (PE) à more MACs in parallel

o Increase area density of PE or area cost of system
n Increase PE utilization* à keep PEs busy

o Distribute workload to as many PEs as possible
o Balance the workload across PEs
o Sufficient memory BW to deliver workload to PEs (reduce idle cycles)

o Low latency has an additional constraint of small batch size 

*(100% = peak performance)
Vivienne Sze ISSCC 2020 20 of 91



Eyexam: Performance Evaluation Framework

Step 1: max workload parallelism (Depends on DNN Model)
Step 2: max dataflow parallelism
Number of PEs (Theoretical Peak Performance)peak

performance

MAC/cycle

MAC/data

Vivienne Sze ISSCC 2020

[Chen, arXiv 2019: https://arxiv.org/abs/1807.07928 ] 

A systematic way of understanding the 
performance limits for DL processors 
as a function of specific characteristics of 

the DNN model and processor design

21 of 91

https://arxiv.org/abs/1807.07928


Eyexam: Performance Evaluation Framework

Number of PEs (Theoretical Peak Performance)peak
performance

Slope = BW to PEs

MAC/cycle

MAC/data

BW
Bounded 

Compute
Bounded [Williams, CACM 2009] 

Based on Roofline Model

Vivienne Sze ISSCC 2020 22 of 91



Eyexam: Performance Evaluation Framework

Step 1: max workload parallelism
Step 2: max dataflow parallelism

Step 3: # of active PEs under a finite PE array size
Number of PEs (Theoretical Peak Performance)

Step 4: # of active PEs under fixed PE array dimension

peak
performance

Step 5: # of active PEs under fixed storage capacity

Slope = BW to only active PE

MAC/cycle

MAC/data

https://arxiv.org/abs/1807.07928

Vivienne Sze ISSCC 2020 23 of 91

PE

C

M

https://arxiv.org/abs/1807.07928


Eyexam: Performance Evaluation Framework

Step 1: max workload parallelism
Step 2: max dataflow parallelism

Step 3: # of active PEs under a finite PE array size
Number of PEs (Theoretical Peak Performance)

Step 4: # of active PEs under fixed PE array dimension

peak
performance

Step 5: # of active PEs under fixed storage capacity

workload operational intensity

Step 6: lower act. PE util. due to insufficient average BW
Step 7: lower act. PE util. due to insufficient instantaneous BW

MAC/cycle

MAC/data

https://arxiv.org/abs/1807.07928

Vivienne Sze ISSCC 2020 24 of 91

https://arxiv.org/abs/1807.07928


Key Design Objectives of DL Processors
o Reduce Energy and Power 

Consumption
n Reduce data movement as it 

dominates energy consumption
o Exploit data reuse

n Reduce energy per MAC 
o Reduce switching activity and/or 

capacitance
o Reduce instruction overhead

n Avoid unnecessary MACs

o Power consumption is limited by 
heat dissipation, which limits the 
maximum # of MACs in parallel 
(i.e., throughput)

Operation: Energy 
(pJ)

8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Multiply 0.2
32b Multiply 3.1
16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Relative Energy Cost

1 10 102 103 104[Horowitz, ISSCC 2014]

Vivienne Sze ISSCC 2020 25 of 91



Key Design Objectives of DL Processors

o Flexibility
n Reduce overhead of supporting flexibility 
n Maintain efficiency across wide range of DNN workloads 

o Different layer shapes impact the amount of
n Required storage and compute
n Available data reuse that can be exploited

o Different precision across layers & data types (weight, activation, partial sum)
o Different degrees of sparsity (number of zeros in weights or activations)
o Types of DNN layers and compute beyond MACs (e.g., activation functions)

o Scalability
n Increase how performance (i.e., throughput, latency, energy, power) 

scales with increase in amount of resources (e.g., number of PEs, amount 
of memory, etc.)

Vivienne Sze ISSCC 2020 26 of 91



Specifications to Evaluate Metrics
o Accuracy

n Difficulty of dataset and/or task should be considered
n Difficult tasks typically require more complex DNN models

o Throughput
n Number of PEs with utilization (not just peak performance)
n Runtime for running specific DNN models

o Latency
n Batch size used in evaluation

o Energy and Power
n Power consumption for running specific DNN models
n Off-chip memory access (e.g., DRAM)

o Hardware Cost 
n On-chip storage, # of PEs, chip area + process technology

o Flexibility 
n Report performance across a wide range of DNN models
n Define range of DNN models that are efficiently supported 

Vivienne Sze ISSCC 2020

DRAM

Chip

[Sze, CICC 2017]

27 of 91

ImageNetMNIST

Computer 
Vision

Speech 
Recognition

Off-chip 
memory 
access



Comprehensive Coverage for Evaluation

o All metrics should be reported for fair evaluation of design 
tradeoffs

o Examples of what can happen if a certain metric is omitted:
n Without the accuracy given for a specific dataset and task, one could 

run a simple DNN and claim low power, high throughput, and low cost –
however, the processor might not be usable for a meaningful task

n Without reporting the off-chip memory access, one could build a 
processor with only MACs and claim low cost, high throughput, high 
accuracy, and low chip power – however, when evaluating system power, 
the off-chip memory access would be substantial

o Are results measured or simulated? On what test data?
Vivienne Sze ISSCC 2020 28 of 91



Example Evaluation Process

The evaluation process for whether a DL processor is a viable 
solution for a given application might go as follows: 

1. Accuracy determines if it can perform the given task 
2. Latency and throughput determine if it can run fast enough 

and in real-time
3. Energy and power consumption will primarily dictate the 

form factor of the device where the processing can operate 
4. Cost, which is primarily dictated by the chip area, determines 

how much one would pay for this solution
5. Flexibility determines the range of tasks it can support

Vivienne Sze ISSCC 2020 29 of 91



Interim Q&A Session
Please ask questions that you feel are 

essential to follow the rest of this tutorial

Vivienne Sze ISSCC 2020 30 of 91



Tutorial Overview

o Deep Learning Overview
o Key Metrics and Design Objectives
o Design Considerations

n CPU and GPU Platforms
n Specialized / Domain Specific Hardware (ASICs)

o Efficient Dataflows
o Algorithm (DNN Model) and Hardware Co-Design 
o Flexibility and Scalability

n Other Platforms
o Processing In Memory / In Memory Computing
o Field Programmable Gate Arrays (FPGAs)

o Tools for Systematic Evaluation of DL Processors
o Should I Use Deep Learning for a Given Task?

Vivienne Sze ISSCC 2020 31 of 91



CPUs and GPUs Targeting Deep Learning

Use matrix multiplication libraries on CPUs and GPUs

Vivienne Sze ISSCC 2020 32 of 91

Intel Xeon (Cascade Lake) Nvidia Tesla (Volta) AMD Radeon (Instinct)



Map DNN to a Matrix Multiplication

Fully connected layer can be directly represented as matrix multiplication

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=

Vivienne Sze ISSCC 2020

Note: Matrix multiplication also heavily used 
by recurrent and attention layersIn fully connected layer, filter size (R, S) same as input size (H, W)

H

W

…

…

…C…

1

…

M

…

input fmaps output fmaps

…

filters

…

…

…

H

…

…C… …

1
…

…

N N

1
1

W 1

H

…

…C…

M
W

H

W

…

…

…C…

1
1

M

33 of 91



Map DNN to a Matrix Multiplication 

Convolutional layer can be converted to Toeplitz Matrix

Vivienne Sze ISSCC 2020 34 of 91

Convolution

1 2 3
4 5 6
7 8 9

1 2
3 4

Filter Input Fmap Output Fmap

* = 1 2
3 4

1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × =
Filter Input Fmap Output Fmap

Matrix Multiply (by Toeplitz Matrix)

Data is repeated



CPU, GPU Libraries for Matrix Multiplication

o Implementation: Matrix Multiplication (GEMM)

n CPU: OpenBLAS, Intel MKL, etc

n GPU: cuBLAS, cuDNN, etc

o Library will note shape of the matrix multiply and select 
implementation optimized for that shape 

o Optimization usually involves proper tiling to memory hierarchy

Vivienne Sze ISSCC 2020 35 of 91



Analogy: Gauss’s Multiplication Algorithm

4 multiplications + 3 additions

3 multiplications + 5 additions

Reduce number of multiplications to 
increase throughput

Vivienne Sze ISSCC 2020 36 of 91



Reduce Operations in Matrix Multiplication

o Fast Fourier Transform [Mathieu, ICLR 2014]

n Pro: Direct convolution O(No
2Nf

2) to O(No
2log2No)

n Con: Increase storage requirements
o Strassen [Cong, ICANN 2014] 

n Pro: O(N3) to (N2.807)
n Con: Numerical stability

o Winograd [Lavin, CVPR 2016] 

n Pro: 2.25x speed up for 3x3 filter
n Con: Specialized processing depending on filter size

Compiler selects transform based on filter size

Vivienne Sze ISSCC 2020 37 of 91



Reduce Instruction Overhead
o Perform more operations per instruction

n CPU: SIMD / Vector Instructions 
o e.g., Specialized Vector Neural Network Instructions (VNNI) fuses separate multiply and add 

instructions into single MAC instruction and avoids storing intermediate values in memory
n GPU: SIMT / Tensor Instructions

o e.g., New opcode Matrix Multiply Accumulate (HMMA) performs 64 MACs with Tensor Core 

o Perform more MACs per cycle without increasing memory bandwidth by 
adding support for reduced precision
n e.g., If access 512 bits per cycle, can perform 64 8-bit MACs vs. 16 32-bit MACs

Tensor Core
Image Source: Nvidia

Vivienne Sze ISSCC 2020 38 of 91



Design Considerations for CPU and GPU 
o Software (compiler)

n Reduce unnecessary MACs: Apply transforms 
n Increase PE utilization: Schedule loop order and tile data to increase data reuse 

in memory hierarchy 
o Hardware

n Reduce time per MAC 
o Increase speed of PEs
o Increase MACs per instructions using large aggregate instructions (e.g., SIMD, tensor core) 

à requires additional hardware
n Increase number of parallel MACs

o Increase number of PEs on chip à area cost
o Support reduced precision in PEs

n Increase PE utilization 
o Increase on-chip storage à area cost
o External memory BW à system cost

Vivienne Sze ISSCC 2020 39 of 91



Tutorial Overview

o Deep Learning Overview
o Key Metrics and Design Objectives
o Design Considerations

n CPU and GPU Platforms
n Specialized / Domain Specific Hardware (ASICs)

o Efficient Dataflows
o Algorithm (DNN Model) and Hardware Co-Design 
o Flexibility and Scalability

n Other Platforms
o Processing In Memory / In Memory Computing
o Field Programmable Gate Arrays (FPGAs)

o Tools for Systematic Evaluation of DL Processors
o Should I Use Deep Learning for a Given Task?

Vivienne Sze ISSCC 2020 40 of 91



ISSCC 2020

Properties We Can Leverage
• Operations exhibit high parallelism

à high throughput possible

• Memory Access is the Bottleneck

Example: AlexNet has 724M MACs à 2896M DRAM accesses required

Vivienne Sze

ALU

Memory Read Memory WriteMAC*

* multiply-and-accumulate

filter weight
fmap act

partial sum updated 
partial sum

Worst Case: all memory R/W are DRAM accesses

200x 1x

DRAM DRAM

41 of 91



Properties We Can Leverage
• Operations exhibit high parallelism

à high throughput possible

• Input data reuse opportunities (e.g., up to 500x for AlexNet)
à exploit low-cost memory

Vivienne Sze ISSCC 2020

Filter Input Fmap

Convolutional Reuse 
(Activations, Weights)

CONV layers only
(sliding window)

Filters

2

1

Input Fmap

Fmap Reuse
(Activations)

CONV and FC layers 42 of 91

Filter

2

1

Input Fmaps

Filter Reuse
(Weights)

CONV and FC layers
(batch size > 1)



Highly-Parallel Compute Paradigms
Temporal Architecture 

(SIMD/SIMT) 
Spatial Architecture 

(Dataflow Processing) 

Register File 

Memory Hierarchy 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

Control 

Memory Hierarchy 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

Vivienne Sze ISSCC 2020 43 of 91



Temporal Architecture 
(SIMD/SIMT) 

Register File 

Memory Hierarchy 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

Control 

Spatial Architecture 
(Dataflow Processing) 

Memory Hierarchy 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

Efficient	Data	Reuse	
Distributed	local	storage	(RF)	

Inter-PE	Communica5on	
Sharing	among	regions	of	PEs	

Processing	
Element	(PE)	

Control 

Reg File 0.5 – 1.0 kB 

  

  

Advantages of Spatial Architecture

Vivienne Sze ISSCC 2020 44 of 91



How to Map the Dataflow?

Vivienne Sze ISSCC 2020

Spatial Architecture
(Dataflow Processing)
Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

CNN Convolution

?
activations

weights

partial
sums

Goal: Increase reuse of input data 
(weights and activations) and local 

partial sums accumulation
45 of 91



Tutorial Overview

o Deep Learning Overview
o Key Metrics and Design Objectives
o Design Considerations

n CPU and GPU Platforms
n Specialized / Domain Specific Hardware (ASICs)

o Efficient Dataflows
o Algorithm (DNN Model) and Hardware Co-Design
o Flexibility and Scalability

n Other Platforms
o Processing In Memory / In Memory Computing
o Field Programmable Gate Arrays (FPGAs)

o Tools for Systematic Evaluation of DL Processors
o Should I Use Deep Learning for a Given Task?

Vivienne Sze ISSCC 2020

Y.-H. Chen, J. Emer, V. Sze, 
“Eyeriss: A Spatial Architecture 
for Energy-Efficient Dataflow 

for Convolutional Neural 
Networks,”

International Symposium on 
Computer Architecture (ISCA), 

June 2016.

46 of 91



Data Movement is Expensive

Maximize data reuse at low 
cost levels of memory hierarchy

Vivienne Sze ISSCC 2020

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 

Specialized hardware with small (< 1kB) 
low cost memory near compute

Farther and larger memories 
consume more power

47 of 91



Weight Stationary (WS)

• Minimize weight read energy consumption
− maximize convolutional and filter reuse of weights

• Broadcast activations and accumulate partial sums spatially
across the PE array

• Examples: [TPU, ISCA 2017], NVDLA

  
            

  

  

Global Buffer 

W0 W1 W2 W3 W4 W5 W6 W7 

  

  

  

  

Psum Activation 

PE 
Weight 

Vivienne Sze ISSCC 2020 48 of 91

[Chen, ISCA 2016]



• Minimize partial sum R/W energy consumption
− maximize local accumulation

• Broadcast/Multicast filter weights and reuse activations spatially
across the PE array

• Examples: [Moons, VLSI 2016], [Thinker, VLSI 2017]

Output Stationary (OS)

  
            

  

  

Global Buffer 

P0 P1 P2 P3 P4 P5 P6 P7 

  

  

  

  

Activation Weight 

PE 
Psum 

Vivienne Sze ISSCC 2020

[Chen, ISCA 2016]

49 of 91



• Minimize activation read energy consumption
− maximize convolutional and fmap reuse of activations

• Unicast weights and accumulate partial sums spatially
across the PE array

• Example: [SCNN, ISCA 2017]

Input Stationary (IS)

Global Buffer

I0 I1 I2 I3 I4 I5 I6 I7

Psum

Act
PE

Weight

Vivienne Sze ISSCC 2020 50 of 91

[Chen, ISCA 2016]



ISSCC 2020

Row Stationary Dataflow

• Maximize row convolutional reuse in RF
− Keep a filter row and fmap sliding window in RF

• Maximize row psum accumulation in RF

PE 
b a c 

Reg File 

d c e 

c 

  
  

  
b a 

[Chen, ISCA 2016]
Vivienne Sze

1D convolution 
within PE

51 of 91



Row Stationary Dataflow

Optimize for 
overall energy efficiency 
instead for only a certain 

data type

[Chen, ISCA 2016]
Vivienne Sze ISSCC 2020

PE 1 

Row 1 Row 1 

PE 2 

Row 2 Row 2 

PE 3 

Row 3 Row 3 

Row 1 

= * 

PE 4 

Row 1 Row 2 

PE 5 

Row 2 Row 3 

PE 6 

Row 3 Row 4 

Row 2 

= * 

PE 7 

Row 1 Row 3 

PE 8 

Row 2 Row 4 

PE 9 

Row 3 Row 5 

Row 3 

= * 

* * * 

* * * 

* * * 

52 of 91



Tutorial Overview

o Deep Learning Overview
o Key Metrics and Design Objectives
o Design Considerations

n CPU and GPU Platforms
n Specialized / Domain Specific Hardware (ASICs)

o Efficient Dataflows
o Algorithm (DNN Model) and Hardware Co-Design
o Flexibility and Scalability

n Other Platforms
o Processing In Memory / In Memory Computing
o Field Programmable Gate Arrays (FPGAs)

o Tools for Systematic Evaluation of DL Processors
o Should I Use Deep Learning for a Given Task?

Vivienne Sze ISSCC 2020 53 of 91



Commercial Products Support Reduced Precision

Nvidia’s Pascal (2016) Google’s TPU (2016)
TPU v2 & v3 (2019)

Intel’s NNP-L (2019)

Vivienne Sze ISSCC 2020 54 of 91

8-bit fixed for Inference & 16-bit float for Training



Reduced Precision in Research

o Reduce number of bits 
n Binary Nets [Courbariaux, NeurIPS 2015] 

o Reduce number of unique weights
n Ternary Weight Nets [Li, NeurIPS Workshop 2016]
n XNOR-Net [Rategari, ECCV 2016]

o Non-Linear Quantization
n LogNet [Lee, ICASSP 2017]

o Training
n 8-bit with stochastic rounding 
[Wang, NeurIPS 2018]

Binary Filters

Log Domain Quantization

Vivienne Sze ISSCC 2020 55 of 91



Precision Scalable MACs for Varying Precision

Vivienne Sze ISSCC 2020

Conventional data-gated MAC
Gate unused logic (e.g., full adders) 

to reduce energy consumption

[Camus, JETCAS 2019]

Full precision 8bx8b 4bx4b 2bx8b

Many approaches increase utilization of 
logic to increase throughput/area; however, 
area and energy overhead can reduce benefits

1.3x

1.6x

Evaluation of 19 precision scalable MAC designs
5% of values 8bx8b

47.5% of values at 2bx2b and 4bx4b
4bx4b

Conventional 
data-gated

56 of 91



Sparsity in Activation Data

9 -1 -3
1 -5 5
-2 6 -1

Many zeros in output fmaps after ReLU
ReLU

9 0 0
1 0 5
0 6 0

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5
CONV Layer

# of activations # of non-zero activations

(Normalized)

Vivienne Sze ISSCC 2020

[Chen, ISSCC 2016]
57 of 91



Data Gating / Zero Skipping

[Chen, Eyeriss, ISSCC 2016]

Filter  
Scratch Pad 

(225x16b SRAM) 

Partial Sum 
Scratch Pad 

(24x16b REG) 

Filt 

Img 

Input 
Psum 

2-stage 
pipelined  
multiplier 

Output 
Psum   

0 

Accumulate 
Input Psum 

1 

0 

== 0 Zero 
Buffer 

Enable 
  

Image 
Scratch Pad 

(12x16b REG)   

  

  

0 
1 

   

  

    

  

  

    

Skip MAC and mem reads  
when image data is zero. 

Reduce PE power by 45% 

Reset 

[Albericio, Cnvlutin, ISCA 2016]

Gate operations 
(reduce power consumption)

Skip operations
(increase throughput)

Vivienne Sze ISSCC 2020 58 of 91



Apply Compression to Reduce Data Movement

[Chen, ISSCC 2016]

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	

DR
AM

	A
cc
es
s	(
M
B)
	

AlexNet	Conv	Layer	

Uncompressed	 Compressed	

1 2 3 4 5
AlexNet Conv Layer

DRAM 
Access 
(MB) 

0

2

4

6
1.2�

1.4�
1.7�

1.8�
1.9�

Uncompressed
Fmaps + Weights

RLE Compressed
Fmaps + Weights

Simple RLC within 5% - 10% of theoretical entropy limit

Example: Eyeriss compresses activations to reduce DRAM BW

Vivienne Sze ISSCC 2020

… 

… 

… 

… 

…
 

…
 

ReLU 

Input Image 

Output Image 

Filter Filt 

Img 

Psum 

Psum 

Buffer 
SRAM 

 
108KB 

14×12 PE Array 

  

  

Link Clock  Core Clock  

Run-Length Compression (RLC)  

Example: 

Output (64b): 

Input:  0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22, … 

5b 16b 1b 5b 16b 5b 16b 
2 12 4 53 2 22 0 

Run Level Run Level Run Level Term 
  

Off-Chip DRAM 
64 bits 

Decomp 

Comp 

DCNN Accelerator DNN Accelerator 

59 of 91



Pruning – Make Weights Sparse
Optimal Brain Damage

[Lecun, NeurIPS 1990]

pruning 
neurons

pruning 
synapses

after pruningbefore pruning

Prune DNN based on 
magnitude of weights

[Han, NeurIPS 2015]

Example: AlexNet
Weight Reduction:  CONV layers 2.7x, 

FC layers 9.9x
Overall Reduction:  Weights 9x, MACs 3x

retraining

Vivienne Sze ISSCC 2020 60 of 91



How to Evaluate Complexity of DNN Model?

Vivienne Sze ISSCC 2020 61 of 91

Number of MACs and weights are not good proxies for latency and energy

# of operations (MACs) does not 
approximate latency well

Source: Google 
(https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)

Output	Feature	Map	
43%	

Input	Feature	Map	
25%	

Weights	
22%	

Computa:on	
10%	

Energy	Consump:on	
of	GoogLeNet	

[Yang, CVPR 2017]

# of weights alone is not a good metric for energy 
(All data types should be considered) 

Energy breakdown 
of GoogLeNet

https://energyestimation.mit.edu/

https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html
https://energyestimation.mit.edu/


Energy-Aware Pruning

Directly target energy 
and incorporate it into the 

optimization of DNNs to provide 
greater energy savings

• Sort layers based on energy and prune 
layers that consume the most energy first

• Energy-aware pruning reduces AlexNet
energy by 3.7x and outperforms the 
previous work that uses magnitude-
based pruning by 1.7x

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 
4.5 

Ori. DC EAP 

Normalized Energy (AlexNet) 

2.1x 3.7x 

x109 

Magnitude 
Based Pruning 

Energy Aware 
Pruning 

Pruned models available at 
http://eyeriss.mit.edu/energy.html[Yang, CVPR 2017]

Vivienne Sze ISSCC 2020 62 of 91

http://eyeriss.mit.edu/energy.html


Compact DNN Models
o Design compact DNN Models  

n Tends to increase range of layer shapes (e.g., R, S, C) that need to be supported
n Can be handcrafted or learned using Network/Neural Architecture Search (NAS)

Vivienne Sze ISSCC 2020

Year Accuracy* # Layers # Weights # MACs
AlexNet 2012 80.4% 8 61M 724M

MobileNet[1] 2017 89.5% 28 4M 569M[1]

* ImageNet Classification Top-5

Filter Decomposition

R

S

C …

…

…

R

S

…
…

C

1
1

*

Bottleneck Layer

Reduce number of channels 
before large filter convolution

Decompose large filters 
into smaller filters

63 of 91

1x1 convolutionsFilter Decomposition



NetAdapt: Platform-Aware DNN Adaptation

• Automatically adapt DNN to 
a mobile platform to reach a 
target latency or energy budget

• Use empirical measurements 
to guide optimization (avoid 
modeling of tool chain or 
platform architecture)

• Requires very few 
hyperparameters to tune 

In collaboration with Google’s Mobile Vision Team

NetAdapt Measure

…

Network Proposals

Empirical Measurements
Metric Proposal A … Proposal Z

Latency 15.6 … 14.3

Energy 41 … 46

…… …

Pretrained
Network Metric Budget

Latency 3.8

Energy 10.5

Budget

Adapted
Network

… …

Platform

A B C D Z

[Yang, ECCV 2018]

Code available at http://netadapt.mit.edu

Vivienne Sze ISSCC 2020 64 of 91

http://netadapt.mit.edu/


Improved Latency vs. Accuracy Tradeoff
o NetAdapt boosts the real inference speed of MobileNet by up to 1.7x with 

higher accuracy

Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018

+0.3% accuracy
1.7x faster

+0.3% accuracy
1.6x faster *Tested on the ImageNet dataset 

and a Google Pixel 1 CPU

Vivienne Sze ISSCC 2020 65 of 91



Design Considerations for Co-Design
o Impact on accuracy 

n Must consider difficulty of dataset, task, and DNN model
o e.g., Easy to reduce precision for an easy task (e.g., digit classification) à does method work 

for a more difficult task?
o e.g., Easy to prune weights from over parameterized DNN models (e.g., AlexNet, VGG) à

does method work on compact DNN models?

o Does hardware cost exceed benefits?
n Need extra hardware to support variable precision and shapes or identify sparsity

o e.g., Additional shift-and-add logic and registers for varying precision
n Granularity impacts hardware overhead as well as accuracy

o e.g., Fine-grained or coarse-grained (structured) sparsity 

o Evaluation 
n Avoid evaluating impact based on number of weights or MACs as they may not be 

sufficient for evaluating energy consumption and latency 
n Baseline for precision: 8-bit for inference and 16-bit float for training 

o 32-bit float is a weak baseline

Vivienne Sze ISSCC 2020 66 of 91



Tutorial Overview

o Deep Learning Overview
o Key Metrics and Design Objectives
o Design Considerations

n CPU and GPU Platforms
n Specialized / Domain Specific Hardware (ASICs)

o Efficient Dataflows
o Algorithm (DNN Model) and Hardware Co-Design 
o Flexibility and Scalability

n Other Platforms
o Processing In Memory / In Memory Computing
o Field Programmable Gate Arrays (FPGAs)

o Tools for Systematic Evaluation of DL Processors
o Should I Use Deep Learning for a Given Task?

Vivienne Sze ISSCC 2020 67 of 91



Many Efficient DNN Design Approaches

pruning 
neurons

pruning 
synapses

after pruningbefore pruning

Network Pruning

C
1

1
S

R

1

R

S
C

Compact Network Architectures

10100101000000000101000000000100

01100110

Reduce Precision

32-bit float

8-bit fixed

Binary 0

No guarantee that DNN algorithm 
designer will use a given approach.

Need flexible hardware!

Vivienne Sze ISSCC 2020

[Chen, SysML 2018]
68 of 91



Limitations of Existing DNN Architectures

o Specialized DNN hardware often rely on certain properties of the 
DNN model in order to achieve high energy-efficiency

o Example: Reduce memory access by amortizing across PE array

Vivienne Sze ISSCC 2020 69 of 91

PE arrayWeight
Memory

Activation
Memory

Weight reuse

Activation reuse



Limitations of Existing DNN Architectures

o Reuse depends on # of channels, feature map/batch size 
n Not efficient across all DNN models (e.g., compact DNNs)

Vivienne Sze ISSCC 2020 70 of 91

PE array
(spatial 

accumulation)

Number of filters
(output channels)

Number of
input channels

PE array
(temporal

accumulation)

Number of filters
(output channels)

feature map
or batch size1

C
1

1R

Example mapping for 
depth wise layer

S



Need Flexible Dataflow

Use flexible dataflow (Row Stationary) to exploit reuse in any 
dimension of DNN to increase energy efficiency and array utilization

Vivienne Sze ISSCC 2020

Example: Depth-wise layer
71 of 91



Need Flexible On-Chip Network for Varying Reuse

o When reuse available, need multicast to exploit spatial data reuse for energy 
efficiency and high array utilization

o When reuse not available, need unicast for high BW for weights for FC and 
weights & activations for high PE utilization

o An all-to-all on-chip network satisfies above but too expensive and not scalable

G
lo

ba
l B

uf
fe

r

PE PE PEPE

PE PE PEPE

PE PE PEPE

PEPE PE PE
G

lo
ba

l B
uf

fe
r

PE PE PEPE

PE PE PEPE

PE PE PEPE

PE PE PEPE

G
lo

ba
l B

uf
fe

r

PE PE PEPE

PE PE PEPE

PE PE PEPE

PE PE PEPE

G
lo

ba
l B

uf
fe

r

PE PE PEPE

PE PE PEPE

PE PE PEPE

PE PE PEPE

High Bandwidth, Low Spatial Reuse Low Bandwidth, High Spatial Reuse

Unicast Networks Broadcast Network1D Multicast Networks1D Systolic Networks

[Chen, JETCAS 2019]

Vivienne Sze ISSCC 2020 72 of 91



Hierarchical Mesh
GLB
Cluster

Router
Cluster

PE
Cluster

…

…

…

…

…… …

Mesh
Network

All-to-all
Network

(a) (b) (c) (d) (e)

GLB
Cluster

Router
Cluster

PE
Cluster

…

…

…

…

…… …

Mesh
Network

All-to-all
Network

(a) (b) (c) (d) (e)

High Bandwidth High Reuse Grouped Multicast Interleaved Multicast

Vivienne Sze ISSCC 2020

[Chen, JETCAS 2019]

73 of 91



Eyeriss v2: Balancing Flexibility and Efficiency

Efficiently supports
o Wide range of filter shapes 

n Large and Compact

o Different Layers 
n CONV, FC, depth wise, etc.

o Wide range of sparsity 
n Dense and Sparse

o Scalable architecture

Over an order of magnitude faster 
and more energy efficient than 

Eyeriss v1

Speed up over Eyeriss v1 scales with 
number of PEs 

# of PEs 256 1024 16384

AlexNet 17.9x 71.5x 1086.7x

GoogLeNet 10.4x 37.8x 448.8x

MobileNet 15.7x 57.9x 873.0x

5.6
10.9
12.6

Vivienne Sze ISSCC 2020

[Chen, JETCAS 2019]

74 of 91



Design Considerations for Flexibility and Scalability 

o Many of the existing DL processors rely on certain properties of the 
DNN Model
n Properties cannot be guaranteed as the wide range techniques used for 

efficient DNN model design has resulted in a more diverse set of DNNs
n DL processors should be sufficiently flexible to efficiently support a wide 

range of techniques

o Evaluate DL processors on a comprehensive set of benchmarks
n MLPerf benchmark is a start, but may need more (e.g., sparsity, reduced 

precision, compact network architectures)

o Evaluate improvement in performance as resources scales up!
n Multiple chips modules [Zimmer, VLSI 2019] and Wafer Scale [Lie, HotChips 2019]

Vivienne Sze ISSCC 2020 75 of 91



Design Considerations for ASIC
o Increase PE utilization

n Flexible mapping and on-chip network for different DNN workloads à
requires additional hardware 

o Reduce data movement
n Custom memory hierarchy and dataflows that exploit data reuse
n Apply compression to exploit redundancy in data à requires additional 

hardware
o Reduce time and energy per MAC

n Reduce precision à if precision varies requires additional hardware; 
impact on accuracy

o Reduce unnecessary MACs
n Exploit sparsity à requires additional hardware; impact on accuracy 
n Exploit redundant operations à requires additional hardware

Vivienne Sze ISSCC 2020 76 of 91



Tutorial Overview

o Deep Learning Overview
o Key Metrics and Design Objectives
o Design Considerations

n CPU and GPU Platforms
n Specialized / Domain Specific Hardware (ASICs)

o Efficient Dataflows
o Algorithm (DNN Model) and Hardware Co-Design
o Flexibility and Scalability

n Other Platforms
o Processing In Memory / In Memory Computing
o Field Programmable Gate Arrays (FPGAs)

o Tools for Systematic Evaluation of DL Processors
o Should I Use Deep Learning for a Given Task?

Vivienne Sze ISSCC 2020 77 of 91



Performing MAC with Memory Storage Element 
o Analog Compute

n Activations, weights and/or partial sums are 
encoded with analog voltage, current, or resistance

n Increased sensitivity to circuit non-idealities: 
non-linearities, process, voltage, and temperature 
variations

n Require A/D and D/A peripheral circuits to interface 
with digital domain

o Multiplication
n eNVM (RRAM, STT-RAM, PCM) use resistive device 
n Flash and SRAM use transistor (I-V curve) or local cap

o Accumulation
n Current summing 
n Charge sharing

V1
G1

I1 = V1�G1
V2

G2

I2 = V2�G2

I = I1 + I2
= V1�G1 + V2�G2

Image Source: [Shafiee, ISCA 2016]

Activation is input voltage (Vi)
Weight is resistor conductance (Gi)

Vivienne Sze ISSCC 2020

Psum
is output 
current

78 of 91



Processing In Memory (PIM*)
o Implement as matrix-vector multiply

n Typically, matrix composed of stored weights 
and vector composed of input activations

o Reduce weight data movement by 
moving compute into the memory
n Perform MAC with storage element or in 

peripheral circuits
n Read out partial sums rather than weights à

fewer accesses through peripheral circuits
o Increase weight bandwidth 

n Multiple weights accessed in parallel to keep 
MACs busy (high utilization) 

o Increase amount of parallel MACs 
n Storage element can be higher area density 

than digital MAC
n Reduce routing capacitance 

weight 
stationary 
dataflow

input
activations 

DAC
AD

C

psum/
output activations

Analog logic 
(mult/add/shift)

Columns in Array (A)

Rows in 
Array (B)

Vivienne Sze ISSCC 2020

* a.k.a. In-Memory Computing (IMC)

eNVM:[Yu, PIEEE 2018], SRAM:[Verma, SSCS 2019]

79 of 91

Storage Element



Design Considerations for PIM
o Reduced precision due to non-idealities of analog compute

n For higher precision use 
o multiple storage elements per MAC à reduce area density and number of MACs
o bit serial processing à increase cycles per MAC

n Note: Per chip training may address variability but expensive in practice
o A/D and D/A conversion increase energy consumption and reduce area density

n Large array size can amortize conversion cost à increase area density and data reuse
n Array size limited by capacitance and resistance of bitline and wordline

o PE Utilization
n Number of rows or columns read in parallel from array limited by peripheral circuits

o Flexibility
n Limited mapping of weights due to sensitivity of analog compute and density 

requirements à affects utilization of array
n Can be challenging to support sparsity
n If expensive to write (e.g., eNVM), need to store entire DNN model on-chip

Vivienne Sze ISSCC 2020 80 of 91



Design Considerations for DNNs on PIM

o Designing DNNs for PIM may differ from 
DNNs for digital processors

o Highest accuracy DNN on digital processor 
may be different on PIM
n Accuracy drops based on robustness to non-

idealities
o Reducing number of weights is less desirable

n Since PIM is weight stationary, may be better 
to reduce number of activations

n PIM tend to have larger arrays à fewer 
weights may lead to low utilization on PIM

o Current trend is deeper and smaller filters
n For PIM, may be preferable to do shallower 

and larger filters

Vivienne Sze ISSCC 2020

[Yang, IEDM 2019]

81 of 91

Im
ag

eN
et

Storage Element

R
 x

 S
 x

 C

M



Field Programmable Gate Array (FPGA)
o Often implemented as matrix-vector multiply

n e.g., Microsoft Brainwave NPU [Fowers, ISCA 2018]

o A popular approach uses weight stationary 
dataflow and stores all weights on FPGA for low 
latency (batch size of 1)
n Referred to as pinning/persistent weights
n Scale to larger DNNs with multiple FPGAs due to 

high external bandwidth capabilities

o Reduced precision to fit more weights and MACs 
on FPGA
n e.g., custom ms-fp: 5-bit exponent (shared across 

vector), 2-3 bit mantissa à 96,000 MACs on Stratix

Vivienne Sze ISSCC 2020 82 of 91



Design Considerations for FPGAs

o Increase number of PEs 
n Use custom reduced precision à check impact on accuracy
n Use Look up tables (LUTs) for MACs, but slower and more area than DSPs

o Tradeoff between storage and compute à number of PEs versus PE utilization

o Increase PE utilization
n Design memory hierarchy using on-chip memory resources

o Store all weights on-chip when feasible (good for batch size 1)
n Customized architecture and mapping for each layer

o Tailor architecture (e.g., PE array dimension) at synthesis time to DNN model and 
increase efficiency (e.g., PE utilization) of underlying FPGA hardware 

o Specialized PE array added as co-processor to FPGA 
n Example: Xilinx Alveo platform has a xDNN systolic array accelerator

Vivienne Sze ISSCC 2020 83 of 91



DL Processor Evaluation Tools
o Require systematic way to

n Evaluate and compare wide range of DL 
processor designs

n Rapidly explore design space
o Accelergy [Wu, ICCAD 2019]

n Early stage energy estimation tool at the 
architecture level
o Estimate energy consumption based on 

architecture level components (e.g., # of PEs, 
memory size, on-chip network)

n Evaluate architecture level energy impact of 
emerging devices
o Plug-ins for different technologies

o Timeloop [Parashar, ISPASS 2019]

n DNN mapping tool 
n Performance Simulator à Action counts
Vivienne Sze ISSCC 2020

Open-source code available at: 
http://accelergy.mit.edu

Accelergy
(Energy Estimator Tool)

Architecture
description

Action 
countsAction 
counts

Compound 
component
description

… Energy 
estimation

Energy
estimation 
plug-in 0

Energy 
estimation 
plug-in 1

Timeloop
(DNN Mapping Tool & 

Performance Simulator)

84 of 91

http://accelergy.mit.edu/


Summary

o DNNs are a critical component in the AI revolution, delivering 
record breaking accuracy on many important AI tasks for a wide range of 
applications; however, it comes at the cost of high computational 
complexity

o Efficient processing of DNNs is an important area of research with many 
promising opportunities for innovation at various levels of hardware 
design, including algorithm co-design

o When considering different DNN solutions it is important to evaluate 
with the appropriate workload in term of both input and model, and 
recognize that they are evolving rapidly

o It is important to consider a comprehensive set of metrics when 
evaluating different DNN solutions: accuracy, throughput, latency, 
power, energy, flexibility, scalability and cost

Vivienne Sze ISSCC 2020 85 of 91



Should I Use Deep Learning for a Given Task?
o While deep learning gives state-of-the-art accuracy on many tasks, it may not be 

the best approach for all tasks.  Some factors to consider include
o How much training data is available?

n Deep learning requires a significant amount of data à in particular, labelled data 
(current state-of-the-art results rely on supervised learning)

o How much computing resource is available?
n Despite the progress in the area of efficient deep learning, it can still require orders of 

magnitude more complexity than other machine learning based approaches
o How critical is interpretability?

n Understanding why the DNN makes a certain decision is still an open area of research
n DNN models can be fooled – increasing robustness is still an open area of research
n In general, debugging what happens within a DNN can be challenging

o Does a known model already exist? 
n Many things in the world are based on known models or laws (e.g., Ohm’s Law V=IR); 

it may be unnecessary to re-learn this from the data

Vivienne Sze ISSCC 2020 86 of 91



Papers at this year’s ISSCC
o 7.1 A 3.4-to-13.3TOPS/W 3.6TOPS Dual-Core Deep-Learning Accelerator for Versatile AI Applications in 7nm 

5G Smartphone SoC
o 7.2 A 12nm Programmable Convolution-Efficient Neural-Processing-Unit Chip Achieving 825TOPS
o 7.4 GANPU: A 135TFLOPS/W Multi-DNN Training Processor for GANs with Speculative Dual-Sparsity 

Exploitation

o 14.1 A 510nW 0.41V Low-Memory Low-Computation Keyword-Spotting Chip Using Serial FFT-Based MFCC and 
Binarized Depthwise Separable Convolutional Neural Network in 28nm CMOS

o 14.2 A 65nm 24.7µJ/Frame 12.3mW Activation-Similarity-Aware Convolutional Neural Network Video Processor 
Using Hybrid Precision, Inter-Frame Data Reuse and Mixed-Bit-Width Difference-Frame Data Codec

o 14.3 A 65nm Computing-in-Memory-Based CNN Processor with 2.9-to-35.8TOPS/W System Energy Efficiency 
Using Dynamic-Sparsity Performance-Scaling Architecture and Energy-Efficient Inter/Intra-Macro Data Reuse

o 15.2 A 28nm 64Kb Inference-Training Two-Way Transpose Multibit 6T SRAM Compute-in-Memory Macro for AI 
Edge Chips

o 15.3 A 351TOPS/W and 372.4GOPS Compute-in-Memory SRAM Macro in 7nm FinFET CMOS for Machine-
Learning Applications

o 15.4 A 22nm 2Mb ReRAM Compute-in-Memory Macro with 121-28TOPS/W for Multibit MAC Computing for Tiny 
AI Edge Devices

o 15.5 A 28nm 64Kb 6T SRAM Computing-in-Memory Macro with 8b MAC Operation for AI Edge Chips

Vivienne Sze ISSCC 2020 87 of 91



Additional Resources

V. Sze, Y.-H. Chen, 
T-J. Yang, J. Emer, 

“Efficient Processing of 
Deep Neural Networks: 
A Tutorial and Survey,” 

Proceedings of the IEEE, Dec. 
2017

For updates

http://mailman.mit.edu/mailman
/listinfo/eems-news

Book Coming Soon!

MIT Professional Education Course on 
“Designing Efficient Deep Learning Systems” 
http://professional-education.mit.edu/deeplearning

DNN Tutorial website 
http://eyeriss.mit.edu/tutorial.html

Vivienne Sze ISSCC 2020 88 of 91

http://mailman.mit.edu/mailman/listinfo/eems-news
http://professional-education.mit.edu/deeplearning
http://eyeriss.mit.edu/tutorial.html


References (1 of 3)
Deep Learning Overview
o Transformer: Vaswani et al, “Attention is all you need,” NeurIPS 2017
o LeNet: LeCun, Yann, et al. “Gradient-based learning applied to document recognition,” Proc. IEEE 1998
o AlexNet: Krizhevsky et al. “Imagenet classification with deep convolutional neural networks,” NeurIPS 2012
o VGGNet: Simonyan et al.. “Very deep convolutional networks for large-scale image recognition,” ICLR 2015
o GoogleNet: Szegedy et al. “Going deeper with convolutions,” CVPR 2015
o ResNet: He et al. “Deep residual learning for image recognition,” CVPR 2016
o EfficientNet: Tan et al., “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” ICML 2019  

Key Metrics and Design Objectives
o Sze et al., “Hardware for machine learning: Challenges and opportunities,” CICC 2017, 

https://www.youtube.com/watch?v=8Qa0E1jdkrE&feature=youtu.be
o Sze et al., “Efficient processing of deep neural networks: A tutorial and survey,” Proc. IEEE 2017
o Williams et al., “Roofline: An insightful visual performance model for floating-point programs and multicore 

architectures,” CACM 2009
o Chen et al., Eyexam, https://arxiv.org/abs/1807.07928

CPU and GPU Platforms
o Mathieu et al., “Fast training of convolutional networks through FFTs,” ICLR 2014
o Cong et al., “Minimizing computation in convolutional neural networks,” ICANN 2014
o Lavin et al., “Fast algorithms for convolutional neural networks,” CVPR 2016 

Vivienne Sze ISSCC 2020 89 of 91

https://www.youtube.com/watch?v=8Qa0E1jdkrE&feature=youtu.be
https://arxiv.org/abs/1807.07928


References (2 of 3)
Specialized Hardware (ASICs): Dataflow, Reduced Precision, Sparsity and Compact Model
o Chen et al., “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks,” ISCA 

2016, http://eyeriss.mit.edu
o Courbariaux et al., “Binaryconnect: Training deep neural networks with binary weights during propagations,” 

NeurIPS 2015 
o Li et al., “Ternary weight networks,” NeurIPS Workshop 2016
o Rategari et al., “XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks,” ECCV 2016
o Lee et al., “LogNet: Energy-efficient neural networks using logarithmic computation,” ICASSP 2017
o Lecun et al., Optimal Brain Damage,” NeurIPS 1990
o Han et al., “Learning both weights and connections for efficient neural networks,” NeurIPS 2015
o Chen et al., “Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks,” ISSCC 

2016, http://eyeriss.mit.edu
o Albericio et al., “Cnvlutin: Ineffectual-neuron-free deep neural network computing”, ISCA 2016
o Yang et al., “Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning,” CVPR 2017, 

http://eyeriss.mit.edu/energy.html
o Yang et al., “NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications,” ECCV 2018, 

http://netadapt.mit.edu
o Howard et al., “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
o Camus et al., “Review and Benchmarking of Precision-Scalable Multiply-Accumulate Unit Architectures for Embedded 

Neural-Network Processing,” JETCAS 2019

Vivienne Sze ISSCC 2020 90 of 91

http://eyeriss.mit.edu/
http://eyeriss.mit.edu/
http://eyeriss.mit.edu/energy.html
http://netadapt.mit.edu/


References (3 of 3)
Specialized Hardware (ASICs): Flexibility and Scalability 
o Chen et al., “Understanding the Limitations of Existing Energy-Efficient Design Approaches for Deep Neural 

Networks,” SysML 2018, https://www.youtube.com/watch?v=XCdy5egmvaU
o Chen et al., “Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices,” JETCAS 2019
o Zimmer et al., “A 0.11pJ/Op, 0.32-128 TOPS, Scalable Multi-Chip-Module-based Deep Neural Network Accelerator 

with Ground-Reference Signaling in 16nm,” VLSI 2019
o Lie (Cerebras), “Wafer Scale Deep Learning,” Hot Chips 2019

Other Platforms: Processing In Memory / In-Memory Computing and FPGAs
o Verma et al., “In-Memory Computing: Advances and prospects,” ISSCC Tutorial 2018 / SSCS Magazine 2019
o Yu, “Neuro-Inspired Computing with Emerging Nonvolatile Memorys,” Proc. IEEE 2018
o Yang et al., “Design Considerations for Efficient Deep Neural Networks on Processing-in-Memory Accelerators,” IEDM 

2019
o Fowers et al., “A configurable cloud-scale DNN processor for real-time AI,” ISCA 2018

DL Processor Evaluation Tools
o Wu et al., “Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs,” ICCAD 2019, 

http://accelergy.mit.edu
o Parashar et al., “Timeloop: A Systematic Approach to DNN Accelerator Evaluation,” ISPASS 2019

Vivienne Sze ISSCC 2020 91 of 91

https://www.youtube.com/watch?v=XCdy5egmvaU
http://accelergy.mit.edu/

