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Compute Demands for Deep Neural Networks2

Source: Open AI (https://openai.com/blog/ai-and-compute/)

Petaflop/s-days 
(exponential)

Year

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

https://openai.com/blog/ai-and-compute/
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Compute Demands for Deep Neural Networks3

[Strubell, ACL 2019]

[Strubell, ACL 2019]
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Processing at “Edge” instead of the “Cloud”

Communication Privacy Latency
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Computing Challenge for Self-Driving Cars

(Feb 2018)

Cameras and radar generate 
~6 gigabytes of data every 30 seconds. 

Generates wasted heat and some 
prototypes need water-cooling!

Self-driving car prototypes use 
approximately 2,500 Watts of 

computing power.
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Existing Processors Consume Too Much Power

< 1 Watt > 10 Watts

6



Vivienne Sze (    @eems_mit)

Transistors are NOT Getting More Efficient
Slow down of Moore’s Law and Dennard Scaling 

General purpose microprocessors not getting faster or more efficient 

• Need specialized hardware for significant improvement in 
speed and energy efficiency

• Redesign computing hardware from the ground up!

Slowdown
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Popularity of Specialized Hardware for DNNs8

Big Bets On A.I. Open a New Frontier for 
Chips Start-Ups, Too. (January 14, 2018)

“Today, at least 45 start-ups are working 
on chips that can power tasks like speech 
and self-driving cars, and at least five of 
them have raised more than $100 million 
from investors. Venture capitalists 
invested more than $1.5 billion in chip 
start-ups last year, nearly doubling the 
investments made two years ago, according 
to the research firm CB Insights.”
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Power Dominated by Data Movement
Operation: Energy 

(pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Area 
(µm2)

36
67
137
1360
4184
282
3495
1640
7700
N/A
N/A

[Horowitz, ISSCC 2014] 

Relative Energy Cost

1 10 102 103 104

Relative Area Cost

1 10 102 103

Memory access is orders of magnitude higher energy than compute

9



Vivienne Sze (    @eems_mit)

Autonomous Navigation Uses a Lot of Data

• Geometric Understanding

- Growing map size

2 million pixels 10x-100x more pixels

• Semantic Understanding

- High frame rate
- Large resolutions
- Data expansion

[Pire, RAS 2017] 
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Understanding the Environment
Depth Estimation

State-of-the-art approaches 
use Deep Neural Networks, 
which require up to several 

hundred millions of 
operations and weights to 

compute!
>100x more complex than 

video compression

Semantic Segmentation
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Deep Neural Networks

Computer Vision Speech Recognition

Game Play Medical

Deep Neural Networks (DNNs) have become a cornerstone of AI
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What Are Deep Neural Networks?

Input:
Image

Output:
“Volvo XC90”

Modified Image Source: [Lee, CACM 2011]

Low Level Features High Level Features
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Weighted Sum

Yj = activation Wij × Xi
i=1

3
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Input Layer

Output Layer

Hidden Layer

X1

X2

X3

Y1

Y2

Y3

Y4

W11

W34

Nonlinear 
Activation
Function

Key operation is multiply and accumulate (MAC) 
Accounts for > 90% of computation 

Sigmoid
1

-1

0

0 1-1

Rectified Linear Unit (ReLU)
1

-1

0

0 1-1

y=max(0,x)y=1/(1+e-x)

Image source: Caffe tutorial
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• Fully Connected Layer
– Feed forward, fully connected

– Multilayer Perceptron (MLP) 

• Convolutional Layer
– Feed forward, sparsely-connected w/ weight sharing

– Convolutional Neural Network (CNN)

– Typically used for images

• Recurrent Layer
– Feedback

– Recurrent Neural Network (RNN)

– Typically used for sequential data (e.g., speech, language)

• Attention Layer/Mechanism
– Attention (matrix multiply) + feed forward, fully connected 

– Transformer [Vaswani, NeurIPS 2017]

Popular Types of Layers in DNNs
FeedbackFeed 

Forward

Input Layer
Output Layer

Hidden Layer

Input Layer

Output Layer

Hidden Layer

Sparsely
Connected

Fully
Connected
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High-Dimensional Convolution in CNN

R 

S 

H 

a plane of input activations 
a.k.a. input feature map (fmap) 

filter (weights) 

W 
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High-Dimensional Convolution in CNN

R 

filter (weights) 

S 

E 

F 
Partial Sum (psum) 

Accumulation 

input fmap output fmap 

Element-wise 
Multiplication 

H 

W 

an output  
activation 
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High-Dimensional Convolution in CNN

H 
R 

filter (weights) 

S 

E 

Sliding Window Processing 

input fmap 
an output  
activation 

output fmap 

W F 
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High-Dimensional Convolution in CNN

H 
R 

S 

…
 

…
 

…
 

C 

input fmap 

output fmap 

…
 

…
 

…
 

…
 C …

 
filter 

…
 

Many Input Channels (C) 

E 

W F 

AlexNet: 3 – 192 Channels (C) 
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High-Dimensional Convolution in CNN

…
 

E 

output fmap 

…
 

…
 

many 
filters (M) 

Many 
Output Channels (M) 
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AlexNet: 96 – 384 Filters (M) 
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High-Dimensional Convolution in CNN
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M 
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Input fmaps (N) Many 

Output fmaps (N) 
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Image batch size: 1 – 256 (N)
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Define Shape for Each Layer

Filters

R

S

…

…

…C

H

W

…

…

…C

…

E

F

…

…

…M

…

…

…M
…

R

S

…

…

…C

H

W
…

…C

1

N

1

M

1

…

…

Input fmaps
Output fmaps

…

E

F
N

H – Height of input fmap (activations) 
W – Width of input fmap (activations)
C – Number of 2-D input fmaps /filters
(channels)
R – Height of 2-D filter (weights)
S – Width of 2-D filter (weights)
M – Number of 2-D output fmaps (channels)
E – Height of output fmap (activations)
F – Width of output fmap (activations)
N – Number of input fmaps/output fmaps
(batch size)

Shape varies across layers
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Layers with Varying Shapes

Block Filter Size (RxS) # Filters (M) # Channels (C)
1 3x3 16 3

3 1x1 64 16
3 3x3 64 1
3 1x1 24 64

6 1x1 120 40
6 5x5 120 1
6 1x1 40 120

MobileNetV3-Large Convolutional Layer Configurations

[Howard, ICCV 2019]

…
…

…
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Popular DNN Models
Metrics LeNet-5 AlexNet VGG-16 GoogLeNet

(v1)
ResNet-50 EfficientNet-B4

Top-5 error 
(ImageNet)

n/a 16.4 7.4 6.7 5.3 3.7*

Input Size 28x28 227x227 224x224 224x224 224x224 380x380
# of CONV Layers 2 5 16 21 (depth) 49 96
# of Weights 2.6k 2.3M 14.7M 6.0M 23.5M 14M
# of MACs 283k 666M 15.3G 1.43G 3.86G 4.4G
# of FC layers 2 3 3 1 1 65**
# of Weights 58k 58.6M 124M 1M 2M 4.9M
# of MACs 58k 58.6M 124M 1M 2M 4.9M
Total Weights 60k 61M 138M 7M 25.5M 19M
Total MACs 341k 724M 15.5G 1.43G 3.9G 4.4G
Reference Lecun, 

PIEEE 1998
Krizhevsky, 
NeurIPS 2012

Simonyan, 
ICLR 2015

Szegedy, 
CVPR 2015

He, 
CVPR 2016

Tan, 
ICML 2019

DNN models getting larger and deeper
*   Does not include multi-crop and ensemble
** Increase in FC layers due to squeeze-and-excitation layers (much smaller than FC layers for classification)
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Efficient Hardware Acceleration 
for Deep Neural Networks

25
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Properties We Can Leverage
• Operations exhibit high parallelism

à high throughput possible

• Memory Access is the Bottleneck

ALU

Memory Read Memory WriteMAC*

* multiply-and-accumulate

filter weight
image pixel
partial sum updated 

partial sum

• Example: AlexNet has 724M MACs 
à 2896M DRAM accesses required

Worst Case: all memory R/W are DRAM accesses

200x 1x

DRAM DRAM
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Properties We Can Leverage
• Operations exhibit high parallelism

à high throughput possible

• Input data reuse opportunities (up to 500x)

27

Filter Input Fmap

Convolutional Reuse 
(Activations, Weights)

CONV layers only
(sliding window)

Filters

2

1

Input Fmap

Fmap Reuse
(Activations)

CONV and FC layers

Filter

2

1

Input Fmaps

Filter Reuse
(Weights)

CONV and FC layers
(batch size > 1)
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Exploit Data Reuse at Low-Cost Memories

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 

Farther and larger memories consume more power

0.5 – 1.0 kB

Control

Reg File
Specialized 

hardware with 
small (< 1kB) 

low cost memory 
near compute
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Weight Stationary (WS)

• Minimize weight read energy consumption
− maximize convolutional and filter reuse of weights

• Broadcast activations and accumulate partial sums
spatially across the PE array

• Examples: TPU [Jouppi, ISCA 2017], NVDLA

  
            

  

  

Global Buffer 

W0 W1 W2 W3 W4 W5 W6 W7 

  

  

  

  

Psum Activation 

PE 
Weight 

[Chen, ISCA 2016] 
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Output Stationary (OS)

[Chen, ISCA 2016] 

• Minimize partial sum R/W energy consumption
− maximize local accumulation

• Broadcast/Multicast filter weights and reuse activations
spatially across the PE array

• Examples: [Moons, VLSI 2016], [Thinker, VLSI 2017]

  
            

  

  

Global Buffer 

P0 P1 P2 P3 P4 P5 P6 P7 

  

  

  

  

Activation Weight 

PE 
Psum 
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• Minimize activation read energy consumption
− maximize convolutional and fmap reuse of activations

• Unicast weights and accumulate partial sums spatially
across the PE array

• Example: [SCNN, ISCA 2017]

Input Stationary (IS)

[Chen, ISCA 2016] 

Global Buffer

I0 I1 I2 I3 I4 I5 I6 I7

Psum

Act
PE

Weight
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Row Stationary Dataflow

• Maximize row 
convolutional reuse in RF
− Keep a filter row and fmap

sliding window in RF

• Maximize row psum
accumulation in RF

PE 1
Row 1 Row 1

Row 1

=*

*

[Chen, ISCA 2016]  Select for Micro Top Picks
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Row Stationary Dataflow

Optimize for overall energy efficiency instead 
for only a certain data type

PE 1
Row 1 Row 1

PE 2
Row 2 Row 2

PE 3
Row 3 Row 3

Row 1

=*

PE 4
Row 1 Row 2

PE 5
Row 2 Row 3

PE 6
Row 3 Row 4

Row 2

=*

PE 7
Row 1 Row 3

PE 8
Row 2 Row 4

PE 9
Row 3 Row 5

Row 3

=*

* * *

* * *

* * *

[Chen, ISCA 2016]  Select for Micro Top Picks
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Dataflow Comparison: CONV Layers

0

0.5

1

1.5

2

Normalized
Energy/MAC

WS OSA OSB OSC NLR RS

psums

weights

pixels

RS optimizes for the best overall energy efficiency

CNN Dataflows

[Chen, ISCA 2016] 
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Exploit Sparsity

== 0 Zero 
Buff 

  
  Scratch Pad   

Enable 

Zero Data Skipping 

Register File
No R/W No Switching

Method 1. Skip memory access and computation

Method 2. Compress data to reduce storage and data movement

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	

DR
AM

	Ac
ce
ss	

(M
B)	

AlexNet	Conv	Layer	

Uncompressed	 Compressed	

1 2 3 4 5
AlexNet Conv Layer

DRAM 
Access 
(MB) 

0

2

4

6
1.2×

1.4×
1.7×

1.8×
1.9×

Uncompressed
Fmaps + Weights

RLE Compressed
Fmaps + Weights

45% power reduction

[Chen, ISSCC 2016] 
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Eyeriss: Deep Neural Network Accelerator

On
-c

hip
 B

uff
er

Spatial 
PE Array

4mm

4m
m

[Joint work with Joel Emer]

Results for AlexNet

Overall >10x energy reduction compared to a mobile GPU (Nvidia TK1)

Exploits data reuse for 100x reduction in memory accesses from global 
buffer and 1400x reduction in memory accesses from off-chip DRAM

Eyeriss Project Website: http://eyeriss.mit.edu

[Chen, ISSCC 2016] 
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Features: Energy vs. Accuracy 

0.1

1

10

100

1000

10000

0 20 40 60 80
Accuracy (Average Precision)

Energy/
Pixel (nJ)

VGG162

AlexNet2

HOG1

Measured in on VOC 2007 Dataset
1. DPM v5 [Girshick, 2012]
2. Fast R-CNN [Girshick, CVPR 2015] 

Exponential

Linear

Video 
Compression

Measured in 65nm*

* Only feature extraction. Does 
not include data, classification 

energy, augmentation and 
ensemble, etc.

On
-c

hip
 B

uff
er Spatial 

PE Array

4mm

4m
m

4mm

4m
m

[Suleiman, VLSI 2016] [Chen, ISSCC 2016]1 2

[Suleiman*, Chen*, ISCAS 2017] 

37



Vivienne Sze (    @eems_mit)

Energy-Efficient Processing of DNNs

V. Sze, Y.-H. Chen, 
T-J. Yang, J. Emer, 

“Efficient Processing of 
Deep Neural Networks: 
A Tutorial and Survey,” 
Proceedings of the IEEE, 

Dec. 2017
Book Coming 
Spring 2020!

A significant amount of algorithm and hardware research 
on energy-efficient processing of DNNs

We identified various limitations to existing approaches

http://eyeriss.mit.edu/tutorial.html
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• Popular efficient DNN algorithm approaches 

Design of Efficient DNN Algorithms

pruning 
neurons

pruning 
synapses

after pruningbefore pruning

Network Pruning

C
1

1
S

R

1

R

S
C

Efficient Network Architectures

Examples: SqueezeNet, MobileNet

... also reduced precision

• Focus on reducing number of MACs and weights
• Does it translate to energy savings and reduced latency?

[Chen*, Yang*, SysML 2018] 
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Data Movement is Expensive

Energy of weight depends on memory hierarchy and dataflow

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 
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Energy-Evaluation Methodology

DNN Shape Configuration
(# of channels, # of filters, etc.)

DNN Weights and Input Data
[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …]

DNN Energy Consumption 
L1 L2 L3

Energy

…

Memory 
Accesses

Optimization

# of MACs
Calculation

…

# acc. at mem. level 1
# acc. at mem. level 2

# acc. at mem. level n

# of MACs

Hardware Energy Costs of each 
MAC and Memory Access

Ecomp

Edata

Tool available at: https://energyestimation.mit.edu/

[Yang, CVPR 2017] 
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• Number of weights alone is not a good metric for energy

• All data types should be considered 

Key Observations

Output Feature Map
43%

Input Feature Map
25%

Weights
22%

Computation
10%

Energy Consumption 
of GoogLeNet

[Yang, CVPR 2017] 

42



Vivienne Sze (    @eems_mit)

Directly target energy and 
incorporate it into the 

optimization of DNNs to 
provide greater energy savings

Energy-Aware Pruning

• Sort layers based on energy and 
prune layers that consume most 
energy first

• EAP reduces AlexNet energy by 
3.7x and outperforms the 
previous work that uses 
magnitude-based pruning by 1.7x

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 
4.5 

Ori. DC EAP 

Normalized Energy (AlexNet) 

2.1x 3.7x 

x109 

Magnitude 
Based Pruning 

Energy Aware 
Pruning 

Pruned models available at 
http://eyeriss.mit.edu/energy.html

[Yang, CVPR 2017] 
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# of Operations vs. Latency

• # of operations (MACs) does not approximate latency well

Source: Google (https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)
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NetAdapt: Platform-Aware DNN Adaptation
• Automatically adapt DNN to a mobile platform to reach a 

target latency or energy budget
• Use empirical measurements to guide optimization (avoid 

modeling of tool chain or platform architecture) 

In collaboration with Google’s Mobile Vision Team

NetAdapt Measure

…

Network Proposals

Empirical Measurements
Metric Proposal A … Proposal Z

Latency 15.6 … 14.3

Energy 41 … 46

…… …

Pretrained
Network Metric Budget

Latency 3.8

Energy 10.5

Budget

Adapted
Network

… …

Platform

A B C D Z

Code available at http://netadapt.mit.edu [Yang, ECCV 2018] 
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Simplified Example of One Iteration

Latency: 100ms
Budget: 80ms

100ms 90ms 80ms

100ms 80ms

Selected

Selected

Layer 1

Layer 4

…

Acc: 60%

Acc: 40%

…

Selected

2. Meet Budget

Latency: 80ms
Budget: 60ms

1. Input 4. Output3. Maximize 
Accuracy

Network from 
Previous Iteration

Network for 
Next Iteration

[Yang, ECCV 2018] 
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• NetAdapt boosts the real inference speed of MobileNet
by up to 1.7x with higher accuracy

Improved Latency vs. Accuracy Tradeoff

+0.3% accuracy
1.7x faster

+0.3% accuracy
1.6x faster

Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018

*Tested on the ImageNet dataset and a Google Pixel 1 CPU

[Yang, ECCV 2018] 
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FastDepth: Fast Monocular Depth Estimation
Depth estimation from a single RGB image desirable, due to 

the relatively low cost and size of monocular cameras.
RGB Prediction

[Joint work with Sertac Karaman]

Auto Encoder DNN Architecture (Dense Output)

Reduction 
(similar to classification) Expansion
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FastDepth: Fast Monocular Depth Estimation
Apply NetAdapt, compact network design, and depth wise decomposition 

to decoder layer to enable depth estimation at high frame rates on an 
embedded platform while still maintaining accuracy

[Wofk*, Ma*, ICRA 2019]

Configuration: Batch size of one (32-bit float)

Models available at http://fastdepth.mit.edu

> 10x

~40fps on 
an iPhone

49
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Many Efficient DNN Design Approaches

pruning 
neurons

pruning 
synapses

after pruningbefore pruning

Network Pruning Efficient Network Architectures

10100101000000000101000000000100

01100110

Reduce Precision

32-bit float

8-bit fixed

Binary 0

No guarantee that DNN algorithm 
designer will use a given approach.

Need flexible hardware!

C
1

1
S

R

1

R

S
C

G

Depth-Wise
Layer

Point-Wise
Layer

Convolutional
Layer

…
Channel
Groups

[Chen*, Yang*, SysML 2018] 
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• Specialized DNN hardware often rely on certain properties of 
DNN in order to achieve high energy-efficiency

• Example: Reduce memory access by amortizing across MAC array

Existing DNN Architectures

MAC arrayWeight
Memory

Activation
Memory

Weight 
reuse

Activation
reuse
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• Example: Reuse and array utilization depends on # of channels, 
feature map/batch size 
– Not efficient across all network architectures (e.g., compact DNNs)

Limitation of Existing DNN Architectures

MAC array
(spatial 

accumulation)

Number of filters
(output channels)

Number of
input channels

MAC array
(temporal

accumulation)

Number of filters
(output channels)

feature map
or batch size

52



Vivienne Sze (    @eems_mit)

• Example: Reuse and array utilization depends on # of channels, 
feature map/batch size 
– Not efficient across all network architectures (e.g., compact DNNs)

Limitation of Existing DNN Architectures

MAC array
(spatial 

accumulation)

Number of filters
(output channels)

Number of
input channels

MAC array
(temporal

accumulation)

Number of filters
(output channels)

feature map
or batch size

C
1

1

S

R

1

Example mapping for 
depth wise layer
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• Example: Reuse and array utilization depends on # of channels, 
feature map/batch size 
– Not efficient across all network architectures (e.g., compact DNNs)
– Less efficient as array scales up in size
– Can be challenging to exploit sparsity

Limitation of Existing DNN Architectures

MAC array
(spatial 

accumulation)

Number of filters
(output channels)

Number of
input channels

MAC array
(temporal

accumulation)

Number of filters
(output channels)

feature map
or batch size
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Need Flexible Dataflow
• Use flexible dataflow (Row Stationary) to exploit reuse in any 

dimension of DNN to increase energy efficiency and array 
utilization

Example: Depth-wise layer
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• When reuse available, need multicast to exploit spatial data 
reuse for energy efficiency and high array utilization

• When reuse not available, need unicast for high BW for weights 
for FC and weights & activations for high PE utilization

• An all-to-all satisfies above but too expensive and not scalable

Need Flexible NoC for Varying Reuse
G

lo
ba

l B
uf

fe
r

PE PE PEPE

PE PE PEPE

PE PE PEPE

PEPE PE PE

G
lo

ba
l B

uf
fe

r
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High Bandwidth, Low Spatial Reuse Low Bandwidth, High Spatial Reuse

Unicast Networks Broadcast Network1D Multicast Networks1D Systolic Networks

[Chen, JETCAS 2019] 
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Hierarchical Mesh
GLB
Cluster

Router
Cluster

PE
Cluster

…

…

…

…

…… …

Mesh
Network

All-to-all
Network

(a) (b) (c) (d) (e)

GLB
Cluster

Router
Cluster

PE
Cluster

…

…

…

…

…… …

Mesh
Network

All-to-all
Network

(a) (b) (c) (d) (e)

High Bandwidth High Reuse Grouped Multicast Interleaved Multicast

All-to-AllMesh

[Chen, JETCAS 2019] 
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Eyeriss v2: Balancing Flexibility and Efficiency

Over an order of magnitude faster and 
more energy efficient than Eyeriss v1

Speed up over Eyeriss v1 scales with number of PEs 

# of PEs 256 1024 16384

AlexNet 17.9x 71.5x 1086.7x

GoogLeNet 10.4x 37.8x 448.8x

MobileNet 15.7x 57.9x 873.0x

Efficiently supports
• Wide range of filter shapes 

– Large and Compact

• Different Layers 
– CONV, FC, depth wise, etc.

• Wide range of sparsity 
– Dense and Sparse

• Scalable architecture

[Joint work with Joel Emer]

5.6
10.9
12.6

[Chen, JETCAS 2019] 
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Looking Beyond the DNN 
Accelerator for Acceleration
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Super-Resolution on Mobile Devices

Use super-resolution to improve the viewing experience of 
lower-resolution content (reduce communication bandwidth)

Screens are getting larger

Low 
Resolution
Streaming

Transmit low resolution for lower bandwidth

High
Resolution
Playback
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FAST: A Framework to Accelerate SuperRes

A framework that accelerates any SR algorithm by up to 
15x when running on compressed videos

FAST SR
15x faster

Compressed video

SR algorithm

Real-time

[Zhang, CVPRW 2017]
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Free Information in Compressed Videos

Compressed video
Pixels

Video as a stack of pixels

Block-structure Motion-compensation

Representation in compressed video

This representation can help accelerate super-resolution

Decode

[Zhang, CVPRW 2017]
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High-res video

Transfer is Lightweight

Low-res video
High-res video

SR

Low-res video

Transfer

Fractional
Interpolation

Bicubic
Interpolation

Skip Flag

The complexity of the transfer is comparable to bicubic interpolation.
Transfer N frames, accelerate by N

Transfer allows SR to run on only a subset of frames

SR
SRSRSR

SR

[Zhang, CVPRW 2017]
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Evaluation: Accelerating SRCNN

[Zhang, CVPRW 2017]
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Visual Evaluation

SRCNN FAST + 
SRCNN

Bicubic

Code released at www.rle.mit.edu/eems/fast

Look beyond the DNN accelerator for opportunities to accelerate 
DNN processing (e.g., structure of data and temporal correlation)

[Zhang, CVPRW 2017]
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Beyond Deep Neural 
Networks
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Visual-Inertial Localization

Visual-Inertial 
Odometry 

(VIO) 

Localization 

Mapping 

Image sequence 

IMU 
Inertial Measurement Unit 

… 

*Subset of SLAM algorithm 
(Simultaneous Localization And Mapping) Slide 28 

Determines location/orientation of robot from images and IMU

*
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Localization at Under 25 mW

[Zhang et al., RSS 2017], [Suleiman et al., VLSI 2018]

Consumes 684× and 1582×
less energy than 

mobile and desktop CPUs, 
respectively

First chip that performs 
complete Visual-Inertial Odometry 

[Joint work with Sertac Karaman]

Navion

Front-End for camera 
(Feature detection, tracking, and 

outlier elimination)

Front-End for IMU 
(pre-integration of accelerometer 

and gyroscope data)

Back-End Optimization of Pose 
Graph

Navion Project Website: http://navion.mit.edu
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Key Methods to Reduce Data Size

Backend Control

Data & Control Bus
Build 
Graph

Linear 
Solver

Linearize

Marginal

Retract

Graph
Linear 
Solver

Horizon 
States

Shared 
Memory

Floating 
Point 

Arithmetic

Matrix 
Operations

Cholesky

Back 
Substitute

Rodrigues 
Operations

Feature 
Tracking 

(FT)

Previous 
FrameLine Buffers

Feature 
Detection 

(FD)

Undistort 
& Rectify 

(UR)

Undistort 
& Rectify 

(UR)

Data & Control Bus

Sparse Stereo (SS)

Vision Frontend Control

RANSAC Fixed Point 
Arithmetic Point Cloud Pre-IntegrationFloating Point 

Arithmetic

IMU 
memory

Current 
Frame

Left 
Frame

Right 
Frame

Vision Frontend (VFE)

IMU Frontend (IFE)

Backend (BE)

Register 
File

Apply Low 
Cost 

Frame
Compression

Use compression and exploit sparsity to 
reduce memory down to 854kB

Exploit 
Sparsity in 
Graph and 

Linear Solver

Navion: Fully integrated system – no off-chip processing or storage 

[Suleiman, VLSI-C 2018]   Best Student Paper Award
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Where to Go Next: Planning and Mapping

Select candidate 
scan locations

Compute Shannon MI and 
choose best location

Move to 
location 

and scan

Update 
Occupancy 

Map

Where to scan?

Occupancy map Mutual information map

Mutual Information Updated Map

Robot Exploration: Decide where to go by computing Shannon Mutual Information

Exploration with a mini 
race car using motion 
capture for localization

Occupancy map with 
planned path

MI surface

[Zhang, ICRA 2019]
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Challenge is Data Delivery to All Cores
Process multiple beams in parallel

Core 1

Core 2

Core 3

Core N

Core N

Core 2

Core 1

Core N

Core 2
Core 1

Data delivery from memory is limited

Read Port 1

Read Port 2
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Specialized Memory Architecture
Break up map into separate memory banks and novel storage pattern to 

minimize read conflicts when processing different beams in parallel.

Compute the mutual information for an entire map of 20m x 20m at 0.1m resolution 
in under a second à a 100x speed up versus CPU for 1/10th of the power.

[Joint work with Sertac Karaman]

X
Y

X

Y

Memory Access Pattern

8 8 8

7 7 7

6 6 6

5 5 5

4 4 4 8

3 3 3 5 6 7

2 2 3 4

1 2 3 4 5 6 7 8

Diagonal Banking Pattern

X

Y

Bank 0

Bank 1

Bank 4

Bank 3

Bank 5

Bank 7

Bank 2

Bank 6

8 8 8

7 7 7

6 6 6

5 5 5

4 4 4 8

3 3 3 5 6 7

2 2 3 4

1 2 3 4 5 6 7 8

[Li, RSS 2019]
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Monitoring Neurodegenerative Disorders

• Neuropsychological assessments are time consuming and require a 
trained specialist

• Repeat medical assessments are sparse, mostly qualitative, and 
suffer from high retest variability

Mini-Mental 
State Examination (MMSE)

Q1. What is the year? Season? Date?
Q2. Where are you now? State? Floor?
Q3. Could you count backward from 

100 by sevens? (93, 86, …)

Clock-drawing test

Agrell et al. 
Age and Ageing, 1998.

[Joint work with Thomas Heldt and Charlie Sodini]

Dementia affects 50 million people worldwide today 
(75 million in 10 years) [World Alzheimer’s Report]
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Use Eye Movements for Quantitative Evaluation

High-speed camera

Phantom v25-11

Substantial head support

SR EYELINK 1000 PLUS

IR illumination

Reulen et al., Med. & Biol. Eng. & 
Comp, 1988.

Clinical measurements of saccade latency are done in constrained 
environments that rely on specialized, costly equipment.

Eye movements can be used to quantitatively evaluate severity, 
progression or regression of neurodegenerative diseases
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Measure Eye Movements Using Phone

[Saavedra Peña, EMBC 2018] [Lai, ICIP 2018]

Develop algorithm to measure eye 
movement using a consumer-grade 

camera rather than high-cost 
research-grade camera.

Enable low-cost in-home 
longitudinal measurements. 

Co
un

t

Eye movement 
feature

Eye movements
Smartphone

Phantom 
($100k)

iPhone 6 
(< $1k)

Reaction Time (milliseconds)
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Looking For Volunteers for Eye Reaction Time76

If you are near or on 
MIT Campus and interested 

in volunteering your eye 
movements for this study, 

please contact us at 
volunteer-eye-movement@mit.edu

mailto:volunteer-eye-movement@mit.edu
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• Pulsed Time of Flight: Measure distance using round trip time 

of laser light for each image pixel

– Illumination + Imager Power: 2.5 – 20 W for range from 1 - 8 m 

• Use computer vision techniques and passive images to 

estimate changes in depth without turning on laser

– CMOS Imaging Sensor Power: < 350 mW

Low Power 3D Time of Flight Imaging

Estimated Depth Maps
Real-time Performance on Embedded Processor

VGA @ 30 fps on Cortex-A7  (< 0.5W active power)

[Noraky, ICIP 2017]
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Results of Low Power Depth ToF Imaging

RGB Image Depth Map
Ground Truth

Depth Map
Estimated

Mean Relative Error: 0.7%
Duty Cycle (on-time of laser): 11%

[Noraky, ICIP 2017]
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• Efficient computing extends the reach of AI beyond 
the cloud by reducing communication requirements, 
enabling privacy, and providing low latency so that 
AI can be used in wide range of applications ranging 
from robotics to health care.  

• Cross-layer design with specialized hardware 
enables energy-efficient AI, and will be critical to the 
progress of AI over the next decade. 

Summary

Today’s slides available at 
https://tinyurl.com/SzeMITDL2020
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Additional Resources

Overview Paper
V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, 
“Efficient Processing of Deep Neural 
Networks: A Tutorial and Survey,” 
Proceedings of the IEEE, Dec. 2017

Book Coming Spring 2020!

More info about 
Tutorial on DNN Architectures 
http://eyeriss.mit.edu/tutorial.html

For updates
EEMS Mailing List
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Additional Resources

MIT Professional Education Course on 

“Designing Efficient Deep Learning Systems” 
http://shortprograms.mit.edu/dls

Next Offering: July 20-21, 2020 on MIT Campus

81

http://shortprograms.mit.edu/dls


Vivienne Sze (    @eems_mit)

Additional Resources
Talks and Tutorial Available Online

https://www.rle.mit.edu/eems/publications/tutorials/

YouTube Channel
EEMS Group – PI: Vivienne Sze
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• Energy-Efficient Hardware for Deep Neural Networks
– Project website: http://eyeriss.mit.edu

– Y.-H. Chen, T. Krishna, J. Emer, V. Sze, “Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep 
Convolutional Neural Networks,” IEEE Journal of Solid State Circuits (JSSC), ISSCC Special Issue, Vol. 52, 
No. 1, pp. 127-138, January 2017.

– Y.-H. Chen, J. Emer, V. Sze, “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for 
Convolutional Neural Networks,” International Symposium on Computer Architecture (ISCA), pp. 367-
379, June 2016. 

– Y.-H. Chen, T.-J. Yang, J. Emer, V. Sze, “Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural 
Networks on Mobile Devices,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems 
(JETCAS), June 2019. 

– Eyexam: https://arxiv.org/abs/1807.07928

• Limitations of Existing Efficient DNN Approaches 
– Y.-H. Chen*, T.-J. Yang*, J. Emer, V. Sze, “Understanding the Limitations of Existing Energy-Efficient 

Design Approaches for Deep Neural Networks,” SysML Conference, February 2018.

– V. Sze, Y.-H. Chen, T.-J. Yang, J. Emer, “Efficient Processing of Deep Neural Networks: A Tutorial and 
Survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, December 2017.

– Hardware Architecture for Deep Neural Networks: http://eyeriss.mit.edu/tutorial.html
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• Co-Design of Algorithms and Hardware for Deep Neural Networks
– T.-J. Yang, Y.-H. Chen, V. Sze, “Designing Energy-Efficient Convolutional Neural Networks using Energy-

Aware Pruning,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 

– Energy estimation tool: http://eyeriss.mit.edu/energy.html
– T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, V. Sze, H. Adam, “NetAdapt: Platform-Aware Neural 

Network Adaptation for Mobile Applications,” European Conference on Computer Vision (ECCV), 2018.

– D. Wofk*, F. Ma*, T.-J. Yang, S. Karaman, V. Sze, “FastDepth: Fast Monocular Depth Estimation on 
Embedded Systems,” IEEE International Conference on Robotics and Automation (ICRA), May 2019. 
http://fastdepth.mit.edu/

• Energy-Efficient Visual Inertial Localization  
– Project website: http://navion.mit.edu

– A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, “Navion: A Fully Integrated Energy-Efficient 
Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones,” IEEE Symposium on 
VLSI Circuits (VLSI-Circuits), June 2018. 

– Z. Zhang*, A. Suleiman*, L. Carlone, V. Sze, S. Karaman, “Visual-Inertial Odometry on Chip: An 
Algorithm-and-Hardware Co-design Approach,” Robotics: Science and Systems (RSS), July 2017. 

– A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, “Navion: A 2mW Fully Integrated Real-Time 
Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones,” IEEE Journal of Solid 
State Circuits (JSSC), VLSI Symposia Special Issue, Vol. 54, No. 4, pp. 1106-1119, April 2019.
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• Fast Shannon Mutual Information for Robot Exploration
– Z. Zhang, T. Henderson, V. Sze, S. Karaman, “FSMI: Fast computation of Shannon Mutual Information for 

information-theoretic mapping,” IEEE International Conference on Robotics and Automation (ICRA), May 2019.
– P. Li*, Z. Zhang*, S. Karaman, V. Sze, “High-throughput Computation of Shannon Mutual Information on Chip,” 

Robotics: Science and Systems (RSS), June 2019.

• Low Power Time of Flight Imaging
– J. Noraky, V. Sze, “Low Power Depth Estimation of Rigid Objects for Time-of-Flight Imaging,” IEEE Transactions 

on Circuits and Systems for Video Technology (TCSVT), 2019.

– J. Noraky, V. Sze, “Depth Estimation of Non-Rigid Objects For Time-Of-Flight Imaging,” IEEE International 
Conference on Image Processing (ICIP), October 2018.

– J. Noraky, V. Sze, “Low Power Depth Estimation for Time-of-Flight Imaging,” IEEE International Conference on 
Image Processing (ICIP), September 2017.

• Monitoring Neurodegenerative Disorders Using a Phone 
– H.-Y. Lai, G. Saavedra Peña, C. Sodini, T. Heldt, V. Sze, “Enabling Saccade Latency Measurements with 

Consumer-Grade Cameras,” IEEE International Conference on Image Processing (ICIP), October 2018.

– G. Saavedra Peña, H.-Y. Lai, V. Sze, T. Heldt, “Determination of saccade latency distributions using video 
recordings from consumer-grade devices,” IEEE International Engineering in Medicine and Biology Conference 
(EMBC), 2018.

– H.-Y. Lai, G. Saavedra Peña, C. Sodini, V. Sze, T. Heldt, “Measuring Saccade Latency Using Smartphone 
Cameras,” IEEE Journal of Biomedical and Health Informatics (JBHI), March 2020.
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