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Outline of Tutorial

 Brief overview of Deep Neural Networks (DNN)

e Part 1: Hardware Platforms for DNNs (e.g., CPU, GPU,
FPGA, ASIC) and metrics for evaluating the efficiency of
DNNs

* Part 2: Co-design algorithms and hardware for efficient
DNNs (e.g., precision, sparsity, network architecture design,
network architecture search, designing networks with
hardware in the loop)

 Part 3: Application of efficient DNNs on a wide range of

image processing and computer vision tasks (e.g., image
classification, depth estimation, image segmentation,

super-resolution)
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Additional Resources

Overview Paper

V. Sze, Y-H. Chen, T-J. Yang, J. Emer, “Efficient

Processing of Deep Neural Networks: A Tutorial

and Survey,” Proceedings of the IEEE, Dec. 2017
Book Coming Soon!

Proceedings IEEE

More info about Tutorial on DNN Architectures
http://eyeriss.mit.edu/tutorial.html

MIT Professional Education Course on
“Designing Efficient Deep Learning Systems”
http://professional-education.mit.edu/deeplearning

L] dT] 1o E1 I3 N Follow @eems_mit

http://mailman.mit.edu/mailman/listinfo/eems-news
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Example Applications of Deep Learning

- Computer Vision Speech Recognltlon |
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Bl Compute Demands for Deep Learning

Common carbon footprint benchmarks
in Ibs of CO2 equivalent

Roundtrip flight b/w NY and SF
(1 passenger) ‘ 1,984
Human life (avg. 1 year) I 11,023

American life (avg. 1 year) . 36,156

US car including fuel (avg. 1
lifetime) 126,000
Transformer (213M

parameters) w/ neural 626,155

architecture search

Chart: MIT Technology Review * Source: Strubell et al. * Created with Datawrapper
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Processing at “Edge” instead of the “Cloud”

Privacy Communication

36% COMPLETE

Image source:
www.theregister.co.uk

Latency

b 2[5[308[o —>- @

Sensor

Receiver —
@gb- —

Image source: ericsson.com
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I Deep Learning for Self-Driving Cars

SELEDRIVING CARS USE CRAZY
AMOUNTS OF POWER. ANDIT'S
BECOMING A PROBLEN WES R D

(Feb 2018)

Cameras and radar generate ~6
gigabytes of data every 30 seconds.

Prototypes use around 2,500 Watts.

Generates wasted heat and some
prototypes need water-cooling!

1 racetrack aut usly
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A Existing Processors Consume Too Much Power

< 1 Watt

O TP RESEARCH LABORATORY M ('Y X )
I I I I I rl-e TTTTTTTTTTTTTTTTTT mlcro-!y-sll;-m. technology laboratories
AT MIT institute of




Overview of Deep Neural

Networks




Deep Convolutional Neural Networks

Modern Deep CNN: 5 — 1000 Layers

A
\
Low-Level High-Level
Features > - »m Features ->E->Classes
CEO

t

1 -3 Layers
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Deep Convolutional Neural Networks

Low-Level
Features > -~

High-Level
Features >

Classes

Convolution| | Activation
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Deep Convolutional Neural Networks

Low-Level
Features > -~

High-Level
Features >

Fully Activation

Connected N
= 1L
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Deep Convolutional Neural Networks

Optional layers in between
CONYV and/or FC layers

High-Level
Features ->a->CIasses

Normalization Pooling

W e

- -
nnnnnnnnnnnnnnn M [ X X}
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Deep Convolutional Neural Networks

FC
Layer

CONV @ NORM | POOL | CONV
Layer Layer @ Layer @ Layer

Convolutions account for more
than 90% of overall computation,
dominating runtime and energy
consumption

LR ]
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Convolution (CONV) Layer

a plane of input activations
a.k.a. input feature map (fmap)

filter (weights)
1

T.

«— S —

- -
i (i Sy MTLees
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Convolution (CONV) Layer

input fmap

filter (weights)

'f.’ Q@ |\

«— S —
Element-wise
Multiplication
i Al Ssrcenrey MTLeee .
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Convolution (CONV) Layer

input fmap output fmap
filter (weights) = an output
T 0 = =| activation
? | \
«— § —
Element-wise Partial Sum (psum)
Multiplication Accumulation
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Convolution (CONV) Layer

input fmap output fmap

filter (weights) an output
' =| activation

R .’ (@

l N

«— S — < W > < F >

Sliding Window Processing
SRRy MTLeee

microsystems technology laboratories
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Convolution (CONV) Layer

input fmap

filter /C’{" output fmap
; /:{H == @ E
- ~ |
«— g — < w > < F >

Many Input Channels (C)

- -
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Convolution (CONV) Layer

input fmap

many output fma
filters (M) c? P P
c” - — ]
o .
1 D ml
R E A
L
«— S — v p = >
Many
o7l Output Channels (M)
L.
L
«— S —
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Convolution (CONV) Layer

Many
Input fmaps (N) Many
flters .ch"’ Output fmaps (N)
" M7

c’ =
il
R ! E
l ! |

«— S — < W > < F >

c’

«—0—

«— S —
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CNN Decoder Ring

N — Number of input fmaps/output fmaps (batch size)

C — Number of 2-D input fmaps /filters (channels)

H — Height of input fmap (activations)

W — Width of input fmap (activations)

R — Height of 2-D filter (weights)

S — Width of 2-D filter (weights)

M — Number of 2-D output fmaps (channels)

E — Height of output fmap (activations)

F — Width of output fmap (activations)

- -
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Traditional Activation Functions

Sigmoid Hyperbolic Tangent
1 1
0 0
-1 -1
1 0 1 -1 0 1
y=1/(1+eX) y=(eX-eX)/(eX+eX)

Nir Image Source: Caffe Tutorial Y rescanciuanonatony MTLeee
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Modern Activation Functions

Rectified Linear Unit

(ReLU) Leaky ReLU Exponential LU
1 1 1
0 0 0
1 1 §
_1 O 1 _1 O 1 _1 O 1
X, X20
y=max (0, X) y=max(ax,x) y={ alex-1), xco

a = small const. (e.g. 0.1)

i Image Source: Caffe Tutorial s MILees |




FC Layer — from CONV Layer POV

filters input fmaps output fmaps

A
Cc

Ll
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Fully-Connected (FC) Layer

« Height and width of output fmaps are 1 (E=F =1)
 Filters as large as input fmaps (R=H, S =W)
* Implementation: Matrix Multiplication

Filters Input fmaps Output fmaps
. «~— CHW — I(— N—— . < N >
CHW
M X l T
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Pooling (POOL) Layer

« Reduce resolution of each channel independently

« QOverlapping or non-overlapping - depending on stride
Max pooling

2x2 pooling, stride 2

Average pooling
Increases translation-invariance and noise-resilience

Mir Image Source: Caffe Tutorial [ sewciusoner MTLo0®
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Normalization (NORM) Layer

e Batch Normalization (BN)

— Normalize activations towards mean=0 and std. dev.=1 based on the
statistics of the training dataset

— put in between CONV/FC and Activation function

Activation
A

Believed to be key to getting high accuracy and
faster training on very deep neural networks.

i [loffe et al., ICML 2015] reseancuiasomtory  VITL @@ @

microsystems technology laboratories
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BN Layer Implementation

parameters of which are learned from training

data mean learned scale factor

\
_ A
X — p
= +
\40'2 +7‘€}’ ﬁ'\

Y

learned shift factor

data std. dev. small const. to avoid
numerical problems

* The normalized value is further scaled and shifted, the

uuuuuuu




Relevant Components for this Tutorial

* Typical operations that we will discuss:

— Convolution (CONV)
— Fully-Connected (FC)
— Max Pooling

— RelLU

SRR IIPE RESEARCH LABORATORY
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Popular DNN Models
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Popular DNNs

LeNet (1998)

AlexNet (2012)
OverFeat (2013)
VGGNet (2014)
GoogleNet (2014)
ResNet (2015)

v [O. Russakovsky et al., IJCV 2015]

Accuracy (Top 5 error)

18
16
14
12
10

o N b~ O O

ImageNet: Large Scale Visual
Recognition Challenge (ILSVRC)

AlexNet

OverFeat

VGGNet
GooglLeNet
ResNet [
2012 2013 2014 2015 Human

uuuuuuu




mageNet  |M AGENET

Image Classification For ImageNet Large Scale Visual Recognition
~256x256 pixels (color) Challenge (ILSVRC)

1000 Classes accuracy of classification task reported based
1.3M Training on top-1 and top-5 error

100,000 Testing (50,000 Validation)

Image Source: http //karpathy github.io/

Z ' = -_Y"...r“-‘-‘._,. ' ~ - .. - : S s 7 N _-_ p— p—— -
WU >R B s ha 5 : = 1"‘ ‘pg[s"w""!-
- M . ; ' ' : = ‘ .‘{:w
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http://www.image-net.org/challenges/LSVRC/

AlexNet

CONV Layers: 5

Fully Connected Layers: 3
Weights: 61M

MACs: 724M

RelLU used for non-linearity

ILSCVR12 Winner

Uses Local Response Normalization (LRN)

[Krizhevsky et al., NeurIPS 20

- - \

4

12]

s\ 9 . 1000
224x224 scores
nput I =1 14 2= 12 M EE 2 L4 21 5 [O|2] 16|52 L7|©
Image || S|Z2[6 n|<|Z|.E o= ™| ™| =|.E Q| o|c|H | @
xmnco xmocB X| © x| © x| ©|5 cl|l © cl|l © c
| BE SIS IR S BT FS E E Dol 6|l 5{5|El>s—>
_)‘5'—7'5?5 >é'—T'E'>l< >é'—7'__>é'—'7_>é'3'>l<_>u'j_>“’3_>u
s5122 (852ls |9 8|5 ssg [Fs FlE B
o|=[Z Jlz|= = = S|= Z|=Z Izl |2
# of weights 34k 307k 885k 664k 447K i 3TENAY 16.8M 4.1M



Large Sizes with Varying Shapes

AlexNet Convolutional Layer Configurations

Layer | Filter Size (RxS) # Filters (M) # Channels (C) | Stride
1 11x11 96 3 4
2 5x5 256 48 1
3 3x3 384 256 1
4 3x3 384 192 1
5 3x3 256 192 1
Layer 1 Layer 2 Layer 3
34k Params 307k Params 885k Params
105M MACs 224M MACs 150M MACs
Illil- [Krizhevsky et al. , NeurlPS 2012] OF ELECTRONICS AT i M-I:l""'"...g




VGG-16

CONYV Layers: 13

Fully Connected Layers: 3
Weights: 138M -
MACs: 15.5G Reduce # of weights

stack 2
3x3 conv

Also, 19 layer version

224 x 224 x..

./&’L TxTX!
/ ol 4% 14%x 512
./' y

@ convolution4+ RelLU
1 max pooling for a 5X5

fully connected+Rel.U receptive field

| softmax

[figure credit

A. Karpathy]
Image Source: http://www.cs.toronto.edu/~frossard/post/vggl6/
i [Simonyan et al., arXiv 2014, ICLR 2015] STy MTLeee ...



http://www.cs.toronto.edu/~frossard/post/vgg16/

GooglLeNet/Inception (v1)

CONV Layers: 21 (depth), 57 (total) Also, v2, v3 and v4
Fully Connected Layers: 1 ILSVRC14 Winner
Weights: 7.0M

MACs: 1.43G

9 Inception Layers

3 CONV layers B N 1 FC layer
Auxiliary Classifiers (reduced from 3)

(helps with training,
not used during inference)

[Szegedy et al., arXiv 2014, CVPR 2015]
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GoogleNet/Inception (v1)

CONV Layers: 21 (depth), 57 (total)

Fully Connected Layers: 1

Weights: 7.0M

MACs: 1.43G

Also, v2, v3 and v4

ILSVRC14 Winner

parallel filters of different size have the effect of

processing image at different scales

Inception
Module

Filter
concatenation

M

1x1 convolutions

1x1 ‘bottleneck’ to

reduce number of
weights and
multiplications

3x3 convolutions 5x5 convolutions 1x1 convolutions
4 s 4
ﬂltions 1x1 convolutions 3x3 max pooling
Previous layer
[Szegedy et al., arXiv 2014, CVPR 2015]
sty MTLSee
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ResNet

ILSVRC15 Winner
(better than human level accuracy!)

Go Deeper! 28.2

[ 152 layers [

\ 16.4

\ 11.7
22 Iayers l 19 Iayers ]

3 37 l - I 8 layers 8 layers ]

ILSVRC'15 ILSVRC'14  ILSVRC'14  ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)
Image Source: http://icml.cc/2016/tutorials/icml2016_tutorial deep residual networks kaiminghe.pdf
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http://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

ResNet-50

CONV Layers: 49 Also, 34,152 and 15_()82\}33(/:e1r5\/\e/\r/§|0ns
Fully Connected Layers: 1 inher
Weights: 25.5M _
- ResNet-34
MACs: 3.9G
X e 1 CONYV layer
Short Cut Module 3x3 CONV
Learns R ‘LLU Identity
Residual = ° X
F(x)=H(x)-x v
3x3 CONV
F(x) Skip L 16 Short
— connection Cut Layers
H(x) = F(x) + x
RelLU
Helps address the vanishing gradient
challenge for training very deep networks
= 1 FC layer

Mir [He et al., arXiv 2015, CVPR 2016] wHeeTn  MTLeee .
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Summary of Popular CNNs

Metrics LeNet-5 | AlexNet GoogLeNet ResNet-50
(v1)

Top-5 error n/a 16.4 7.4 6.7 5.3

Input Size 28x28 227x227 224x224 224x224 224x224

# of CONV Layers 2 5 16 21 (depth) 49

Filter Sizes 5 3, 5,11 3 1,3,5,7 1,3,7

# of Channels 1,6 3 -256 3-512 3-1024 3 -2048

# of Filters 6, 16 96 - 384 64 - 512 64 - 384 64 - 2048

Stride 1 1,4 1 1, 2 1,2

# of Weights 2.6k 2.3M 14.7TM 6.0M 23.5M

# of MACs 283k 666 M 15.3G 1.43G 3.86G

# of FC layers 2 3 3 1 1

# of Weights 58k 58.6M 124M 1M 2M

# of MACs 58k 58.6M 124M 1M 2M

Total Weights 60k 61M 138M ™ 25.5M

Total MACs 341k 724M 15.5G 1.43G 3.9G

CONYV Layers increasingly important!

SSSSSS




Summary of Popular CNNs

AlexNet
— First CNN Winner of ILSVRC
— Uses LRN (deprecated after this)

VGG-16
— Goes Deeper (16+ layers)

— Uses only 3x3 filters (stack for larger filters)

GooglLeNet (v1)

— Reduces weights with Inception and only one FC layer
— Inception: 1x1 and DAG (parallel connections)

— Batch Normalization

ResNet
— Goes Deeper (24+ layers)

— Shortcut connections

LR
i mncusouror  MTL.00O =
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Beyond ResNet

DenseNet

e

[Huang et al., CVPR 2017]

ResNeXt

256-din

256-d in

256, 1x1, 64 256, 1x1,4 256, 1x1,4 total 32
v 2 2 paths
64,3x3, 64 4,3x3,4 4,3x3,4
. 4 2 4
64, 1x1, 256 4, 1x1, 256 4,1x1, 256
256-d out
+
i [Xie et al., CVPR 2017] 256-d out

Basic residual block

[Zagoruyko et al.,

Ld

256, 1x1, 4

v

4,3x3,4

v

4, 1x1,256

Wide ResNet

Image Source:
Stanford cs231n

Wide residual block

BMVC 2016]

Increase accuracy
without going deeper!

MTL...

microsystoms oc o y laboratories
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Part 1: Hardware Platforms for

DNN Processing




GPUs and CPUs Targeting Deep Learning

Intel Xeon Scalable CPU (2019) Nvidia’s V100 GPU (2018)

LR
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Matrix Multiplication Libraries

* Implementation: Matrix Multiplication (GEMM)

« CPU: OpenBLAS, Intel MKL, etc
 GPU: cuBLAS, cuDNN, etc

 Library will note shape of the matrix multiply and
select implementation optimized for that shape.

* Optimization usually involves proper tiling to
storage hierarchy

mEm . IR RESEARCH LABORATORY
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Map DNN to a Matrix Multiplication

Filter Input Fmap Output Fmap

Convolution: % 2180 = 112
3 H [3]4]

Toeplitz Matrix
(w/ redundant data)

1[2]3]4] x

Matrix Mult:

Data is repeated

Goal: Reduced number of operations to increase throughput

SR AP RESEARCH LABORATORY Iw
I I I I I r]-e TTTTTTTTTTTTTTTTTT m‘cm‘[‘%m’ognology laboratories
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Analogy: Gauss’s Multiplication Algorithm
(a + bi)(c+ di) = (ac — bd) + (bc + ad)s.

4 multiplications + 3 additions

k=c-(a+Db)
k2=a-(d—c)
ks=b-(c+d)

Real part = ky — k3
Imaginary part = k1 + ko.

3 multiplications + 5 additions

Reduce number of multiplications,
i but increase number of additions  |.ower mTLeee




Reduce Operations in Matrix Multiplication

* Fast Fourier Transform [mathieu, ICLR 2014]
— Pro: Direct convolution O(N,?Ns?) to O(N,*log,N,)
— Con: Increase storage requirements
e Strassen [Cong, ICANN 2014]
— Pro: O(N3) to (N2807)
— Con: Numerical stability

* Winograd [Lavin, CVPR 2016]
— Pro: 2.25x speed up for 3x3 filter
— Con: Specialized processing depending on filter size

SRR ISP RESEARCH LABORATORY
HIT rle s MTLees



Specialized Hardware

(Accelerators)
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Properties We Can Leverage

* Operations exhibit high parallelism
= high throughput possible

* Memory Access is the Bottleneck

H RESEARCH LABORATORY “n l I @
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Properties We Can Leverage

* Operations exhibit high parallelism
= high throughput possible

* Memory Access is the Bottleneck

Memory Read MAC’ Memory Write

image pixel: ®
partial sum [ ;Z(r:![?glegum .

H RESEARCH LABORATORY “n l I @
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Properties We Can Leverage

* Operations exhibit high parallelism

- high throughput possible

* Memory Access is the Bottleneck

Memory Read MAC’

filter weight§

image pixel: ®

DRAM

ALU

Memory Write

updated

partial sum :

200x 1x

partial sum

Worst Case: all memory R/W are DRAM accesses

« Example: AlexNet [NeurlPS 2012] has 724M MACs
- 2896M DRAM accesses required

RRRRRRRRRRRRRRRRR “n Lee®o
rl.e OF ELECTRONICS AT MIT mlcro-sl:smma technology loboratories
TR nassachusetts inatitute of technology



Properties We Can Leverage

* Operations exhibit high parallelism
= high throughput possible

* Input data reuse opportunities (up to 500x)
- exploit low-cost memory

Images

Filters
. Image [ Image .
Filter I~ Filter
<E?_\ | L — :...
2
Convolutional Image Filter
Reuse Reuse Reuse

(pixels, weights) (pixels) (weights)



Highly-Parallel Compute Paradigms

Temporal Architecture Spatial Architecture
(SIMD/SIMT) (Dataflow Processing)

Memory Hierarchy Memory Hierarchy

Register File

y y y y

ALU ALU ALU ALU
y A 4 A 4 A 4

ALU ALU ALU ALU

Ll
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Advantages of Spatial Architecture

Spatial Architecture
(Dataflow Processing)

Efficient Data Reuse

Distributed local storage (RF)

Inter-PE Communication
Sharing among regions of PEs

Processing
Element (PE)

0.5-1.0kB Reg File

Control

LR
RRRRRRRRRRRRRRRR [ X X}
HIT | o g MTLeee
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How to Map the Dataflow?

Spatial Architecture
(Dataflow Processing)

CNN Convolution .
Memory Hierarchy

pixels
weights »

partial
sums

Goal: Increase reuse of input data
(weights and pixels) and local
partial sums accumulation

SRR IIPE RESEARCH LABORATORY
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Energy-Efficient Dataflow

Y-H. Chen, J. Emer, V. Sze, “Eyeriss: A Spatial Architecture for Energy-
Efficient Dataflow for Convolutional Neural Networks,” ISCA 2016

microsystems technology laboratori
h itts institute of




Il Data Movement is Expensive

Global

Buffer

PE H PE

PE

ALU fetch data to run
a MAC here

Normalized Enerqgy Cost

ALU

0.5-1.0 kB [Lg—>

ALU

NoC: 200 - 1000 PEs | PE

>

ALU

ALU

ALU

1% (Reference)
1%

2%
6%

/| 200x

* measured from a commercial 65nm process

Maximize data reuse at low cost levels of hierarchy




Weight Stationary (WS)

Global Buffer

* Minimize weight read energy consumption
— maximize convolutional and filter reuse of weights

« Examples:

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014]
[Park, ISSCC 2015] [Origami, GLSVLS/ 2015]

SRR IIPE RESEARCH LABORATORY ('Y X ]
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Output Stationary (OS)

Global Buffer

Psum

* Minimize partial sum R/W energy consumption
— maximize local accumulation

« Examples:

[Gupta, /ICML 2015] [ShiDianNao, /ISCA 2015]
[Peemen, /ICCD 2013]
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Row Stationary Dataflow

T PE 1
‘m* ‘ « Maximize row
convolutional reuse in RF
— Keep a filter row and fmap
sliding window in RF
 Maximize row psum
accumulation in RF
mmmam
* =

SRR IIPE RESEARCH LABORATORY
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I3 Row Stationary Dataflow

T PE 1 T PE 4 T PE 7
[Rew] | (- | [ |

T PE 2 T PE 5 T PE 8

[Rowi2] iuRow2| ll [Rowi2 | Rowau| |l [Rowi2 | iiRowan|

L e L o | -

E3 E6
[Rews | ([ | [
E~ = B @~ =B -

Optimize for overall energy efficiency instead
for only a certain data type

Ll
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Evaluate Reuse in Different Dataflows

* Weight Stationary

— Minimize movement of filter weights

* Output Stationary

— Minimize movement of partial sums

* No Local Reuse

— Don’t use any local PE storage. Maximize global buffer size.

* Row Stationary

Normalized Energy Cost’

Evaluation Setup

CALT] x
e Same Total Area E— 1x (Reference)
 AlexNet
e 256 PEs | Buffer g ¢ WYNVE

 Batchsize=16 [P—p{AT]




I Dataflow Comparison: CONV Layers

2

m ALU
RF
Normalized
Energy/MAC % NoC
W buffer
m DRAM

S, 0S; OS.
CNN Dataflows

RS uses 1.4x — 2.5x lower energy than other dataflows ‘

i [Chen et al., ISCA 2016] A sy MTLees |




Dataflow Comparison: CONV Layers

Normalized
Energy/MAC I

S, 0S; OS.
CNN Dataflows

B psums

W weights

B pixels

RS optimizes for the best overall energy efficiency

i [Chen et al., ISCA 2016] rle Raisirmi i v L L S—
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B3 Exploit Sparsity
Method 1. Skip memory access and computation

No R/W No Switching

Register File 3‘]—@-@-’

|

|

| o .

' Enable 45% power reduction

Method 2. Compress data to reduce storage and data movement
1.2%

6
1 7x
DRAM 4 1 8% m Uncompressed
Access 1 9x Fmaps + Weights
(MB) 2
. m RLE Compressed

Fmaps + Weights
AIexNet Conv Layer

i [Chen et al., ISSCC 2016] sy MILees ..




A Eyeriss: Deep Neural Network Accelerator

4dmm

Link Clock! Core Clock DCNN Accelerator A

14x12 PE Array
Filter i

ll

' Input Image
Il Decomp

' Output Image
i, Comp pg RelU

4dmm

[
e
(c3
[+
=
=
<
4
44
fes
[l
4
=
3
:
‘
-
=
i
fes
|

'
'
L

Off-Chip DRAM
64 bits v

[Chen et al., ISSCC 2016, ISCA 2016]

Exploits data reuse for 100x reduction in memory accesses from global
buffer and 1400x reduction in memory accesses from off-chip DRAM

Overall >10x energy reduction compared to a mobile GPU (Nvidia TK1) |

Results for AlexNet

i [Joint work with Joel Emer] SEEHONRNTN ML 8 e
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Features: Energy vs. Accuracy

Exponential
10000 VGG162
1000
Energy/ 100 + AlexNet?
Pixel (nJ)
10 _
Measured in 65nm* Video
dmm 1 ComEression
_ : |iopati .; - HOGl .
£ 0.1 | | | LmearI
0 20 40 60 80

@ (suleiman, VLSI 2016] @) [Chen, ISSCC 2016]

* Only feature extraction. Does
not include data, classification
energy, augmentation and
ensemble, etc.

Accuracy (Average Precision)

Measured in on VOC 2007 Dataset
1. DPM v5 [Girshick, 2012]
2. Fast R-CNN [Girshick, CVPR 2015]

i [Suleiman et al., ISCAS 2017] | Sreenatr MTLeee . ..
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Benchmarking Metrics for

DNN Hardware

How can we compare designs?

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer,
“Efficient Processing of Deep Neural Networks: A Tutorial and Survey,”
Proceedings of the IEEE, Dec. 2017
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Metrics for DNN Hardware

* Accuracy

— Quality of result for a given task

* Throughput
— Analytics on high volume data
— Real-time performance (e.g., video at 30 fps)

* Latency

— For interactive applications (e.g., autonomous navigation)

* Energy and Power
— Edge and embedded devices have limited battery capacity

— Data centers have stringent power ceilings due to cooling costs

Hardware Cost
— SSS

LR ]
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Specifications to Evaluate Metrics

* Accuracy
— Difficulty of dataset and/or task should be considered

* Throughput
— Number of cores (include utilization along with peak performance)

— Runtime for running specific DNN models

* Latency

— Include batch size used in evaluation

* Energy and Power
— Power consumption for running specific DNN models

— Include external memory access

Hardware Cost

— On-chip storage, number of cores, chip area + process technology

LR ]
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Example: Metrics of Eyeriss Chip

ASIC Specs

Process Technology

Total Core Area (mm?)

Total On-Chip Memory
(kB)

Number of Multipliers
Clock Frequency (MHz)

Core area (mm?2)
/multiplier

On-Chip memory (kB) /
multiplier

Measured or Simulated

(1.0V)
12.25

192

168
200

0.073

1.14

Measured

Name of CNN Model

Top-5 error classification on
ImageNet

Supported Layers

Bits per weight

Bits per input activation
Batch Size

Runtime

Power

Off-chip Access per Image
Inference

Number of Images Tested

AT MIT

Text
#

ms
mW
MBytes

RESEARCH LABORATORY
OF ELECTRONICS AT MIT

65nm LP TSMC

AlexNet
19.8

All CONV
16

16

4

115.3
278

3.85

100

MTLeeo
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Comprehensive Coverage

e All metrics should be reported for fair evaluation of design
tradeoffs

* Examples of what can happen if certain metric is omitted:

— Without the accuracy given for a specific dataset and task,
one could run a simple DNN and claim low power, high
throughput, and low cost — however, the processor might
not be usable for a meaningful task

— Without reporting the off-chip bandwidth, one could build
a processor with only multipliers and claim low cost, high
throughput, high accuracy, and low chip power — however,
when evaluating system power, the off-chip memory access
would be substantial

e Are results measured or simulated? On what test data?

LR
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Evaluation Process

The evaluation process for whether a DNN system is a viable
solution for a given application might go as follows:

1. Accuracy determines if it can perform the given task

2. Latency and throughput determine if it can run fast enough
and in real-time

3. Energy and power consumption will primarily dictate the
form factor of the device where the processing can operate

4. Cost, which is primarily dictated by the chip area,
determines how much one would pay for this solution

sssssssssssssssss MTLeee
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Part 2: Co-Design of Algorithms

and Hardware for DNNs




Approaches

* Reduce size of operands for storage/compute

— Floating point = Fixed point
— Bit-width reduction

— Non-linear quantization

* Reduce number of operations for storage/compute

— Exploit Activation Statistics (Compression)
— Network Pruning
— Compact Network Architectures

mEm . IR RESEARCH LABORATORY
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Reduced Precision

-
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I Cost Per Operation

Operation: Energy | Relative Energy Cost Area | Relative Area Cost
(pJ) (Lm?)
8b Add 0.03 36
16b Add 0.05 67
32b Add 0.1 137
16b FP Add 0.4 1360
32b FP Add 0.9 4184
8b Mult 0.2 282
32b Mult 3.1 3495
16b FP Mult 1.1 1640
32b FP Mult 3.7 7700
32b SRAM Read (8KB) 5 N/A
32b DRAM Read 640 N/A
1 10 102 103 104 1 10 102 103

Mir [Horowitz, ISSCC 2014] STy MTLeee ...
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Floating Point = Fixed Point

Mantissa (m): number of levels
Exponent (e): scale to a target range
Sign (s): indicates if number is positive or negative

Floating Point (—1)" X m X 7 (e=127)

sign exponent (8-bits) mantissa (23-bits)
rhy 4 " r A ,
2L LU 1 0/1/0/0/1/011/0j0J0j0joojololo]1o]1]0loj0jolojojolojol1 /o]0
-1.42122425x 108 s=1 e=70 m = 20482

Fixed Point (—1)° xm
sign mantissa (7-bits)

h———
cor  (ONDONG

fixed ——
12,75 integer  fractional

(4-bits)  (3-bits)

Ha = =107 PPN ReSEARCH LABORATORY
i s=0 m=102 rle Eressres MTL eee ...
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Commercial Products Support Reduced Precision

Nvidia’s Pascal (2016) Google’s TPU (2016) Intel’s NNP-L (2019)

sign exponent (8 bits) fraction (7 bits)
| [ [ 1

8-bit Inference & bfloat16 for Training ofo[1]1]1]1]1]o[o[o]1[0]o]0[o]0
15 14 7 6 (bitindex) ©

Ha RESEARCH LABORATORY (Y X )
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Microsoft BrainWave

Narrow Precision for Inference

FPGA Performance vs. Data Type
Impact of Narrow Precison on

100 _ 90 Accuracy
90 ~@-Stratix V D5 @ 225MHz
g Stratix 10280 @ 500MHz e 1,00
£ 60 = & 0.80
5 2
g 20 i 2070
@ 4 31/ _—
@ 30 > :
20 12— 0.50
10 & Model 1 Model 2 Model 3
GRU-based) (LSTM-based) (LSTM-based
. - 3 o —9 ( ) ( ) ( )

16-bitint  8bitint  msfp9  ms-fp8 hosice Nimeps: S me-pR el

Custom 8-bit floating point format (“‘ms-fp8”)

nir [Chung et al., Hot Chips 2017] g swawese  MTLeee

microsystems technology laboratories
institute of
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I3 Reduced Precision Hardware

LSB_MSB Cycle 1 Cycle 2 Cycle 3
of1
Stripes Tolo [T}
\770 0
[Judd et al., MICRO 2016] 2 | ; I 1 _’D’ (1)
S Lsa[t | L : 1| [ 1
. . . C
Bit-serial processing for speed & o 2 0
0 (<< ] 0 [<<] (<<
1 1 1
- yhyZ y1/0 yo/0 T
X ) gl —
x1/0n H__ t ﬂ_‘_L 0/0 g
N £ £ 10° KU L
- ﬂ —W = b1/ g 33x gain euven
X3_pme N e \p2/0 :&; 10‘“ RMSE :
‘ e . [Moons et al., VLS| 2016]
il p3/0

Root-Mean-Square Error [-]
p7 p6 p5 p4b

Voltage scaling for energy savings

Pprecise = aCfVZ = Pimprecise = Cf( )2

- -
" mesgprchissontony  MITL @@ @
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Binary Nets

e Binary Connect (BC)
— Weights {-1,1}, Activations 32-bit float
— MAC = addition/subtraction
— Accuracy loss: 19% on AlexNet

[Courbariaux, NeurlPS 2015]

* Binarized Neural Networks (BNN)
— Weights {-1,1}, Activations {-1,1}
— MAC - XNOR
— Accuracy loss: 29.8% on AlexNet

[Courbariaux, arXiv 2016]

I ol
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B Scale the Weights and Activations

« Binary Weight Nets (BWN)

 XNOR-Net

— Weights {-a, a} = except first and last layers are 32-bit float
— Activations: 32-bit float

— a determined by the |;-norm of all weights in a filter

— Accuracy loss: 0.8% on AlexNet

Hardware needs to support
both activation precisions

|

— Weights {-a, a}
— Activations {-B;, Bi} = except first and last layers are 32-bit float

— B; determined by the |;-norm of all activations across channels
for given position i of the input feature map

— Accuracy loss: 11% on AlexNet

Scale factors (a, [3;) can change per filter or position in filter

[Rastegari et al., BWN & XNOR-Net, ECCV 2016]
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Ternary Nets

* Allow for weights to be zero

— Increase sparsity, but also increase number of bits (2-bits)

* Ternary Weight Nets (TWN) [Li et al., arXiv 2016]
— Weights {-w, 0, w} = except first and last layers are 32-bit float
— Activations: 32-bit float
— Accuracy loss: 3.7% on AlexNet

* Trained Ternary Quantization (TTQ) [Zhu et al., ICLR 2017]
— Weights {-w,, 0, w,} = except first and last layers are 32-bit float
— Activations: 32-bit float
— Accuracy loss: 0.6% on AlexNet

LR ]
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Non-Linear Quantization

* Precision refers to the number of levels

— Number of bits = log, (number of levels)

* Quantization: mapping data to a smaller set of levels
— Linear, e.g., fixed-point
— Non-linear
« Computed
« Table lookup

Objective: Reduce size to improve speed and/or reduce energy
while preserving accuracy

LR
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B Computed Non-linear Quantization

Log Domain Quantization

linear quantizer log., quantizer
3000 S B 3000 - 1211111 e T
2500 1 | - boundaries 2500 t : : :: :: -- boundaries |
o | B (N
15000 | | - LRI R
1000 | | ] T BN
|
500f || . S00r o
L d
0 L L 0
02 01 0 01 02 Las ‘O-V‘V | htOVI R
Weight Values gl
Product= X*W Product = X << W
i [Lee et al., LogNet, ICASSP 2017] [l seeenswevrey MIL®®S ...




) Reduce Precision Overview

* Learned mapping of data to quantization levels (e.g., k-means)

20000 :
xxx linear quantization
nonlinear quantization by
®®® (lustring and finetuning
15000¢
, 10000 Implement with
@
=
i look up table
5000¢
0 © 00000 © 0000000 0 O
X% 9% W X XK W M P X X M K o X X

~0.04 Z0.02 0.00 0.02 0.04 0.06 [Han et al., ICLR 201 6]

weight value

e Additional Properties

— Fixed or Variable (across data types, layers, channels, etc.)
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Non-Linear Quantization Table Lookup

Trained Quantization: Find K weights via K-means clustering
to reduce number of unique weights per layer (weight sharing)

Example: AlexNet (no accuracy loss)
256 unique weights for CONV layer
16 unique weights for FC layer

Smaller Weight _

Memory Weight  oOverhead Does not reduce

Weight index Weight Weight precision of MAC

Memory (|092U'bit3)> Decoder/ | (16-bits) MAC

CRSM x Dequant )& . O_utpL.Jt
log,U-bits U x 16b > Activation

Input % (16-bits)
Activation =—
(16-bits)

Consequences: Narrow weight memory and second access from (small) table

n::- ] RESEARCH LABORATORY MTLeeo
i [Han et al., Deep Compression, ICLR 2016] OFELECTRONICSATHIT  micromystin wetmology lsvoraores



Summary of Reduce Precision

Category Weights Activations | Accuracy Loss
(# of bits) (# of bits) vs. 32-bit float (%)

Dynamic Fixed w/o fine-tuning

Point w/ fine-tuning 8 8 0.6
Reduce weight Ternary weights 2 32 3.7
Networks (TWN)
Trained Ternary 2 32 0.6
Quantization (TTQ)
Binary Connect (BC) 1 32 19.2
Binary Weight Net 1* 32 0.8
(BWN)
Reduce weight Binarized Neural Net 1 1 29.8
and activation (BNN)
XNOR-Net 1* 1 11
Non-Linear LogNet 5(conv), 4(fc) 4 3.2
Weight Sharing 8(conv), 4(fc) 16 0

i~ first and last layers are 32-bit float [ sy MILOS® e



Approaches

* Reduce size of operands for storage/compute

— Floating point = Fixed point
— Bit-width reduction

— Non-linear quantization

* Reduce number of operations for storage/compute

— Exploit Activation Statistics (Compression)
— Network Pruning
— Compact Network Architectures

LR
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Exploit Sparsity
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Sparsity in Feature Maps

Many zeros in output fmaps after ReLU

9(-1]-3 RelLU 9lofo

1]-5]5 ,|i J1lo]5
2|6 |- o[6]0

m # of activations  m# of non-zero activations
1

0.8

0.6 -
(Normalized) 4 -

0.2 -
0 -

1 2 3 4 )
CONYV Layer
i Reseancuiasomatony  MITL @@

systoms technology laboratorios
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El Exploit Sparsity
Method 1: Skip memory access and computation
No R/W No Switching

Register File L::D—@-@—}

Zero

Enable 45% energy savings

Method 2: Compress data to reduce storage and data movement
1.2x

6
1 7x
DRAM 4 1 8x m Uncompressed
Access 1 9x Fmaps + Weights
(MB) 2
m RLE Compressed
0

Fmaps + Weights
AIexNet Conv Layer

i [Chen et al., ISSCC 2016] M@=z MILese
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Pruning — Make Weights Sparse

Prune DNN based on
magnitude of weights

[Han et al., NeurlPS 2015]

Optimal Brain Damage
[Lecun et al., NeurlPS 1989]

16_ before pruning after pruning
14,
124 pruning __
ol synapses
m 84
m .
S 6 neurons "
o0 4 retraining
e 2_- —o—e -9
0. Example: AlexNet
-2 4 f } } } Welght Reduction:
0 500 1000 1500 2000 2500 CONYV layers 2.7x, FC layers 9.9x
Parameters Overall Reduction:

Weights 9x, MACs 3x

t
At a husotts i
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El Pruning — Make Weights Sparse

Remove the weights with the smallest joint impact on the output
feature map instead of that with the smallest magnitude

Magnitude-Based Method

fmap R f'.lff"_r ________________ ,
I [ ]
11171 i [s]1]1 g8lofo|i Error:6
I Prune !
111k F]11]11]1 »o0|lofo]i=0->-6
|
1111 RN of1]1]:
| o o o o o o e o o o o P o e e o e o e e e e
Feature-Map-Based Method
fmap S e ,
|
HERE S ERE ofo|lo]|! Error:3
I Prune !
Pk 1] 1] »o0|oJo|[i=0—>3
1111 1] 1 i
| 1

it [Yang et al., Energy-Aware Pruning, CVPR 2017] T 1L

h
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El Fast Local Fine-Tuning

We then locally fine-tune the remaining weights, which is
much faster than performing end-to-end training

After Pruning

fmap S filter ,
1 L]
1] 1] 1 AEIERE oJo[o]! Error:3
i Prune !
Tk i[1]1]1 »0[0f|0o]i=0—>3
111 ] 1 NEAERE 111 1]
e e e . e — —E —, —, E, —, —,—_,—_,—,—————————————————— 1
After Local Fine-Tuning
fmap O filter ,
|
1111 A ERE oflofo|! Error:0
i Prune ]
111k i[1]1]1 »0[o0]Jo]i=0—>0
|
1111 V1] 1] 2(1]1]1
e e o o ]

i [Yang et al., Energy-Aware Pruning, CVPR 2017] LS R LS . S—
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Compression of Weights & Activations

« Compress weights and activations between DRAM
and accelerator

« Variable Length / Huffman Coding

Example:
Value: 16’b0 - Compressed Code: {1°b0}

Value: 16’bx - Compressed Code: {1’b1, 16’bx}
+ Tested on AlexNet - 2x overall BW Reduction

. Filter / Image Filter / Image 10 / HufflO Voltage MMACs/ Power Real
’ bits (0%) BW Reduc. (MB/frame) (V) Frame (mW) (TOPS/W)
General CNN | 16 (0%) / 16 (0%) 1.0x 1.1 — 288 0.3
AlexNet 11 7 (21%) 1 4 (29%) Jii7x 1 1.3% 1/0.77 0.85 105 85 0.96
AlexNet 12 7 (19%) 1 7 (89%) 1.15x / 5.8x 3.24 1,1 0.9 224 -5 1.4
AlexNet I3 8 (11%) 79 (82%) 1.05x / 4.1x 6.5/28 0.92 150 77 0.7
AlexNet 14 9 (04%) / 8 (72%) 1.00x / 2.9x 54/32 0.92 112 95 0.56
AlexNet 15 9 (04%) 1 8 (72%) 1.00x / 2.9x 3.7:/:2] 0.92 75 95 0.56
Total / avg. — — 19.8 /10 — — 76 0.94
LeNet-5 11 3 (35%) 1 1 (87%) 1.40x / 5.2x T 0.7 0.3 25 1.07
LeNet-5 12 4 (26%) 1 6 (55%) 1.25x / 1.9x 0.050 / 0.042 0.8 1.6 35 1.75
Total / avg. — — 0.053 7/ 0.043 _ —_ 33 1.6
[Moons et al., VLSI 2016; Han et al., ICLR 2016] SRR MILOeS e



Sparse Hardware

EIE
[Han et al., ISCA 2016] Weights

ReLU | b3
=

Supports Fully
Connected Layers Only

Storage of Weights Multiplication of ,
and Activations Scattered Partial Sums

Densely Packed
Weights and Activations

All-to all } { Mechanism to Add to

A

[Parashar et al., = Ay
X

ISCA 2017] c/ P _ B

d - D-E1 [\ neowox, |7
Supports Convolutional bRy
Layers Only -

: A — Accumulate MULs
PE frontend PE backend

- RESEARCH LABORATORY
I"lii wRichaney MTLeee ..
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Sparse Hardware — Eyeriss v2

Supports both Convolutional and Fully Connected Layers

/ Only read non-zeros in a window

) C0xS y
o ] IIIIIII
ST X 2 . ? sums

L] AlexNet | sparse-
Mo O AlexNet
[ GOPS 148.3 405.8
"";/ M —— i fps 102 .4 280 .1
Only read non-zeros in a column Over v1 15.5% 42.5x%
Input Activations WeliJths Psums Out G O PSIW 277 . 9 1 028 - 1
é’ Inferences/J 191.8 709.7
Over v1 3.0x% 11.3%

I —

W jact W AA)E = Id:: AfDJ

= ’ [Chen et al., JETCAS 2019]
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103

Manual Network

Architecture Design
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Simplify CONV Layers

Many
Input fmaps (N) Many
flters o Output fmaps (N)
{7 M7
c’ K=
o
: “ E
i ! |1
<3S~ € W > < F >
c?|

«—0—
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Simplify CONV Layers

filters
c’ Methods can be roughly categorized by how the filters
T‘(' are simplified:
R
l 1 e Reduce spatial size (R, S): stacked filters
«— S —
i e Reduce channels (C): 1x1 convolution, group of
. filters
2,
/C I * Reduce filters (M): feature map reuse
R ==
L
«— S —

LR ]
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Simplify CONV Layers

filters

c’ Methods can be roughly categorized by how the filters
T‘(' are simplified:
R
| 1 | * Reduce spatial size (R, S): stacked filters

«— S —

c’
T/.
i

SRR IIPE RESEARCH LABORATORY

massachusetts institute of technology



Stacked Filters

GoogleNet/Inception v3

5x5 filter
decompose
VGG-16
x5 filter

5x1 filter

1x5 filter

separable
filters

Two 3x3 filters

decompose . m

Apply sequentially

Apply sequentially

Replace a large filter with a series of smaller filters

RESEARCH LABORATORY M [ X X ]
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Stacked Filters

e Use stack of smaller filters (3x3) to cover the same receptive
field with fewer filter weights

Example / 5x5 filter \

O 1 2 3 2
0|1]2]3]2 1 2 2 2 0
1({2(22]0 O 1 0 1 3
o|1(0]|1]3 1 2 2 1 0 31
1122110 O 1 0 3 1
0o|l1(0]3]1
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" sseancuisonsrony  MTL @@
Y massachusetts institute of technology

ar



Stacked Filters

e Use stack of smaller filters (3x3) to cover the same receptive

field with fewer filter weights filter (3x3)
0 1 0
||
Example 010
Ol 1|23 |2
1({2((2]12]0 71 8| 8
O|l1]1]0(1¢{3 516|7
1 (2|2 1|10 6 | 5|7
O|l1]1]0(3 (1

3x3 filter;

e RESEARCH LABORATORY M
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Stacked Filters

e Use stack of smaller filters (3x3) to cover the same receptive

field with fewer filter weights filter (3x3)
0O 1 0
1 1 1
Example: 5x5 filter (25 weights) = two 3x3 filters (18 weights) 0 10
ol1|2]3]2
11220210 7 8|8
ol1]o0]1]3 5 (6|7 31
12210 6|5 |7
0ol1]o0]3]1

3x3 filter; 3x3 filter,

LR ]
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Simplify CONV Layers

filters
c’ Methods can be roughly categorized by how the filters
T‘(' are simplified:
R
'
«— S —
i e Reduce channels (C): 1x1 convolution, group of
. filters
c’
T/.
i

SRR IIPE RESEARCH LABORATORY
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1x1 Convolution

Use 1x1 filter to condense the cross-channel information.

filter, / /

(1x1x64)
1x1 CONV
56 with 32 filters 56

(each filter has size
1x1x64, and performs a

64-dimensional dot
56 product) A

64 1

Modified image from source:
Stanford ¢s231n

[Lin et al., Network in Network, arXiv 2013, ICLR 2014]

LR ]
RESEARCH LABORATORY M ('Y X ]
III I I OF ELECTRONICS AT MIT mlcro]y-z%mn technology laboratories
ATRIT massachusstta inatitute of technology



1x1 Convolution

Use 1x1 filter to condense the cross-channel information.

filte r

(1x1x64)
1x1 CONV

with 32 filters 26

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

56

Modified image from source:
Stanford ¢s231n

[Lin et al., Network in Network, arXiv 2013, ICLR 2014]
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1x1 Convolution

Use 1x1 filter to condense the cross-channel information.

1x1 CONV
56 with 32 filters 56

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product) 56
64 32

Modified image from source:
Stanford ¢s231n

[Lin et al., Network in Network, arXiv 2013, ICLR 2014]

LR ]
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GooglLeNet:1x1 Convolution

Apply 1x1 convolution before ‘large’ convolution filters.

Reduce weights such that entire CNN can be trained on one GPU.

Number of multiplications reduced from 854M - 358M

Filter
concatenation
Inception A TRRSEE—
Module
3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions 3 & &
1X1 COﬂVOlUtiOﬂS to 5\ 1x1 convolutions 1x1 convolutions 3x3 max pooling
> =
reduce number of T e

weights and
multiplications

Previous layer

[Szegedy et al., arXiv 2014, CVPR 2015]

At
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Group of Filters

|dea: split filters and channels of feature map into different groups

Example: 2 groups, each filter requires 2x fewer weights and multiplications.

input fmap
CcH :
Cﬁv f|Iter1 | N output fmap;
T /_2
? —_— | ® H 11 @ E
«— g —>.’ v : l
— W — «— F —
input fmap

output fmap,

W C— F —
RRRRRRRRRRRRRRRR M [ X X ]
r].e TTTTTTTTTTTTTTTTTT micro-'y-:%ml technology laboratorios
AT NIT massachusotts institute of technology



Group of Filters

The extreme case is depthwise convolution —
each group contains only one channel.

output fmap;

input fmap
CH .
filter, = —|
_2
L /{H P
| _
«— g — ik B
— \\ —
input fmap
filterc C
!
R —
l
«— g —

<«<m

rleks

«~— F —

output fmap¢

«~— F —

RESEARCH LAORAOR
ELECTRONICS A
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Group of Filters

AlexNet uses group of filters to train on two separate GPUs
(Drawback: correlation between channels of different groups is not used)

Split into 2 Mix Split into 2 Mix
Groups Information Groups Information
(3x3 CONV) (FC)

- RESEARCH LABORATORY
i wrceey MTLeee ..
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Group of Filters
Two ways of mixing information from groups

<—Channels————>

fmap 0

layer 1

Channel i
Shuffle !

1

layer 2
fmap 2

Shuffle Operation
(Mix in multiple steps)
ShuffleNet

Pointwise (1x1) Convolution
(Mix in one step)
MobileNet

Ll
RESEARCH LABORATORY lw . . .
IIIII OF ELECTRONICS AT MIT m‘cfoIsEm. technology laboratories
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MobileNets: Comparison

Table 8. MobileNet Comparison to Popular Models

Model ImageNet Million Million
Accuracy Mult-Adds Parameter
1.0 MobileNet-224  70.6% 569 4.2
GoogleNet 69.8% 1550 6.8
VGG 16 71.5% 15300 138

Table 9. Smaller MobileNet Comparison to Popular Models

Model ImageNet Million Million
Accuracy Mult-Adds Parameter
0.50 MobileNet-160  60.2% 76 L32
Squeezenet 57.5% 1700 1.25
AlexNet 57.2% 720 60

ImageNet Top-1 Accuracy %
H (9, W (o)) (o)} ~ ~
() o w o w, o w

i =N
= O
o

MobileNet
AlexNet
® GoogleNet
® VGG 16
10 10° 10*

MACs (M)

RESEARCH LABORATORY MTI
OF ELECTRONICS AT MIT micro yshm.og .log ratorios
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Simplify CONV Layers

filters
c’ Methods can be roughly categorized by how the filters
T‘(' are simplified:
R
i
«— S —
2, .
/C I g * Reduce filters (M): feature map reuse
)

SRR IIPE RESEARCH LABORATORY
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Feature Map Reuse

M Filters

C)’

II:
111

«— S —

c’

TA(
R
|

K

i

1

output fmap with M channels
M'KJQ. o = o
1 '

‘ E /M

F —

Reuse (M-K) channels in feature
maps from previously processed

RRRRRRRRRRRRRRRRR
AY MIY n h tte institute of




Feature Map Reuse

Reuse Feature Maps from Multi. Layers!

Connections not only from previous layer, but
many past layers to strengthen feature map

propagation and feature reuse.

Feature maps are concatenated rather than added.

Break into blocks to limit depth and thus size of combined feature map.
1 ] [ | Prediction
Dense Block 3

@ v® vO »vO (2

Input

Dense Block 2
9 v® v v | >

Dense Block 1
@ v® vO »® >

‘horse”

Buljood
]
Y
Jeaur]
\

uoNN|OAUOD
Buijood
[
\i
uonN|OAUOD
|
Y
Buljood

UOIIN|OAUOD
]
\i

\_'_l

Transition layers
RESEARCH LABORATORY MTLeeo®
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DenseNet

Higher accuracy than ResNet with fewer weights and multiplications

Top-1 error Top-1 error
275 275

—&— ResNets
ResNet-34 —a— DenseNets-BC |

—&— ResNets
ResNet-34 —a&— DenseNets-BC |

DenseNet-121

ResNet-50

validation error
N
-

(8]
validation error
N
N
(6]

23.5 23.5
- ResNet-101 4 295 ResNet-101gogNet-152)
ResNet-153
DenseNet-161(k=48) DenseNet-161(k=48)
21.5 ‘ : : ‘ : 21. ‘ ‘ : , : ‘
0 1 2 3 B 5 6 7 8 8.5 078 1 125 15 1.7 2 225 25
#parameters < 107 #lops x10'°

Note: 1 MAC =2 FLOPS

- RESEARCH LABORATORY [ X X ]
i [Huang et al., CVPR 2017] srmenesn MIESSS o



Feature Map Reuse

 More complicated layer aggregation

[] Block
[_] Stage

[]  Aggregation Node

(a) No aggregation

ouT

(d) Tree-structured aggregation

Existing

ouT
]
/{]
S I I o B = I
(b) Shallow aggregation
ouT

(e) Reentrant aggregation

[Yu et al., CVPR 2018]

Proposed

ouT

s M = N o N o .

(c) Iterative deep aggregation

ouT

(f) Hierarchical deep aggregation

reseanchiuasomarory  V]TL 00 @
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Simplify FC Layers

CONV Layers: 5 ILSCVR12 Winner
Fully Connected Layers: 3 _
Welghts 61M [K”ZheVSky et al., NIPS 2012]
MACs: 724M
- ! | .,‘:]’. \ 4 |
' \“ | ] 1
| ' 1) VN ]
! -f'l: i) » - .
' . ] \ \ .
1;| Vall i N | ’ 192 ' ) 128 Max - -
223 e rricde Max X 172 " Max sooling 2041 041
Uata \| | pooting pooling 1000
224x224 = ~ scores
Input [>] > | > > >l 09 4+ | > > 5|5
mage [SE2s @EEIE 2 T S @E 4 [gEE S (8E |6l (e
| IS TN ISR Qe i v &lel8 clo| |g[8] |S
BEEEEREEE T e 2| e
s[sl22| [S[512lE  (8|g 8|5 |52 Bls Bs| 5
o|z|= 2= = = Cl1212 o|Z 212 |2
# of weights 34k 307k 885k 664k 442k 38M | 16.8M 4.1M
# of MACs 105M 224M 150M 112M 75M 38M 17M 4M

OF ELECTRONICS AT MIT

Illil- RESEARCH LABORATORY MTLeeo®
systoms technology laborat
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Simplify FC Layers

filter, input fmap
c7- CH
P P
4 A
L —>
H = H
v o v i
—W— — W
input fmap
CH
¥
Global Pooling 1
replaces the large
filters in the first H
FC layer
‘ o
<€ W >
[Lin et al., ICLR 2014]

Pool

RESEARCH LABORA OR
NICS A
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output fmap;
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Knowledge Distillation

class
scores  probabilities

Complex
DNN B
(teacher)

Complex
DNN A
(teacher)

HIT
HIT

Try to match

Simple DNN
(student)

[Bucilu et al., KDD 2006],[Hinton et al., arXiv 2015]

SRR ISP RESEARCH LABORATORY
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Network Architecture

Search (NAS)

mEm . IR RESEARCH LABORATORY
Illl | rlo sy M:.I:.I::mgogngogy T




Learn Network Architecture

Rather than handcrafting the architecture, automatically search for it

1

Pool? CONV?

A

3

128 Filters?

A

3

3x3? 5x57?

I

Architecture
Network Universe

Y\ Samples ([
[ Performance |e Optimization | Discovered %
Evaluation > Algorithm Network Optimal
/ Evaluation *
Results \ 5
|

Three main components:
(1) search space, (2) optimization algorithm,
and (3) performance evaluation.

u - RESEARCH LABORATORY
I rle it UL AL A S—
o tn inutiute of

A

~

~———

Samples




Evaluate NAS Performance

* Key Metrics

— Achievable DNN accuracy
— Required search time

timenas - numsamplesXtimeper_sample

numnas_tuning

| efficiencya,g|
/
(2) Improve the

optimization algorithm

time, ;3 X )X[(timeyqin + timee,q)

~~

(3) Simplify the
performance evaluation

(1) Shrink the search
space

Researchers improve the efficiency
of NAS in 3 main components

- RESEARCH LABORATORY
I"lii wRichsney MTLeee .. ;
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(1) Shrink the Search Space

* Trade the discoverable architectures for search speed

Architecture
Universe

N Optimal

*
X

T

Samples

SRR I RESEARCH LABORATORY @
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(1) Shrink the Search Space

* Trade the discoverable architectures for search speed

* May irrecoverably limit the achievable network performance

— Domain knowledge learned in manual network design provides guidance

Architecture Optimal
Universe ) ¢

Search Space

Optimal

5 S

Samples

mEm O IR cESEAR CH LABORAT ORY
I"lii sy MTLeee
T RIT ma s inutitute of technology
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(1) Shrink the Search Space

* Search space =

Common layer operations:

layer operations + connections between layers

Size of All Operations

Search Space «¢ @

(Layer Operation)

|dentity

1x3 then 3x1 convolution
1x7 then 7x1 convolution
3x3 dilated convolution
1x1 convolution

3x3 convolution

Limited Set of

Operations

« 3x3 separable convolution
» 5x5 separable convolution
« 3x3 average pooling

* 3x3 max pooling

¢ 5Xx5 max pooling

* /X7 max pooling

RESEARCH LABORATORY '\nT| ® .
OF ELECTRONICS A mh:ro- tcm- oc o y laboratorios



(1) Shrink the Search Space

* Search space = layer operations + connections between layers

Block Operation Search +

Size of All Connections Predefined Connections
Search Space « @ &
(Connections)

All Connections +
Simple Constraints

Layer Operation Search +
Predefined Connections

Searched Predefined +» Searched
Block 2 Y\ Connections ,/ Block 1
AY U4
\ r V4 S
L % /
3x3 CONV ‘\ Block 1 > +
7 Y \‘ 7 Y k 7 Y
\ \
\
3x3 CONV Block2 |\ 5x5 CONV
» , r 3 “ 4
U4 \
/’ ‘\
2x2 POOL / Block 1 \\ =1 3x3 CONV
A ’I A \ A
0, ‘\
i [Zoph et al., arXiv, July 2017]

At

Predefined
Connections

»

1x1 or 3x3 or 5x5 CONV

L 3

1x1 or 3x3 or 5x5 CONV

r

2x2 POOL or 3x3 CONV

I

RESEARCH LABORATORY
OF ELECTRONICS AT MIT

MTL eee
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(2) Improve Optimization Algorithm

Coordinate Descent Gradient Descent
A i
L}
7 ..:‘o e 1s .‘1‘:1
. -
[
[}

_-‘m'\j' 0

Evolutionary Reinforcement Learning
\

ﬂdnwronment

Re War
Interpreter
%’ o

Agent

Action

OF ELECTRONICS A

RESEARCH LABORATORY MTLeoeo®
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(2) Improve Optimization Algorithm

) ) ® (.
{ 7"\:‘ g %7 %o ) E":‘
'o cg ¢ ! L . - ." o

Gradient Descent

Randomly samples the
entire space

« Simple
 Does not use
previous results

Starts from the previous
best sample and greedily
finds the best direction to
move

» Uses previous results

« Simple

* Limited number of
directions

Starts from the previous
best sample and goes in
the direction that has the
largest gradient

* Explores more
directions

* The metric should be
differentiable

RESEARCH LABORATORY
(@ NS OF ELECTRONICS AT MIT

'S}
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(2) Improve Optimization Algorithm

Starts from the previous
best sample and goes in
the best randomly-
sampled direction

« The metric does not
need to be
differentiable

 More complicated

Learns from the previous
samples and infers the
best sample

» Better uses the
previous samples

* Needs to design and
train the agent

Models the entire surface
of the search space and
picks the best sample

 Gets rid of the iterative
process

 Hard to model a large
search space

Evolutionary

PIrIs

Reinforcement Learning

VKEnwronment

Rewar
lnterpreter
% &/

Agent

Action

EEEEEE CH LABORATORY '\n | i
r].e OF ELECTRONICS AT MIT micros tcm-. s . logy laboratorio
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(3) Simplify the Performance Evaluation

NAS needs only the rank of the performance values

Method 1: approximate accuracy

Method 2: approximate weights

Method 3: approximate metrics (e.g., latency, energy)

SR AP RESEARCH LABORATORY )
HIT rle s MTLeee



(3) Simplify the Performance Evaluation

* NAS needs only the rank of the performance values

 Method 1: approximate accuracy

Proxy Task Early Termination Accuracy Prediction

E.g., Smaller resolution, Stop training earlier Extrapolate accuracy
Stop
5 S Predict
O Q
(&} (&)
< <
Iteration ] lteration

Ll
i RSN

'S}




(3) Simplify the Performance Evaluation

* NAS needs only the rank of the performance values

 Method 2: approximate weights

Transfer Weights Estimate Weights

Reuse weights from other Infer the weights from the
similar networks previous feature maps

Filter Feat.
n. Map
Pre
Transfer ]
=
New What

- welghts’?

H RESEARCH LABORATORY
I'ii WERIERITN  MIL e e
AT RIT tute of technology



(3) Simplify the Performance Evaluation

* NAS needs only the rank of the performance values

 Method 3: approximate metrics (e.g., latency, energy)

Proxy Metric Look-Up Table

Use an easy-to-compute Use table lookup
metric to approximate target Layer 1 Layer 2
# Channels # Channels :
11213 | 22468 |Layer2| GFilters
—-—) e = ‘ 3 ‘ , Layer 1 | 4 Filters
=Nl 4 = U
W J S -
i 6‘ 3 5 6 atency 7S
6+4=10ms | &
Latency # MACs | R | =

masseachusetts in
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Other Things to Know

 The components may not be chosen individually

— Some optimization algorithms limit the search space

— Using direct hardware metrics may limit the selection of the
optimization algorithms

* Commonly overlooked properties
— The complexity of implementation and usage
— The ease of tuning
— The probability of convergence to a good architecture

LR
" Al ocanchisomaory  MTL @0O

microsystoms technol
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NetAdapt: Platform-Aware DNN Adaptation

* Automatically adapt DNN to a mobile platform to reach a
target latency or energy budget
 An example of coordinate descent NAS

Pretrained Budget

. Platform
Network —— Budget Empirical Measurements
Latency 38 Metric Proposal A Proposal Z Il]_'-ID-
: : Latency 15.6 14.3 =
Energy 10.5 : : : ﬂ
l l Energy 41 46 1
NetAdapt | »| Measure
Network Proposals
E \ A B C D i
Adapted | | | | |
Network Code available at http://netadapt.mit.edu [Yang et al., ECCV 2018]

i In collaboration with Google’s Mobile Vision Team [ s MILeee .
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http://netadapt.mit.edu/

Problem Formulation

rIr\}atxAcc(Net) subject to Res;(Net) < Bud;,j = 1,-,m
e

‘ Break into a set of simpler problems and solve iteratively

max Acc(Net;) subject to Resj(Net;) < Res;j(Net;_1) — AR;

. ] —_— 1 cee m
Net; JrJ b

*Acc: accuracy function, Res: resource evaluation function,
AR: resource reduction, Bud: given budget
« Advantages
« Supports multiple resource budgets at the same time

« Guarantees that the budgets will be satisfied because the
resource consumption decreases monotonically

« Generates a family of networks (from each iteration) with
different resource versus accuracy trade-offs

- . . RESEARCH LABORATORY o0
i Code available at http://netadapt.mit.edu °F MI:E'E::‘::i!:";’!f?.ﬁx..‘-:v;:::t':::.':,';



http://netadapt.mit.edu/

Simplified Example of One Iteration

3. Maximize

1. Input 2. Meet Budget 4. Output
P 9 :  Accuracy P
: Layer 1
r ------------- | e—————— I
I 100ms  90ms : : Acc: 60% !
: 1 | |
! | | |
Network from 1 : : : Network for
Previous lteration : | : : : Next Iteration
I 1 I I
i I : I I
I : L
!_ _____________ : Selected

Latency: 100ms

Acc: 40% Latency: 80ms
Budget: 80ms : :

Budget: 60ms

T . . RESEARCH LABORATORY [ X X ]
i Code available at http://netadapt.mit.edu [0 sessiarier. MTLOOS e



http://netadapt.mit.edu/

Improved Latency vs. Accuracy Tradeoff

* NetAdapt boosts the real inference speed of MobileNet
by up to 1.7x with higher accuracy

59%
57%: - @ b,
55% - pe
53%: 4 o— —A ® NetAdapt (This Work)

o® o
D +0.3% accurac
51% - o A ey Y AMobileNet Family

49% - P & & MorphNet
47% | °

o] &— 4
45% - ® A.0.3% accuracy
43% 4 @ 1.6x faster

Top-1 Accuracy

41% 1 ) ] L} L
3 S 7 9 11 13

Latency (ms)

*Tested on the ImageNet dataset and a Google Pixel 1 CPU
Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018

[Ty [Yang et al., ECCV 2018] ey MIL®ee
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Code of NetAdapt

* Reimplemented framework on PyTorch

* Flexible: can support different networks and tasks

* Scalable: spawn multiple workers to simplify networks in parallel

master

!

worker

Layer 1

100ms  90ms

£

80ms

Selected

]
' v

v

worker

100ms | 80ms

Selected

e Easy-to-use: require implementing only one file (8 functions)

Code available at https://github.com/denru01/netadapt

RESEARCH LABORATORY
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https://github.com/denru01/netadapt

Code of NetAdapt

1. Input 2. Meet Budget

Network from :
Previous lteration Layer i

Latency: 100ms
Budget: 80ms

get_num_simplifiable_blocks()

get_network_def_from_model()

v

=) D)

Layer 1: ( 3, 16) ‘
Layer 2: (16, 32)

Layer 3: (32, 64)

Layer 4: (64, 10) J \

c

3. Maximize
Accuracy

4. Output

Network for Next
Iteration

J
Selected
Acc: .40% »

L RESEARCH LABORATORY
r e OF ELECTRONICS AT MIT
AT T

Latency: 80ms
Budget: 60ms
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Code of NetAdapt

1. Input

Network from
Previous Iteration

Latency: 100ms
Budget: 80ms

get_num_simplifiable_blocks()

2. Meet Budget

Layer i

o e |
1 100ms!
I 1

compute_resource()

get_network_def_from_model()

v

'

(@ D)

simplify_network_def_based_on_
constraint()

Layer 1: ( 3, 16) ‘

v
Layer 2: (16, 32) simplify_model_based_on_network_
Layer 3: (32, 64) B de:”
Layer 4: (64, 10) J \ e
¢
i

3. Maximize | , Output
Accuracy

Network for Next
Iteration

J
Selected
Acc: .40% »

Latency: 80ms
Budget: 60ms

RESEARCH LABORATORY MTI
OF ELECTRONICS AT MIT micro yshm.og .log ratorios
AT MIT ' o




Code of NetAdapt

. 3. Maximize :
1. Input : 2. Meet Budget ; : 4. Output
P g Accuracy P

Network from

|
|
- I
Previous Iteration ____lLayeri |
: oo | I
| 100ms;] I : Network for Next
I 1 1 Iteration
: I | :
I I ;
i I Selected
g I I =
m ! i :
Latency: 100ms : | Acc: 40%
Budget: 80ms I 1
: Latency: 80ms
Budget: 60ms
get_num_simplifiable_blocks()
Ba compute_resource()
get_network_def_from_model() T
S Y 5 simplify_network_def_based_on_ ™ evaluate()

v

‘ constraint()
simplify_model_based_on_network_

Layer 1: ( 3, 16)
Layer 2: (16, 32)

Layer 3: (32, 64) 3 de;f -
Layer 4: (64, 10) J finetune() =
' |

n RESEARCH LABORATORY
II|" OF ELECTRONICS AT MIT Mnr,l;:m.: .,og o
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Code of NetAdapt

2. Meet Budget

1. Input

Network from
Previous Iteration

Latency: 100ms
Budget: 80ms

get_num_simplifiable_blocks()

get_network_def_from_model()

'

(@ D)

Layer 1: ( 3, 16) |

compute_resource()

v

3. Maximize

4. Output
Accuracy P

Network for Next

1
1
1
1
1
1
1
1
1
1 .
I Iteration
1

1

Selected

Acc: .40%

Latency: 80ms
Budget: 60ms

simplify_network_def_based_on_
constraint()

evaluate()

v

Layer 2: (16, 32)
Layer 3: (32, 64) B
Layer 4: (64, 10)

d I

simplify_model_based_on_network_
def()

'

finetune()

Some ready-to-use utilities
have been provided to
facilitate implementation.

neseanchussomsrony  MITL. €0 @

microsystoms technology laboratorios
tn inatitute of

At



153

Hardware In the Loop
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# of Operations vs. Latency

« # of operations (MACs) does not approximate latency well

30
@ .' Similar latency, 3x range in # MACs
& 1 T e 3y
A L P e e SRRt P T ut it E e Ll oS eu TR /
/ .\
= 20 e |. : @ 3
é @' @
> a%l ’
o5 I
- 10 & o0
0%, 0, Similar#MACs,
? ® ~- 2xrangeinlatency
& o
&
0
25 50 75 100 125 150 175

# MACs (Million)

Source: Google (https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)
i st MTLeee ..

AT MAY O massachusotts institute of


https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html

# of Weights vs. Energy

* Number of weights alone is not a good metric for energy

* All data types should be considered

Computation
10% Input Feature Map

25%

. Weights
Energy Consumption 22%

of GooglLeNet

Mir [Yang et al., CVPR 2017] Y smicgmenrn MTLees ..




Other Hardware Metrics

* E.g., noise resilience in analog accelerators

alexnet

vgglo

vggl9
inceptionv4
inceptionresnetv2
resnetl8
resnetl52
resnextl01_32x4d
resnextl01 64x4d
squeezenetl O
squeezenetl 1
densenetl21

0:0 0:1 0:2 0:3 =§= mobilenetv2
Noise Std

ttteed

|
|

$444 44

N
o

Top-5 Accuracy (%)

o

DNN model that gives highest accuracy on a digital processor
may not be the best for an analog processor

i [Yang et al., IEDM 2019] wRichany MTLeee ..
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Data Movement is Expensive

PE | PE

PE

ALU fetch data to run
a MAC here

Normalized Enerqy Cost

ALU

0.5-1.0 k8 [

NoC: 200 - 1000 PEs

PE

ALU

>

ALU

100 - 500 kB [0}

>

ALU

>

ALU

1% (Reference)
1%
2%
6%

{ 200x

* measured from a commercial 65nm process

Energy of weight depends on memory hierarchy and dataflow




Energy Estimation Methodology

%

DNN Shape Configuration
(# of channels, # of filters, etc.)

Hardware Energy Costs of each
MAC and Memory Access
|

# acc. at mem. level 1

Memory # acc. at mem. level 2
Accesses : £
Optimization # acc. at mem. level n data

TRV YOI # of MACs Ecomp S
Calculation

DNN Weights and Input Data Energy T -

- I )
[03,0,-04,0.7,0,0,01,..] L1L2L3 ...

DNN Energy Consumption
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Energy Estimation Tool V1

Website: https://energyestimation.mit.edu/

Eyeriss V1

Deep Neural Network Energy Estimation Tool  [on=ChipSpatiat PEAFray

Overview

This Deep Neural Network Energy Estimation Too! is used for evaluating and designing energy-efficient deep neural
networks that are critical for embedded deep learning processing. Energy estimation was used in the development of
the energy-aware pruning methed (Yang et al,, CVPR 2017), which reduced the energy consumption of AlexNet and
GooglLeNet by 3.7x and 1.6x, respectively, with less than 1% top-5 accuracy loss. This website provides a simplified
version of the energy estimation tool for shorter runtime (around 10 seconds).

Input

To support the variety of toolboxes, this tool takes a single network configuration file. The network configuration file is
a txt file, where each line denotes the configuration of a CONV/FC layer. The format of each line is:

height nChannels nZeroEntries y  bottom right
i [awisories | i l x top lm l Output DNN energy breakdown across layers
2,27,;7,96,44,3.5731&05,16,5,5,48,256,0,15,27,27,256,44,6.5232#06,15.1,!,;,2,;,2 10"

Ll Il || | | | : E k J ;

Layer_index Conf_IfMap Conf_Filt Conf_ Stride  Padding 5 e |

| I Weeight
[ Computation

-
£
T

Layer Index: the index of the layer, from 1 to the number of layers. It should be the same as the line number.

Conf IfMap, Conf Filt, Conf OfMap: the configuration of the input feature maps, the filters and the output feature
maps. The configuration of each of the three data types is in the format of "height width number_of_channels
number_of_maps_or_filts number_of _zero_entries bitwidth_in_bits™.

Stride: the stride of this layer. It is in the format of "stride_y stride_x".
Pad: the amount of input padding. It is in the format of "pad_top pad_bottom pad_left pad_right".

.
~

o

IS

Therefore, there will be 25 entries separated by commas in each line.

Normalized Energy Consumption
w w

Running the Estimation Model

~

After creating your text file, follow these steps to upload your text file and run the estimation model:

1. Check the "l am not a robot” checkbox and complete the Google reCAPTCHA challenge. Help us prevent spam.
2. Click the "Choose File” button below to choose your text file from your computer.
3. Click the "Run Estimation Medel" button below to upload your tex: file and run the estimation model. Layer Index

_ RESEARCH LABORATORY
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https://energyestimation.mit.edu/

Energy Estimation Tool V2 - Accelergy

Input:
hardware architecture
_____________ -
Compound E
component T
description | !
(YAML) i Accelergy Input: the count of
\_/_ ] Energy each operation
i Estimator ! )
Architecture | 1 < Action !
description '!" : counts !
(YAML) |1 i (vAmL) i
|
— . —
e s |
! Energy Energy Lol Energy :
i | estimation estimation | J.. ! | estimations ||
i | plug-in0 plug-in1 |} ! (YAML) !
1 | | \/‘ 1
e o I I
1

Input: energy consumption of

each operation

[Wu et al., ICCAD 2019]

Output: estimated
energy
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Energy Estimation Tool V2 - Accelergy

Integrate 3"9-party tools to generate the
count of each operation

= 4 7 —
DNN Shape Configuration R Timeloop Automatic
(# of channels, # of filters, etc.) Mapping Explorer
_ Best Mapping
Architecture Action Estimated | With Estimated
Description Counts Energy f Energy
R Accelergy Energy

Estimation Framework

Tutorial at MICRO 2019: http://accelergy.mit.edu/tutorial.html
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http://accelergy.mit.edu/tutorial.html

Energy Estimation Tool V2 - Accelergy

Website: https://accelergy.mit.edu/

I nelliewuds / accelergy OwWatchv | 4 | dkestar 3| Yrork 1

<> Code ssues 0 Pull requests 0 Projects 0 Wiki Security Insights

No description, website, or topics provided.

Output DNN energy breakdown
across components

{ 22 commits ¥ 1branch © 1release 48 2 contributors sk MIT

Branch: master v New pull request Create new file  Upload files  Find File h i eranrc hy 3 P E [ e ] . ifma p_s p . 14@ . e

’ nelliewu9ds Delete ERT generator_old.py Latest commit fb37081 2 days ago o
. — hierarchy.PE[@].mac[0]: 70.0
W accelergy Delete generator_old.py
8 examples v0.2 initial milestone hier‘ar‘chy A PE [e] .mac [1] s 70 P e
I share compound class v0.2 parsing % .
=| .gitignore v0.2 initial milestone hler‘ar\Chy . PE [ 1] * lfmap_sp : 18@ . e
&) COPYRIGHT initial commit 3 manths ago hier\ar‘chy 3 PE [1] .mac [e] : 70 3 0
=) READMEmd vD.2 initial milestone

B seuppy hierarchy.PE[1].mac[1]: 70.0
B8 README md hierarchy.weights_glb: 5400.0

Accelergy infrastructure (version 0.2)
An infrastructure for architecture-level energy estimations of accelerator designs. Project website: http://accelergy.mit.edu

Get started

o Infractriictiire tactard An RadHat LinnivAa WIS

- -
i neseanchussomsrony  MITL. €0 @

AT

--------
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Energy-Aware Pruning

* Reduces energy by removing redundant weights

Problem formulation:

rI{,liP Erg(Net) subject to Acc(Net) = Th
e

* Uses estimated energy to guide the layer-by-layer pruning

* Prunes the layer that consume the most energy first

Sort Layers

Based on
Energy

L2 = L1 w3

Energy

T

= S

L1L2L3

Remove
Redundant

PR

Input

microsystems technology laboratorios
massachusetts institute of technology



Energy-Aware Pruning

Directly target energy and Normalized Energy (AlexNet)
incorporate it into the 45 X10°

optimization of DNNsto | *,
provide greater energy savings 35
3

e Sort layers based on energy and 2.5 2.1x 3.7x

prune layers that consume most 2
energy first 1.5
* EAP reduces AlexNet energy by 1
3.7x and outperforms the O'g

previous work that uses Ori. Magnitude  Energy Aware
magnitude-based pruning by 1.7x Based Pruning  Pruning

Pruned models available at
http://eyeriss.mit.edu/energy.html

i [Yang et al., CVPR 2017] Y secsierrey MTLeee
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NetAdapt: Platform-Aware DNN Adaptation

* Automatically adapt DNN to a mobile platform to reach a
target latency or energy budget

Use empirical measurements to guide optimization (avoid
modeling of tool chain or platform architecture)

Pretrained

Budget . Platform
Network —— Budget Empirical Measurements
Latency 38 Metric Proposal A Proposal Z FU:
: : Latency 15.6 14.3 =
Energy 10.5 : : : ﬂ
l l Energy 41 46 1
NetAdapt »| Measure
Network Proposals
E \ A B C D i
Adapted | | | | |
Network

[Yang et al., ECCV 2018]
MiT /n collaboration with Google’s Mobile Vision Team [ sty MIL9ee, ..
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NetAdapt: Using Direct
Metrics is Important

 If NetAdapt was guided by the number of MACs, it would
also achieve a better accuracy-MAC trade-off

 However, it does not mean lower latency

* |tis important to incorporate direct metrics rather than
indirect metrics into the design of DNNs

m Top-1 Accuracy # of MACs (M) Latency (ms)

Small MobileNet V1 45.1 (+0) 13.6 (100%) 4.65 (100%)
NetAdapt 46.3 (+1.2) 11.0 (81%) 6.01 (129%)
Large MobileNet V1 68.8 (+0) 325.4 (100%) 69.3 (100%)
NetAdapt 69.1 (+0.3) 284.3 (87%) 74.9 (108%)

rLe RESEARCH LABORATORY MTLeeo®
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e NetAdapt: Fast Resource
Consumption Estimation

« Taking measurements can be slow due to the long turn-around
time and the limited number of platforms

« Solution: use per-layer lookup tables
« The network latency can be estimated by the sum of the latency of each layer
« The layers with the same configuration only need to be measured once
« The network-wise lookup table grows exponentially with the number of layers

Layer 1 Layer 2

# Channels # Channels ' ) 140
: : - ~ 120 -
4 Filters g 100 - ..0..
1 g 80 - " L
‘ 2 Filt&fs § 60 4 /...00

1 T 40 - /
: o>

e 22 [P

i% 0 20 40 60 80 100 120 140

Estimated Latency (ms)
Fast Resource Consumption Estimation Real Latency vs. Estimated Latency

- RESEARCH LABORATORY
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NetAdapt: Code

e Support building and using lookup tables

build_lookup_table()

\

# channels

get_num_simplifiable_blocks() EE

(7]
get_network_def_from_model() o

+ £
Layer 1: ( 3, 16)
Layer 2: (16, 32 — Lookup table
Layer 3: (32, 64) S
Layer 4: (64, 10) l

a ) \ —> compute_resource()
network_def

Code available at https://github.com/denru01/netadapt

LR ]
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Part 3: Applications (Beyond

Image Classification)
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FastDepth: Fast Monocular Depth Estimation

* Real-time low-power depth sensing is critical for navigation of small robotic
vehicles.

* Depth estimation from a single RGB image desirable, due to the relatively low
cost and size of monocular cameras.

RGB Prediction

«

Our goal is to enable high accuracy, low latency, high throughput
monocular depth estimation on a deployable embedded system.

i [Wofk*, Ma* et al., ICRA 2019] [l saewierssn MIL®®S .




Efficient Network Design for FastDepth

upsample  upsample ‘upsample l upsample @ upsample 1x1
| I AL layer 1 layer2 @ layer3 layer 4 layer 5 conv Dense
————— —r — — — — Depth
Map
J 7x7x1024 14x14x512 28x28x256 56x56x128 112x112x64 Sl TR
X X
LD o, Encoding Layers —» - Decoding Layers >

(HxWxC)

FastDepth achieves high frame rates through

* An efficient and lightweight encoder-decoder network architecture with a
low-latency decoder design incorporating depthwise separable layers and
additive skip connections

* Network pruning (NetAdapt) applied to whole encoder-decoder network

e Platform-specific compilation (TVM) targeting embedded systems

1" [Wofk*, Ma* et al., ICRA 2019] [ sy MILe®S, ...
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FastDepth: Fast Monocular Depth Estimation

Depth estimation at high frame rates on an embedded platform
(an order of magnitude faster than previous approaches) while
still maintaining accuracy

0.80 A '
>
@( 10x >*

é’ 0.75 -
a"- * This VYork
© 0.70 - & Eigen'l4
8 @® Eigen'l5 (AlexNet) ~40fps on
g ® Eigen'l5 (VGG) an iPhone

0.65 - ® Laina'l6 (UpConv)

Laina'l6 (UpProj)
® Xian'ls
0.60 — . . .

0 25 50 75 100 125 150 175
Frames per second (on Jetson TX2 GPU)

Configuration: Batch size of one (32-bit float)

i Models available at http:/ / fastdepth.mit.edu giséfggrﬂg‘:'%?m“ MoTl*?m.c. n. B leborstortes
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Simplify Network by NetAdapt

Before Pruning | After Pruning | Reduction
Weights 3.93M 1.34M 2.9%
MACs 0.74G 0.371G 2.0%
RMSE 0.599 0.604 &
01 0.775 0.771 -
CPL [ms] 66 37 1.8 %
GPU [ms] 8.2 5.6 1.5X%

Number of Input Channels




Results from Xception

DeeperlLab: Single-Shot Image Parser

M wiiems 5t f] s

Joint Semantic and
Instance Segmentation
(high resolution

input image)
One-shot parsing for efficient processing
Semantic Map
- One backbone for |
Fully convolutional, two tasks
one-shot parsing esult
- $ ) Fully-

(bottom-up approach) e Cornoliona

Network

http://deeperlab.mit.edu/ ‘
[Yang et al., arXiv 2019] 7
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DeeperlLab: Efficient Image Parsing

Address memory requirement for large feature map

o Wide MobileNet: Increase kernel size rather than depth

3x3 2> 5x5

SpacetoDepth o Achieves near real-time 6.19
i 1 fps on GPU (V100) with
T 25.2% PQ and 49.8% PC on
Mapillary Vistas dataset

i http://deeperlab.mit.edu/ Y smicgmenrn MTLees ..
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Applications (Beyond DNN

Acceleration)
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Super-Resolution on Mobile Devices

Low High
Resolution Resolution
Streaming Playback

Use super-resolution to improve the viewing experience of
lower-resolution content (reduce communication bandwidth)

u - RESEARCH LABORATORY lw
I I I 1] OF ELECTRONICS AT MIT ML e e
o ~

AT MAY O massachusotts institute of



FAST: A Framework to Accelerate SuperRes

SR
15x faster

Compressed V|do

Real-time

A framework that accelerates any SR algorithm by up to
15x when running on compressed videos

i [Zhang et al., CVPRW 2017] Y sericngienion MTLeee ..
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Free Information in Compressed Videos

_ Pixels Block-structure  Motion-compensation
Compressed video

Video as a stack of pixels Representation in compressed video

This representation can help accelerate super-resolution

. RESEARCH LABORATORY
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Transfer is Lightweight

Low-res video

Low-res video
High-res video High-res video

| Transfer allows SR to run on only a subset of frames |

+ L =

Fractional Bicubic Skip Flag
Interpolation Interpolation

(e

skip

The complexity of the transfer is comparable to bicubic interpolation.
Transfer N frames, accelerate by N

rLe RESEARCH LABORATORY MTLeeo
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Evaluation: Accelerating SRCNN

PartyScehe RaceHorse BasketballPass
Examples of videos in the test set (20 videos for HEVC development)

PSNR with 4x acceleration PSNR with 16x acceleration
GOP =4 GOP =16
315 31.04 31.04 31 30.65
31 305
3053 29 87 30 29 77
205 29.5
29 29
SRCNN SRCNN with Bicubic SRCNN SRCNN with Bicubic
FAST FAST

4 x acceleration with NO PSNR LOSS. 16 x acceleration with 0.2 dB loss of PSNR

. RESEARCH LABORATORY
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Visual Evaluation

SRCNN FAST + Bicubic
SRCNN

Look beyond the DNN accelerator for opportunities to accelerate
DNN processing (e.g., structure of data and temporal correlation)

Code released at www.rle.mit.edu/eems/fast

Mir [Zhang et al., CVPRW 2017] Al wicamosron MITL 00O
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http://www.rle.mit.edu/eems/fast

Summary

DNNs are a critical component in the Al revolution, delivering
record breaking accuracy on many important Al tasks for a
wide range of applications; however, it comes at the cost of
high computational complexity

Efficient processing of DNNs is an important area of research
with many promising opportunities for innovation at various
levels of hardware design, including algorithm co-design

When considering different DNN solutions it is important to
evaluate with the appropriate workload in term of both input
and model, and recognize that they are evolving rapidly.

It’s important to consider a comprehensive set of metrics
when evaluating different DNN solutions: accuracy, speed,
energy, and cost
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Additional Resources

Overview Paper

V. Sze, Y-H. Chen, T-J. Yang, J. Emer, “Efficient

Processing of Deep Neural Networks: A Tutorial

and Survey,” Proceedings of the IEEE, Dec. 2017
Book Coming Soon!

Proceedings IEEE

More info about Tutorial on DNN Architectures
http://eyeriss.mit.edu/tutorial.html

MIT Professional Education Course on
“Designing Efficient Deep Learning Systems”
http://professional-education.mit.edu/deeplearning

L] dT] 1o E1 I3 N Follow @eems_mit

http://mailman.mit.edu/mailman/listinfo/eems-news
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I"lii [ scsmvey MILeee .

nnnnnnnn



http://mailman.mit.edu/mailman/listinfo/eems-news
http://professional-education.mit.edu/deeplearning
http://eyeriss.mit.edu/tutorial.html

References

e Overview on DNN and Popular DNN Models

loffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by
reducing internal covariate shift," ICML 2015.

LeNet: LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proc. IEEE 1998.

AlexNet: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep
convolutional neural networks." NIPS. 2012.

VGGNet: Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale
image recognition." ICLR 2015.

GoogleNet: Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE
conference on computer vision and pattern recognition. CVPR 2015.

ResNet: He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE
conference on computer vision and pattern recognition. CVPR 2016.

DenseNet: Huang, Gao, et al. "Densely connected convolutional networks." CVPR 2017
Wide ResNet: Zagoruyko, Sergey, and Nikos Komodakis. "Wide residual networks." BMVC 2017.

ResNext: Xie, Saining, et al. "Aggregated residual transformations for deep neural networks.” CVPR
2017.

'S}

RESEARCH LABORATORY M o0
OF ELECTRONICS AT MIT mk:ro-'y-'lt:ml technology laboratorios



References

* Part 1: Energy-Efficient Hardware for Deep Neural Networks

Project website: http://eyeriss.mit.edu

Y.-H. Chen, T. Krishna, J. Emer, V. Sze, “Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep
Convolutional Neural Networks,” IEEE Journal of Solid State Circuits (JSSC), ISSCC Special Issue, Vol. 52,
No. 1, pp. 127-138, January 2017.

Y.-H. Chen, J. Emer, V. Sze, “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for
Convolutional Neural Networks,” International Symposium on Computer Architecture (ISCA), pp. 367-
379, June 2016.

Y.-H. Chen, T.-J. Yang, J. Emer, V. Sze, “Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural
Networks on Mobile Devices,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems
(JETCAS), June 2019.

Eyexam: https://arxiv.org/abs/1807.07928

Limitations of Existing Efficient DNN Approaches

Y.-H. Chen*, T.-J. Yang?*, J. Emer, V. Sze, “Understanding the Limitations of Existing Energy-Efficient
Design Approaches for Deep Neural Networks,” SysML Conference, February 2018.

V. Sze, Y.-H. Chen, T.-J. Yang, J. Emer, “Efficient Processing of Deep Neural Networks: A Tutorial and
Survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, December 2017.

Hardware Architecture for Deep Neural Networks: http://eyeriss.mit.edu/tutorial.html

'S}

RESEARCH LABORATORY M o0
OF ELECTRONICS AT MIT mh:ro-'y-'%ml fwotwiology leboratoiiee
T massachusetta institute of technology


http://eyeriss.mit.edu/
https://arxiv.org/abs/1807.07928
http://eyeriss.mit.edu/tutorial.html

References

* Transforms for processing on GPU and CPUs

Lavin, Andrew, and Gray, Scott, "Fast Algorithms for Convolutional Neural Networks," arXiv preprint
arXiv:1509.09308 (2015)

Mathieu, Michael, Mikael Henaff, and Yann LeCun. "Fast training of convolutional networks through
FFTs." arXiv preprint arXiv:1312.5851 (2013).

Cong, Jason, and Bingjun Xiao. "Minimizing computation in convolutional neural networks."
International Conference on Artificial Neural Networks. Springer International Publishing, 2014.

* Part 2: Co-Design of Algorithms and Hardware for Deep Neural Networks

T.-J. Yang, Y.-H. Chen, V. Sze, “Designing Energy-Efficient Convolutional Neural Networks using Energy-
Aware Pruning,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Energy estimation tool: http://eyeriss.mit.edu/energy.html

T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, V. Sze, H. Adam, “NetAdapt: Platform-Aware Neural
Network Adaptation for Mobile Applications,” European Conference on Computer Vision (ECCV), 2018.
http://netadapt.mit.edu

T.-J. Yang, V. Sze, “Design Considerations for Efficient Deep Neural Networks on Processing-in-Memory
Accelerators,” IEEE International Electron Devices Meeting (IEDM), Invited Paper, December 20189.

Y.N. Wu, J. S. Emer, V. Sze, “Accelergy: An Architecture-Level Energy Estimation Methodology for
Accelerator Designs,” International Conference on Computer Aided Design (ICCAD), November 2019.
http://accelergy.mit.edu

T.-J. Yang, Y.-H. Chen, J. Emer, V. Sze, “A Method to Estimate the Energy Consumption of Deep Neural
Networks,” Asilomar Conference on Signals, Systems and Computers, Invited Paper, October 2017.

'S}

RESEARCH LABORATORY o0
OF ELECTRONICS AT MIT Me-'y-.lt:ml technology laboratorion


http://eyeriss.mit.edu/energy.html
http://netadapt.mit.edu/
http://accelergy.mit.edu/

References

 Reduced Precision

Courbariaux, Matthieu, and Yoshua Bengio. "Binarynet: Training deep neural networks with weights
and activations constrained to+ 1 or-1." arXiv preprint arXiv:1602.02830 (2016).

Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David. "Binaryconnect: Training deep neural
networks with binary weights during propagations,"” NeurlPS, 2015

Rastegari, Mohammad, et al. "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural
Networks,” ECCV, 2016

Judd, Patrick, Jorge Albericio, and Andreas Moshovos. "Stripes: Bit-serial deep neural network
computing." IEEE Computer Architecture Letters (2016).

Lee, Edward H., et al. "LogNet: Energy-efficient neural networks using logarithmic computation." 2017
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017.

Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep neural network with
pruning, trained quantization and huffman coding," ICLR, 2016.

'S}

RESEARCH LABORATORY o0
OF ELECTRONICS AT MIT Me-'y-.lt:ml technology laboratorion



References

* Exploit Sparsity

LeCun, Yann, et al. "Optimal brain damage," NIPS, 1989.
Han, Song, et al. "Learning both weights and connections for efficient neural network,” NeurlPS, 2015.

T.-J. Yang, Y.-H. Chen, V. Sze, “Designing Energy-Efficient Convolutional Neural Networks using Energy-
Aware Pruning,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Parashar, Angshuman, et al. "SCNN: An Accelerator for Compressed-sparse Convolutional Neural
Networks." ISCA, 2017

Han, Song, et al. "EIE: efficient inference engine on compressed deep neural network," ISCA, 2016.

Y.-H. Chen, T.-J. Yang, J. Emer, V. Sze, “Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural
Networks on Mobile Devices,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems
(JETCAS), June 2019.

 Manual Network Design

Network in Network: Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." ICLR 2014

MobileNet: Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile
vision applications." arXiv preprint arXiv:1704.04861 (2017).

ShuffleNet: Zhang, Xiangyu, et al. "ShuffleNet: An Extremely Efficient Convolutional Neural Network for
Mobile Devices." arXiv preprint arXiv:1707.01083 (2017).

Yu, Fisher, et al. "Deep layer aggregation." Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2018.

'S}

RESEARCH LABORATORY M o0
OF ELECTRONICS AT MIT mk:ro-'y-'lt:ml technology laboratorios



Reference

Neural Architecture Search

— Learning Network Architecture: Zoph, Barret, et al. "Learning Transferable Architectures

for Scalable Image Recognition." arXiv preprint arXiv:1707.07012 (2017).

— T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, V. Sze, H. Adam, “NetAdapt: Platform-

Aware Neural Network Adaptation for Mobile Applications,” European Conference on
Computer Vision (ECCV), 2018. http://netadapt.mit.edu

 Hardware In the Loop

T.-J. Yang, Y.-H. Chen, V. Sze, “Designing Energy-Efficient Convolutional Neural Networks using Energy-
Aware Pruning,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Energy estimation tool: http://eyeriss.mit.edu/energy.html

T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, V. Sze, H. Adam, “NetAdapt: Platform-Aware Neural
Network Adaptation for Mobile Applications,” European Conference on Computer Vision (ECCV), 2018.
http://netadapt.mit.edu

T.-J. Yang, V. Sze, “Design Considerations for Efficient Deep Neural Networks on Processing-in-Memory
Accelerators,” IEEE International Electron Devices Meeting (IEDM), Invited Paper, December 20189.

Y.N. Wu, J. S. Emer, V. Sze, “Accelergy: An Architecture-Level Energy Estimation Methodology for
Accelerator Designs,” International Conference on Computer Aided Design (ICCAD), November 2019.
http://accelergy.mit.edu

T.-J. Yang, Y.-H. Chen, J. Emer, V. Sze, “A Method to Estimate the Energy Consumption of Deep Neural
Networks,” Asilomar Conference on Signals, Systems and Computers, Invited Paper, October 2017.

'S}

RESEARCH LABORATORY M o0
OF ELECTRONICS AT MIT mh:ro-'y-'%ml fwotwiology leboratoiiee
T massachusetta institute of technology


http://netadapt.mit.edu/
http://eyeriss.mit.edu/energy.html
http://netadapt.mit.edu/
http://accelergy.mit.edu/

References

* Part 3: Applications Beyond Image Classification

— D. Wofk*, F. Ma*, T.-J. Yang, S. Karaman, V. Sze, “FastDepth: Fast Monocular Depth Estimation on

Embedded Systems,” IEEE International Conference on Robotics and Automation (ICRA), May 2019.
http://fastdepth.mit.edu/

— T.-J. Yang, M. D. Collins, Y. Zhu, J.-J. Hwang, T. Liu, X. Zhang, V. Sze, G. Papandreou, L.-C. Chen,
“DeeperLab: Single-Shot Image Parser,” arXiv, February 2019. http://deeperlab.mit.edu

— Z.Zhang, V. Sze, “FAST: A Framework to Accelerate Super-Resolution Processing on Compressed

Videos,” CVPR Workshop on New Trends in Image Restoration and Enhancement, July 2017.
www.rle.mit.edu/eems/fast

Ll
T sty MTLeee

'S}

microsystems technology laboratorios
massachusetts institute


http://fastdepth.mit.edu/
http://deeperlab.mit.edu/
http://www.rle.mit.edu/eems/fast

