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What are Deep Neural Networks (DNNs)?
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Modified Image Source: [Lee, CACM 2011]



Weighted Sums

Sigmoid Rectified Linear Unit (ReLU)
Nonlinear > 1 r— '
Y, = activation EVVU x X / )
Function i=1 °
y=1/(1+e™) y=max (0, x)
1 -1
-1 0 1 -1 0 1
Image source: Caffe tutorial
Key operation is
multiply and accumulate (MAC)
Output Layer Accounts for > 90% of computation

Input Layer
Hidden Layer
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Define Shape for Each Layer

Input fmaps

: Output fmaps
Filters
. /M” Shape varies across layers
o
II( E H - Height of input fmap (activations)
l 1 1 W - Width of input fmap (activations)
C - Number of 2-D input fmaps /filters
<3S (channels)
. R - Height of 2-D filter (weights)
. S - Width of 2-D filter (weights)
o M7 M - Number of 2-D output fmaps (channels)
/e e — E - Height of output fmap (activations)
1 F - Width of output fmap (activations)
R E N - Number of input fmaps/output fmaps
l M N (batch size)
«— § —




Processing-in-Memory (PIM) Accelerators

* Emerging approach for processing DNNs

* Implement as matrix-vector multiply

* Reduce weight data movement by
moving compute into the memory

* Increase weight bandwidth and amount
of parallel MACs

input
activations
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DAC

22228222

Storage Element

2222 22T!

Analog logic
(mult/add/shift)

YYVY YVVy

[T T 1

T 3

psum/
output activations
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Desigh Considerations for PIM Accelerators

* Prediction Accuracy
— non-idealities of analog compute
* Solution: per chip training = expensive in practice
— lower bit widths for data and computation

 Solution: multiple devices per weight = decrease area density
 Solution: bit serial processing = increase cycles per MAC

 Hardware Efficiency
— Data movement into/from array
* A/D and D/A conversion increase energy consumption and reduce area density

— Array utilization

 Large array size can amortize conversion cost = increase area density and data
reuse = DNNs need to take advantage of this property



Our Contributions

* The design of the DNN network architecture (i.e., layer shape, and
# of layers) for PIM is less studied than training DNN weights for PIM

* We evaluate the accuracy and efficiency of state-of-the-art DNNs on
PIM accelerators with the large-scale ImageNet Dataset

* We show that approaches for designing accurate and efficient DNNs
for traditional digital accelerators may not apply for PIM

Key takeaway: Need to rethink the design of the DNN network
architecture for PIM for improved accuracy and efficiency




Prediction Accuracy

* Noise resilience
* Low precision computation



Noise Resilience

* Non-idealities in PIM cause the weights and activations to
deviate from their intended values

* Accuracy under these non-idealities should be considered

* Evaluate noise resilience of various DNNs

—Inject zero-mean Gaussian noise into the output activations to
account for the noise in the input activations, weights, and

computation
—The weights are not retrained



Noise Resilience

Fixed noise: Noise has fixed standard deviation and does not change with
magnitude of the activations

Input Output
Activations Storage Element Activations
/\/\/ 14 Noise-free output activations
- » Fixed noise level regardless
/\/\/ 14 m of the magnitude of the

activations
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Top-5 Accuracy (%)

Fixed Noise Resilience

e Different DNNs have different sensitivities to noise

Accuracy
100 A
a\% =fe=inceptionresnetv2
== nceptionv4
801 @ resnextl01_64x4d
resnetl52
60 - —#— resnext101_32x4d
Noise-free accuracy densenet121
. . -®= vggl9
401 for digital accelerators —6— mobilenety2
vgglo
201 —f= resnet18
-§= squeezenetl 1
01— . . . =@ squeezenetl_0
0.0 0.1 0.2 0.3 =@ alexnet
Noise Std




Fixed Noise Resilience

e Different DNNs have different sensitivities to noise

Accuracy
100 A
(:A == inceptionresnetv2
) N == nceptionv4
X 80 @ —e— vggl9
a’ vgglo
© 060 —#— resnetl8
8 -§= squeezenetl 1
< 40 - squeezenetl 0
L —-@— alexnet
Q =&— mobilenetv2
IE 201 resnet152
== resnextl01 32x4d
0 : : : . resnextl01_64x4d
0.0 0.1 0.2 0.3 densenet121
Noise Std



Fixed Noise Resilience

e Different DNNs have different sensitivities to noise

Accuracy
100 A
‘ﬁ—t—ﬁ —f= inceptionv4
—~ == inceptionresnetv?2
§ 801 =& vgglo
L>f vgglo
© 60 —§— squeezenetl 0
a -@— alexnet
g 40 —&— squeezenetl 1
L0 == resnetls8
o =§= mobilenetv2
IS 20 1 resnet152
resnextl01 64x4d
0 ' \ . . densenetl21
0.0 0.1 0.2 0.3 =#— resnextl01 32x4d
Noise Std



Top-5 Accuracy (%)

Fixed Noise Resilience

e Different DNNs have different sensitivities to noise

Accuracy
100 A
;w == inceptionv4
== vggl9
801 & vagl6
== inceptionresnetv?2
60 —=@=— alexnet
=@ squeezenetl 0
40 - -@— squeezenetl 1
== resnetl8
=@= mobilenetv2
20 - —de= resnext101_32x4d
resnetl52
0 , - A l . densenetl21
0.0 0.1 0.2 0.3 resnextl01_64x4d
Noise Std



Fixed Noise Resilience

e Different DNNs have different sensitivities to noise

Accuracy
100 A
4= inceptionv4
< -®= vggl9
s\i 801 vggle
a. -@= alexnet
© 60 —§— squeezenetl 0
3 —§— squeezenetl 1
% 401 == inceptionresnetv2
L0 == resnetls8
Q == mobilenetv2
IS 20 - resnext101_64x4d
densenetl21
0 I \ I resnetl52
0.0 0.1 0.2 0.3 =#— resnextl01 32x4d
Noise Std
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Fixed Noise Resilience

e Different DNNs have different sensitivities to noise

Top-5 Accuracy (%)

Accuracy
100 A
4= inceptionv4
-@= vggl9
801 =®= vgglo
-@= alexnet
60 1 —§— squeezenetl 0
—§— squeezenetl 1
40 - == inceptionresnetv?2
== resnetl8
== resnextl01l 32x4d
201 resnext1l01_64x4d
resnetl52
0 - __| =0~ densenet121
0.0 0.1 0.2 0.3 =#— mobilenetv2
Noise Std
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Top-5 Accuracy (%)

Fixed Noise Resilience

e Different DNNs have different sensitivities to noise

100

80 -

60 -

40 -

20 1

0.0

0.1

Noise Std

0.2

o
w

Priditteetdts

Accuracy

vggl9

vgglo
inceptionv4
alexnet
squeezenetl O
squeezenetl 1
inceptionresnetv2
resnetl8
resnextl01 64x4d
mobilenetv2
resnetl52
resnextl01_32x4d
densenetl21

A

Rank of accuracy changes
with amount of noise

The most accurate DNN for
digital accelerators may not
be the most accurate for PIM
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Fixed Noise Resilience — Network Depth

Recent trend for designing DNNs that run on digital accelerators:
—Increase number of layers (network depth) + reduce filter size

=@= resnetl8 )

< 80- resnet50 As the depth increases,
S =@ resnetl52 . .
N * |deal (noise-free) accuracy increases
© 60 * However, the accuracy decreases faster
o with increasing noise
< 40
L(II .
S 50 - Hypothesis: Shallower DNNs have less
o
= accumulated errors across layers

O_

0.0 0.1 0.2 0.3

Noise Std 18



Fixed Noise Resilience — Filter Size

Recent trend for designing DNNs that run on digital accelerators:
—Increase number of layers + reduce filter size

(0]
o

)]
o

N
o

Top-5 Accuracy (%)
N
o

—=@= alexnet filter 3x3
alexnet_filter_7x7
=@ alexnet_filter_11x11

As the filter size increases,
* Accuracy decreases slower with
increasing noise

Hypothesis: Larger filters have more

redundancy and are more robust to noise

0.0

0.1 0.2 0.3
Noise Std
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Noise Resilience

Rescaled noise: Standard deviation of noise scales with respect to
the maximum magnitude of the activations

[Gokmen, Frontiers in Neuroscience 2016] The noise level varies with respect to the
maximum magnitude of the activations
Rescaled Rescaled
Input Input Output Output
Activations Activations (oo Activations Activations
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Top-5 Accuracy (%)

Rescaled Noise Resilience

e Different DNNs have different sensitivities to noise

-@= alexnet
=0- vggl6e | Best o
——veTo Rz?nk of accuracy changes
—&— inceptionv4 with amount of noise
== inceptionresnetv2
== resnetl8

resnet152 e The most accurate DNN for
== resnextl01_32x4d . .

resnext101 6axad |  di8ital accelerators may not
~0— squeezenetl_0 be the most accurate for PIM
-@— squeezenetl 1
~0— densenet121 Same trend as fixed noise

o

0.00 0.01 0.02 0.03 0.04 —— mobilenetv2
Noise Std/Max Mag
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Rescaled Noise Resilience —
Network Depth/Filter Size

—8— resnetl8 80 - —— alexnet_filter 3x3

,8 80 | resnet50 fo\ alexnet_filter_7x7
> —8— resnet152 > —8— alexnet filter 11x11
a k>)\ 60 T
© 60- o
) )
O 0 40
< 40- <
ot ot
o Q 20 -
© 20- °

. . . . 01, . . -

0.00 0.01 0.02 0.03 0.00 0.01 0.02 0.03
Noise Std/Max Mag Noise Std/Max Mag
A Network Depth A Filter Size

Reducing depth or increasing filter size may make DNN more robust

Same trend as fixed noise ?2



Low Precision Computation

* Different DNNs have different sensitivities to the bit width of weights

-@= alexnet
vgglo

00]
o

o= vog19 Best * Rank of accuracy changes with
== inceptionv4

== inceptionresnetv?2 different bit widths of WElghtS
== resnetl8
resnetl52

—— resnext101_32x4d e Shallower DNNs with larger
resnext101_64x4d

~4— squeezenetl 0 filters (e.g., VGG) achieve the
9= squeezenetl_] highest accuracy at 4 bits

densenetl21

(®)]
o

S
o

Top-5 Accuracy (%)

N
(@)

o

0 i 4 é é 1'0 1'2 == mobilenetv2
# of Bits
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Prediction Accuracy — Short Summary

* DNNs that achieve high accuracy on digital accelerators may not
have high accuracy on PIM due to noise and lower bit width

* Need to rethink the DNN network architecture design approach
for PIM accelerators to maximize the accuracy

* Retraining the weights to further increase the robustness for
PIM accelerators is still an open area of research



Hardware Efficiency

e Data movement of activations
* Impact of array size on utilization



Data Reuse

* Reuse: number of times a value (e.g., weight,
activation) is used when it moves into the array

* PIM accelerators maximize the reuse of weights

Input Feature Maps

Filters

Output Feature Maps

M7
P

[l

Activation

«—20—>
L
.
.

\ 4

Weights

v

|RxSxC

v

\ 4

Input Activations

Activation Reuse

<
/ bartial Sum|[Reuse

Utilization

PIM Accelerator

A 4 \ 4

Partial Sums/
Output Activations

Weight-stationary dataflow of PIM
accelerators [Chen, ISCA 2016]
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Data Movement of Activations

* Weight-stationary dataflow trades the
movement of weights for the movement
of activations

* Movement of activations can dominate
energy consumption of PIM accelerators
due to the costly peripheral circuits

* Two key factors for energy consumption:
— Number of activations
— Data reuse: array utilization (discussed next)

input
activations

YVYVYY VYVYVY

DAC

22228222

Storage Element

22228221

Analog logic
(mult/add/shift)

Yyvy vivy

[T T 18
O
@

YYVy vi¥vy

psum/
output activations
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Top-5 Accuracy (%)

0o
()

Data Movement of Activations

 Recent DNNs achieve higher accuracy with fewer MACs and weights

* However, the decrease in MACs and weights can be accompanied by
an increase in the number of activations
— Activations are much more expensive than weights and MACs in PIM!

O
o

1 Fewer Weights
o
A
o
0.0 0.5 1.0 1.5
# Weights le8

94
9
<931 Fewer MACs
|®)
[(M]
5 92
O
@]
< 91 [
Lg A
o 90 \
|_
89 1 . ® . | | .
0.0 0.5 1.0 1.5 2.0
# MACs 1lelO
® vgglo ® resnetl8

resnext101_64x4d

A mobilenetv2

Top-5 Accuracy (%)

© W YW VU o
o B N W b

00
()

More Activations

A

/

1

# Output Activations

2 3
le7



Impact of Array Size on Utilization

Partial Sums
* PIM accelerators often have a large array A
size to amortize cost of peripheral circuits - ‘
— Digital: 16x16 = 128x128 Weights

\ 4

— PIM: 128x128 > 4096x4096

IRxSxd

Input Activations

\ 4

* Number of MACs used in array depends on Hi \g
filter size Activation Reuse
— Recent DNNs have smaller filters

— However, smaller filter means lower utilization! | | | PIM Accelerator

/ bartial Sum [Reuse

Utilization




Impact of Array Size on Utilization

* Lower utilization causes
— Fewer MACs are processed in parallel = § 108+
Increased latency S
(a
— Reduce data reuse of activations = S
Increased energy consumption # 107
>
-
Shallower DNNs with larger layers may % 1044
benefit more from the large array in PIM -

—@-= alexnet
mobilenetv?2

This goes against recent trend in the
design of DNNs for digital accelerators

b‘ v
© &S @q
Array Size
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Hardware Efficiency — Trade-Off

* Without lowering the accuracy, reducing the depth and increasing the

filter size can increase the hardware efficiency

* Example: Wide ResNet [zagoruyko, BMvC 2017] versus ResNet152 [He, cver 2016

108

6 x 107

4 x 107

# Reads of Input Activations

3x 107

- °
% © " % @
Vv \?) N Q > )

Array Size

Averaged Utilization (%)

100 1

801

60 1

40 -

201

©
02

1 I ™
N v
(,) '\9
Array Size

‘b
O
’19

Latency (# of Passes)

109

105 i

10%

@@= resnetl52

wideresnet

© A A
v &
Array Size




Summary

* Need to rethink design of network architecture of DNNs for PIM
— Design approaches that achieve high accuracy and efficiency on digital
accelerators does NOT necessarily translate to PIM

* In addition to the number of weights, MACs, and noise-free accuracy,
design of DNN for PIM should consider
— the sensitivity to non-idealities and lower bit widths
— the movement of activations
— the array utilization

* New line of research — design new DNN network architectures for PIM
— e.g., Making DNNs shallower with larger layers may be preferable

We thank Tayfun Gokmen for helpful discussions. This work was supported by the MIT-IBM Watson Al Lab,
the MIT Quest for Intelligence, and by the NSF E2CDA 1639921



DNN Processor Evaluation Tools



Evaluate Impact of Emerging Devices

* Require systematic way to

Timeloop

— Evaluate and compare wide range of DNN
(DNN Mapping Tool &

processor designs Architecture
_ _ q L Performance Simulator)
— Rapidly explore design space escription
 Accelergy [Wu, ICCAD 2019] _ ] !
— Early stage energy estimation tool at the " Accglergy ) Action
. Compoun | (Energy Estimator Tool) ["| counts
architecture level component [
— Evaluate architecture level energy impact of description 1 l
emerging devices — 1
. Energy Energy Energy
¢ TlmEIOOp [Parashar, ISPASS 2019] estimation estimation |--- estimation

— Performance Simulator = Action counts New device technology

Open-source code available at: http://accelergy.mit.edu



http://accelergy.mit.edu/

Accelergy Estimation Validation

* Validation on Eyeriss [chen, isscc 2016]
— Achieves 95% accuracy compared to post-layout simulations
— Can accurately captures energy breakdown at different granularities

PsumRdNoC PsumRdNoC

PsumWrNoC 1.3% SharedBuffer PsumWrNoC 4 ¢ SharedBuffer
0.6% 3 6% 0.6% 3.9%
WeightsNoC e . .
0.1% WeightsBuffer WeightsNoC WeightsBuffer
' 0.2% 0.1% 0.2%
IfmapNoC IfmapNoC
0.5% 0.5%
Ground Truth Energy Breakdown Accelergy Energy Breakdown

Open-source code available at: http://accelergy.mit.edu
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Accelergy Infrastructure

Architecture Description

Global |
Buffer'—’i ] i

GLB
(GLB) Accelergy

Open-source code available at: http://accelergy.mit.edu


http://accelergy.mit.edu/

Accelergy Infrastructure

Architecture Description

Global | i| "= '_"®"€i9 —

Buffer =4 I i

GLB) | ! :

(GLB) | PE2 T PE3 i Accelergy
—_—

Compound
Component
Description

Open-source code available at: http://accelergy.mit.edu



http://accelergy.mit.edu/

Accelergy Infrastructure

Architecture Description

Global | i| "= '_"®"€b; —
Buffer =4 I i
GLB i i
(GLB) | PE2 T PE3 i Accelergy
\
{
Energy Estimation Plug-in
name technology width action energy (pJ)
Compound — :
multiplier 65nm 16 multiply 0.8
Component
. .- adder
Description

Open-source code available at: http://accelergy.mit.edu
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Accelergy Infrastructure

Global |
Buffer'—’i ] i

(GLB)

Compound
Component
Description

Action Counts

name | action | count
— < PEO | compute| 500
PE1
Accelergy Energy Estimation
name energy (pJ)
— |  PEO 1500
1 PE1
Energy Estimation Plug-in
name technology width action energy (pJ)
multiplier 65nm 16 multiply 0.8
adder

Open-source code available at: http://accelergy.mit.edu
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http://accelergy.mit.edu

Estimation for a Different Process Technology

— S
Energy
Accelergy Energy Estimation consumption
name energy (pJ) /| impacts are
GLB PE — — PEO 1500 600 reflected here
1 PE1
Energy Estimation Plug-in
name technology width action energy (pJ)
multiplier | 65am 45nm 16 multiply -20.4
adder

\ /
Simple updates in the original table

40


http://accelergy.mit.edu/

http://accelergy.mit.edu

Estimation for PIM Accelerators

— —
Accelergy Energy Estimation
name energy (pJ)
—p —
PE PEO 1500 Epiai
multiplier 3 PE1
Energy Estimation Plug-in
name technology width action energy (pJ)
Compound multiplier | 65arm memristor 16 multipl 08 F
ultipli i ulti ;
Component i Py mult
. .- adder
Description
ADC
Redefine compound
component DAC 41
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Estimation for PIM Accelerators

— —
Accelergy Energy Estimation
name energy (pJ)
PE ' —|  PEO 1500 E, 41
multiplier 3 PE1
Energy Estimation Plug-in
name technology width action energy (pJ)
Compound multiplier | 65arm memristor 16 multipl 08
ultipli | ulti -
Component ddp Py mult
Description adder
ADC
Update the original table with {
additional building blocks DAC 42
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Estimation for PIM Accelerators

— PR
Populate the
Accelergy Energy Estimation multiplication
name energy (pJ) energy of your
PE > — PEO 1500 E,,,,; | | technology here!
multiplier 7 PE1
Energy Estimation Plug-in
name technology width action energy (pJ)/
Compound multiplier | 65arm memristor 16 multipl 08 F '
ultipli | :
Component i Py mult
. .- adder
Description
ADC
DAC 43
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Estimation for PIM Accelerators

— —
Energy
Accelergy Energy Estimation consumption
hame energy (pJ) 4 impacts are
PE ’ — PEO 1500 E,,, .} reflected here!
multiplier 3 PE1
Energy Estimation Plug-in
name technology width action energy (pJ)
Compound multiplier | 65arm memristor 16 multipl 08 F
ultipli i ulti :
Component i DY mult
. .- adder
Description
ADC
DAC 44
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Estimation for PIM Accelerators

Please email us at accelergy@mit.edu
for any questions!

Open-source code available at: http://accelergy.mit.edu
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Resources proceedings IEEE

Efficient Processing of Deep

TOd ayls Slides ava ila b | e at http ://Sze m it. ed u Neural Networks: A Tutorial and Survey

System Scaling With Nanostructured Power and RF Components

Nonorthogonal Multiple Access for 5G and Beyond

Efficient Processing of Deep Neural Networks i e
http://eyeriss.mit.edu/tutorial.html

NeurlPS tutorial: https://slideslive.com/38921492

MIT Professional Education Course on “Designing

Efficient Deep Learning Systems”
http://professional-education.mit.edu/deeplearning

<& IEEE

For Research Updates ¥ Follow @eems_mit Book Coming Soon!

Join EEMS news mailing list http://mailman.mit.edu/mailman/listinfo/eems-news
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