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• Brief overview of Deep Neural Networks (DNN)

• Part 1: Hardware Platforms for DNNs (e.g., CPU, GPU,
FPGA, ASIC) and metrics for evaluating the efficiency of
DNNs

• Part 2: Co-design algorithms and hardware for efficient
DNNs (e.g., precision, sparsity, network architecture design,
network architecture search, designing networks with
hardware in the loop)

• Part 3: Application of efficient DNNs on a wide range of
image processing and computer vision tasks (e.g., image
classification, depth estimation, image segmentation,
super-resolution)

Outline of Tutorial3



Additional Resources

More info about Tutorial on DNN Architectures 
http://eyeriss.mit.edu/tutorial.html

For updates
http://mailman.mit.edu/mailman/listinfo/eems-news

Overview Paper
V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, “Efficient 
Processing of Deep Neural Networks: A Tutorial 
and Survey,” Proceedings of the IEEE, Dec. 2017

Book Coming Soon!

MIT Professional Education Course on 
“Designing Efficient Deep Learning Systems” 
http://professional-education.mit.edu/deeplearning
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Example Applications of Deep Learning
Computer Vision Speech Recognition

Game Play Medical
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Compute Demands for Deep Learning 6



Processing at “Edge” instead of the “Cloud”
Privacy

Latency

Actuator
Image source: ericsson.com

Sensor

Cloud

Communication

Image source: 
www.theregister.co.uk
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Deep Learning for Self-Driving Cars

(Feb 2018)

Cameras and radar generate ~6 
gigabytes of data every 30 seconds. 

Prototypes use around 2,500 Watts. 
Generates wasted heat and some 
prototypes need water-cooling!
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Existing Processors Consume Too Much Power

< 1 Watt > 10 Watts
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Overview of Deep Neural 
Networks
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Deep Convolutional Neural Networks

Modern Deep CNN: 5 – 1000 Layers

ClassesFC
Layer

CONV
Layer

Low-Level 
Features CONV

Layer

High-Level 
Features…

1 – 3 Layers
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Deep Convolutional Neural Networks

ClassesFC
Layer

CONV
Layer

Low-Level 
Features CONV

Layer

High-Level 
Features…

Convolution Activation

×
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Deep Convolutional Neural Networks

ClassesFC
Layer

CONV
Layer

Low-Level 
Features CONV

Layer

High-Level 
Features…

Fully
Connected

Activation

×
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Deep Convolutional Neural Networks

ClassesFC
Layer

CONV
Layer

CONV
Layer

High-Level 
Features

Optional layers in between 
CONV and/or FC layers

NORM 
Layer

POOL 
Layer

Normalization Pooling
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Deep Convolutional Neural Networks

Classes
High-Level 
Features FC

Layer
CONV
Layer

CONV
Layer

NORM 
Layer

POOL 
Layer

Convolutions account for more
than 90% of overall computation,
dominating runtime and energy
consumption
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Convolution (CONV) Layer

R

S

H

a plane of input activations
a.k.a. input feature map (fmap)

filter (weights)

W
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R

filter (weights)

Convolution (CONV) Layer

input fmap

S

Element-wise
Multiplication

H

W
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R

filter (weights)

S

Convolution (CONV) Layer

E

F
Partial Sum (psum)

Accumulation

input fmap output fmap

Element-wise
Multiplication

H

W

an output 
activation
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H
R

filter (weights)

S

Convolution (CONV) Layer

E

Sliding Window Processing

input fmap
an output 
activation

output fmap

W F
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H

Convolution (CONV) Layer
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S

… …

…
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input fmap

output fmap

…
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Many Input Channels (C)

E

W F

20



Convolution (CONV) Layer
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Convolution (CONV) Layer
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• N – Number of input fmaps/output fmaps (batch size)

• C – Number of 2-D input fmaps /filters (channels)

• H – Height of input fmap (activations) 

• W – Width of input fmap (activations)

• R – Height of 2-D filter (weights)

• S – Width of 2-D filter (weights)

• M – Number of 2-D output fmaps (channels)

• E – Height of output fmap (activations)

• F – Width of output fmap (activations)

CNN Decoder Ring23



Traditional Activation Functions

Image Source: Caffe Tutorial

Sigmoid
1

-1

0

0 1-1

y=1/(1+e-x)

Hyperbolic Tangent
1

-1

0

0 1-1

y=(ex-e-x)/(ex+e-x)
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Modern Activation Functions

Rectified Linear Unit
(ReLU)

1

-1

0

0 1-1

y=max(0,x)

Leaky ReLU

1

-1

0

0 1-1

y=max(αx,x)

Exponential LU

1

-1

0

0 1-1
x,      
α(ex-1),

x≥0
x<0y=

α = small const. (e.g. 0.1)

Image Source: Caffe Tutorial
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input fmaps
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Fully-Connected (FC) Layer

• Height and width of output fmaps are 1 (E = F = 1)
• Filters as large as input fmaps (R = H, S = W)
• Implementation: Matrix Multiplication

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=
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Pooling (POOL) Layer

Image Source: Caffe Tutorial

• Reduce resolution of each channel independently
• Overlapping or non-overlapping à depending on stride

Increases translation-invariance and noise-resilience 

28



• Batch Normalization (BN)
– Normalize activations towards mean=0 and std. dev.=1 based on the
statistics of the training dataset

– put in between CONV/FC and Activation function

Normalization (NORM) Layer

[Ioffe et al., ICML 2015]

CONV
Layer

Convolution Activation

×
BN

Believed to be key to getting high accuracy and 
faster training on very deep neural networks.

29



• The normalized value is further scaled and shifted, the
parameters of which are learned from training

BN Layer Implementation

data mean

data std. dev.

learned scale factor

learned shift factor
small const. to avoid
numerical problems

30



• Typical operations that we will discuss:
– Convolution (CONV)
– Fully-Connected (FC)
– Max Pooling
– ReLU

Relevant Components for this Tutorial31



Popular DNN Models

32



• LeNet (1998)

• AlexNet (2012)
• OverFeat (2013)
• VGGNet (2014)
• GoogleNet (2014)
• ResNet (2015)

Popular DNNs
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[O. Russakovsky et al., IJCV 2015]
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ImageNet: Large Scale Visual 
Recognition Challenge (ILSVRC)
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ImageNet

http://www.image-net.org/challenges/LSVRC/

Image Classification
~256x256 pixels (color)
1000 Classes
1.3M Training
100,000 Testing (50,000 Validation)

Image Source: http://karpathy.github.io/

For ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC)

accuracy of classification task reported based 
on top-1 and top-5 error

34
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AlexNet
CONV Layers: 5
Fully Connected Layers: 3
Weights: 61M
MACs: 724M
ReLU used for non-linearity [Krizhevsky et al., NeurIPS 2012]

ILSCVR12 Winner

Uses Local Response Normalization (LRN)
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Large Sizes with Varying Shapes

Layer Filter Size (RxS) # Filters (M) # Channels (C) Stride
1 11x11 96 3 4
2 5x5 256 48 1
3 3x3 384 256 1
4 3x3 384 192 1
5 3x3 256 192 1

AlexNet Convolutional Layer Configurations

34k Params 307k Params 885k Params

Layer 1 Layer 2 Layer 3

105M MACs 224M MACs 150M MACs

[Krizhevsky et al., NeurIPS 2012]
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VGG-16
CONV Layers: 13
Fully Connected Layers: 3
Weights: 138M
MACs: 15.5G

[Simonyan et al., arXiv 2014, ICLR 2015]

Image Source: http://www.cs.toronto.edu/~frossard/post/vgg16/

Also, 19 layer version

More Layers à Deeper!

Reduce # of weights

37
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GoogLeNet/Inception (v1)
CONV Layers: 21 (depth), 57 (total)
Fully Connected Layers: 1
Weights: 7.0M
MACs: 1.43G

[Szegedy et al., arXiv 2014, CVPR 2015]

Also, v2, v3 and v4
ILSVRC14 Winner

9 Inception Layers

3 CONV layers 1 FC layer
(reduced from 3)Auxiliary Classifiers

(helps with training, 
not used during inference)

38



GoogLeNet/Inception (v1)
Also, v2, v3 and v4
ILSVRC14 Winner

parallel filters of different size have the effect of 
processing image at different scales

1x1 ‘bottleneck’ to 
reduce number of 
weights and 
multiplications

Inception 
Module

CONV Layers: 21 (depth), 57 (total)
Fully Connected Layers: 1
Weights: 7.0M
MACs: 1.43G

[Szegedy et al., arXiv 2014, CVPR 2015]
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ResNet

Image Source: http://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

Go Deeper!              

ILSVRC15 Winner
(better than human level accuracy!)

40
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ResNet-50
CONV Layers: 49
Fully Connected Layers: 1
Weights: 25.5M
MACs: 3.9G

[He et al., arXiv 2015, CVPR 2016]

Also, 34,152 and 1202 layer versions
ILSVRC15 Winner

Short Cut Module

Helps address the vanishing gradient 
challenge for training very deep networks

1 CONV layer

1 FC layer

16 Short 
Cut Layers

ResNet-34

3x3 CONV 

ReLU 

ReLU 

3x3 CONV 

+ 

x	

F(x)	

H(x)	=	F(x)	+	x	

Iden%ty	
x	

Learns 
Residual

F(x)=H(x)-x

Skip 
connection
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Metrics LeNet-5 AlexNet VGG-16 GoogLeNet
(v1)

ResNet-50

Top-5 error n/a 16.4 7.4 6.7 5.3

Input Size 28x28 227x227 224x224 224x224 224x224
# of CONV Layers 2 5 16 21 (depth) 49
Filter Sizes 5 3, 5,11 3 1, 3 , 5, 7 1, 3, 7
# of Channels 1, 6 3 - 256 3 - 512 3 - 1024 3 - 2048
# of Filters 6, 16 96 - 384 64 - 512 64 - 384 64 - 2048
Stride 1 1, 4 1 1, 2 1, 2
# of Weights 2.6k 2.3M 14.7M 6.0M 23.5M
# of MACs 283k 666M 15.3G 1.43G 3.86G
# of FC layers 2 3 3 1 1
# of Weights 58k 58.6M 124M 1M 2M
# of MACs 58k 58.6M 124M 1M 2M
Total Weights 60k 61M 138M 7M 25.5M
Total MACs 341k 724M 15.5G 1.43G 3.9G

Summary of Popular CNNs

CONV Layers increasingly important!
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• AlexNet
– First CNN Winner of ILSVRC

– Uses LRN (deprecated after this)

• VGG-16
– Goes Deeper (16+ layers)

– Uses only 3x3 filters (stack for larger filters)

• GoogLeNet (v1)
– Reduces weights with Inception and only one FC layer

– Inception: 1x1 and DAG (parallel connections)

– Batch Normalization

• ResNet
– Goes Deeper (24+ layers)

– Shortcut connections

Summary of Popular CNNs43



Beyond ResNet

[Huang et al., CVPR 2017]

DenseNet Wide ResNet

[Zagoruyko et al., BMVC 2016]

Image Source: 
Stanford cs231n

ResNet ResNeXtResNeXt

[Xie et al., CVPR 2017]

Increase accuracy 
without going deeper!
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Part 1: Hardware Platforms for 
DNN Processing

45



GPUs and CPUs Targeting Deep Learning

Intel Xeon Scalable CPU (2019) Nvidia’s V100 GPU (2018)

Use matrix multiplication libraries on CPUs and GPUs
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Matrix Multiplication Libraries

• Implementation: Matrix Multiplication (GEMM)

• CPU: OpenBLAS, Intel MKL, etc
• GPU: cuBLAS, cuDNN, etc

• Library will note shape of the matrix multiply and 
select implementation optimized for that shape. 

• Optimization usually involves proper tiling to 
storage hierarchy
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Map DNN to a Matrix Multiplication 

1 2 3
4 5 6
7 8 9

1 2
3 4

Filter Input Fmap Output Fmap 

* = 1 2
3 4

1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × = 

Toeplitz Matrix 
(w/ redundant data) 

Convolution: 

Matrix Mult: 

Data is repeated 
Goal: Reduced number of operations to increase throughput
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Analogy: Gauss’s Multiplication Algorithm

4 multiplications + 3 additions

3 multiplications + 5 additions

Reduce number of multiplications, 
but increase number of additions

49



• Fast Fourier Transform [Mathieu, ICLR 2014]

– Pro: Direct convolution O(No
2Nf

2) to O(No
2log2No)

– Con: Increase storage requirements

• Strassen [Cong, ICANN 2014]

– Pro: O(N3) to (N2.807)

– Con: Numerical stability

• Winograd [Lavin, CVPR 2016]

– Pro: 2.25x speed up for 3x3 filter

– Con: Specialized processing depending on filter size

Reduce Operations in Matrix Multiplication50



Specialized Hardware 
(Accelerators)

51



Properties We Can Leverage
• Operations exhibit high parallelism

à high throughput possible

• Memory Access is the Bottleneck

52



Properties We Can Leverage
• Operations exhibit high parallelism

à high throughput possible

• Memory Access is the Bottleneck

ALU

Memory Read Memory WriteMAC*

filter weight
image pixel
partial sum updated 

partial sum
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Properties We Can Leverage
• Operations exhibit high parallelism

à high throughput possible

• Memory Access is the Bottleneck

ALU

Memory Read Memory WriteMAC*

filter weight
image pixel
partial sum updated 

partial sum
DRAM DRAM

• Example: AlexNet [NeurIPS 2012] has 724M MACs 
à 2896M DRAM accesses required

Worst Case: all memory R/W are DRAM accesses

200x 1x
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Properties We Can Leverage
• Operations exhibit high parallelism

à high throughput possible

• Input data reuse opportunities (up to 500x)
à exploit low-cost memory

Convolutional
Reuse 

(pixels, weights)

Filter Image

…

…

…

…

… ……
…

…

Image
Reuse
(pixels)

… 

… 

… 

…

… … … 

… 

… 

… 

… 

2

1

Filters

Image

Filter
Reuse

(weights)

…

…

…
… … … 

… 

… … … 

…
Filter

Images

2

1
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Highly-Parallel Compute Paradigms

Temporal Architecture
(SIMD/SIMT)

Register File

Memory Hierarchy

Spatial Architecture
(Dataflow Processing)

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Control

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU
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Advantages of Spatial Architecture

Temporal Architecture
(SIMD/SIMT)

Register File

Memory Hierarchy

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Control

Spatial Architecture
(Dataflow Processing)

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

Efficient Data Reuse
Distributed local storage (RF)

Inter-PE Communication
Sharing among regions of PEs

Processing
Element (PE)

Control

Reg File0.5 – 1.0 kB
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How to Map the Dataflow?

Spatial Architecture
(Dataflow Processing)
Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

CNN Convolution

?
pixels

weights

partial
sums

Goal: Increase reuse of input data 
(weights and pixels) and local 

partial sums accumulation
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Energy-Efficient Dataflow

Y.-H. Chen, J. Emer, V. Sze, “Eyeriss: A Spatial Architecture for Energy-
Efficient Dataflow for Convolutional Neural Networks,” ISCA 2016
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Data Movement is Expensive

Maximize data reuse at low cost levels of hierarchy

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 
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Weight Stationary (WS)

• Minimize weight read energy consumption
− maximize convolutional and filter reuse of weights

• Examples:
[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014]
[Park, ISSCC 2015] [Origami, GLSVLSI 2015]

Global Buffer

W0 W1 W2 W3 W4 W5 W6 W7

Psum Pixel

PE
Weight
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• Minimize partial sum R/W energy consumption
− maximize local accumulation

• Examples:

Output Stationary (OS)

[Gupta, ICML 2015] [ShiDianNao, ISCA 2015]
[Peemen, ICCD 2013]

Global Buffer

P0 P1 P2 P3 P4 P5 P6 P7

Pixel Weight

PE
Psum
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Row Stationary Dataflow

• Maximize row 
convolutional reuse in RF
− Keep a filter row and fmap

sliding window in RF

• Maximize row psum
accumulation in RF

PE 1
Row 1 Row 1

Row 1

=*

*
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Row Stationary Dataflow

Optimize for overall energy efficiency instead 
for only a certain data type

PE 1
Row 1 Row 1

PE 2
Row 2 Row 2

PE 3
Row 3 Row 3

Row 1

=*

PE 4
Row 1 Row 2

PE 5
Row 2 Row 3

PE 6
Row 3 Row 4

Row 2

=*

PE 7
Row 1 Row 3

PE 8
Row 2 Row 4

PE 9
Row 3 Row 5

Row 3

=*

* * *

* * *

* * *
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• Weight Stationary
– Minimize movement of filter weights

• Output Stationary
– Minimize movement of partial sums

• No Local Reuse
– Don’t use any local PE storage. Maximize global buffer size.

• Row Stationary

Evaluate Reuse in Different Dataflows

Evaluation Setup
• Same Total Area
• AlexNet
• 256 PEs
• Batch size = 16

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×
6×

PE ALU 2×
1×
1× (Reference)

DRAM ALU

65



Dataflow Comparison: CONV Layers

RS uses 1.4× – 2.5× lower energy than other dataflows

Normalized
Energy/MAC

ALU
RF

NoC
buffer
DRAM

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS
CNN Dataflows

[Chen et al., ISCA 2016]
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Dataflow Comparison: CONV Layers

0

0.5

1

1.5

2

Normalized
Energy/MAC

WS OSA OSB OSC NLR RS

psums

weights
pixels

RS optimizes for the best overall energy efficiency

CNN Dataflows

[Chen et al., ISCA 2016]
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Exploit Sparsity

[Chen et al., ISSCC 2016]

== 0 Zero 
Buff 

  
  Scratch Pad   

Enable 

Zero Data Skipping 

Register File
No R/W No Switching

Method 1. Skip memory access and computation

Method 2. Compress data to reduce storage and data movement
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45% power reduction
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Eyeriss: Deep Neural Network Accelerator

On
-c

hip
 B

uff
er

Spatial 
PE Array

4mm

4m
m

[Chen et al., ISSCC 2016, ISCA 2016] 

[Joint work with Joel Emer]

Results for AlexNet

Overall >10x energy reduction compared to a mobile GPU (Nvidia TK1)

[Chen et al., ISSCC 2016, ISCA 2016] 

Exploits data reuse for 100x reduction in memory accesses from global 
buffer and 1400x reduction in memory accesses from off-chip DRAM
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Features: Energy vs. Accuracy 

0.1

1
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0 20 40 60 80
Accuracy (Average Precision)

Energy/
Pixel (nJ)

VGG162

AlexNet2

HOG1

Measured in on VOC 2007 Dataset
1. DPM v5 [Girshick, 2012]
2. Fast R-CNN [Girshick, CVPR 2015] 

Exponential

Linear

Video 
Compression

[Suleiman et al., ISCAS 2017]

Measured in 65nm*

* Only feature extraction. Does 
not include data, classification 

energy, augmentation and 
ensemble, etc.
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[Suleiman, VLSI 2016] [Chen, ISSCC 2016]1 2
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Benchmarking Metrics for 
DNN Hardware

How can we compare designs?

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, 
“Efficient Processing of Deep Neural Networks:  A Tutorial and Survey,” 

Proceedings of the IEEE, Dec. 2017
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• Accuracy
– Quality of result for a given task

• Throughput
– Analytics on high volume data
– Real-time performance (e.g., video at 30 fps)

• Latency
– For interactive applications (e.g., autonomous navigation)

• Energy and Power
– Edge and embedded devices have limited battery capacity
– Data centers have stringent power ceilings due to cooling costs

• Hardware Cost 
– $$$

Metrics for DNN Hardware72



• Accuracy
– Difficulty of dataset and/or task should be considered

• Throughput
– Number of cores (include utilization along with peak performance)
– Runtime for running specific DNN models

• Latency
– Include batch size used in evaluation

• Energy and Power
– Power consumption for running specific DNN models
– Include external memory access

• Hardware Cost 
– On-chip storage, number of cores, chip area + process technology

Specifications to Evaluate Metrics73



Example: Metrics of Eyeriss Chip

Metric Units Input
Name of CNN Model Text AlexNet

Top-5 error classification on 
ImageNet

# 19.8

Supported Layers All CONV

Bits per weight # 16

Bits per input activation # 16

Batch Size # 4

Runtime ms 115.3

Power mW 278

Off-chip Access per Image 
Inference

MBytes 3.85

Number of Images Tested # 100

ASIC Specs Input
Process Technology 65nm LP TSMC 

(1.0V)

Total Core Area (mm2) 12.25

Total On-Chip Memory 
(kB)

192

Number of Multipliers 168

Clock Frequency (MHz) 200

Core area (mm2) 
/multiplier

0.073

On-Chip memory (kB) / 
multiplier

1.14

Measured or Simulated Measured
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• All metrics should be reported for fair evaluation of design 
tradeoffs

• Examples of what can happen if certain metric is omitted:
– Without the accuracy given for a specific dataset and task, 

one could run a simple DNN and claim low power, high 
throughput, and low cost – however, the processor might 
not be usable for a meaningful task

– Without reporting the off-chip bandwidth, one could build 
a processor with only multipliers and claim low cost, high 
throughput, high accuracy, and low chip power – however, 
when evaluating system power, the off-chip memory access 
would be substantial

• Are results measured or simulated? On what test data?

Comprehensive Coverage75



The evaluation process for whether a DNN system is a viable 
solution for a given application might go as follows: 

1. Accuracy determines if it can perform the given task 

2. Latency and throughput determine if it can run fast enough 
and in real-time

3. Energy and power consumption will primarily dictate the 
form factor of the device where the processing can operate 

4. Cost, which is primarily dictated by the chip area, 
determines how much one would pay for this solution

Evaluation Process76



Part 2: Co-Design of Algorithms 
and Hardware for DNNs
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• Reduce size of operands for storage/compute
– Floating point à Fixed point
– Bit-width reduction
– Non-linear quantization

• Reduce number of operations for storage/compute
– Exploit Activation Statistics (Compression)
– Network Pruning
– Compact Network Architectures

Approaches78



Reduced Precision
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Cost Per Operation

Operation: Energy 
(pJ)

8b Add 0.03

16b Add 0.05

32b Add 0.1

16b FP Add 0.4

32b FP Add 0.9

8b Mult 0.2

32b Mult 3.1

16b FP Mult 1.1

32b FP Mult 3.7

32b SRAM Read (8KB) 5

32b DRAM Read 640

Area 
(µm2)

36

67

137

1360

4184

282

3495

1640

7700

N/A

N/A

[Horowitz, ISSCC 2014] 

Relative Energy Cost

1 10 102 103 104

Relative Area Cost

1 10 102 103
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Floating Point à Fixed Point

1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 032-bit float

exponent (8-bits) mantissa (23-bits)sign

8-bit 
fixed

0 1 1 0 0 1 1 0

sign

integer 
(4-bits)

mantissa (7-bits)

fractional
(3-bits)

e = 70s = 1 m = 20482-1.42122425 x 10-13

s = 0

12.75

m=102

Floating Point

Fixed Point

Mantissa (m): number of levels
Exponent (e): scale to a target range

Sign (s): indicates if number is positive or negative
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Commercial Products Support Reduced Precision

Nvidia’s Pascal (2016) Google’s TPU (2016)

8-bit Inference & bfloat16 for Training

Intel’s NNP-L (2019)
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Microsoft BrainWave

[Chung et al., Hot Chips 2017]

Narrow Precision for Inference

Custom 8-bit floating point format (“ms-fp8”)
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Reduced Precision Hardware

Stripes
[Judd et al., MICRO 2016]

Bit-serial processing for speed

KU Leuven

[Moons et al., VLSI 2016]

Voltage scaling for energy savings
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• Binary Connect (BC)
– Weights {-1,1}, Activations 32-bit float
– MAC à addition/subtraction
– Accuracy loss: 19% on AlexNet

• Binarized Neural Networks (BNN)
– Weights {-1,1}, Activations {-1,1}
– MAC à XNOR
– Accuracy loss: 29.8% on AlexNet

Binary Nets

Binary Filters

[Courbariaux, arXiv 2016]

[Courbariaux, NeurIPS 2015]
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Scale the Weights and Activations 

[Rastegari et al., BWN & XNOR-Net, ECCV 2016]

• Binary Weight Nets (BWN)
– Weights {-α, α} à except first and last layers are 32-bit float

– Activations: 32-bit float

– α determined by the l1-norm of all weights in a filter

– Accuracy loss: 0.8% on AlexNet

• XNOR-Net
– Weights {-α, α}

– Activations {-βi, βi} à except first and last layers are 32-bit float

– βi determined by the l1-norm of all activations across channels 
for given position i of the input feature map 

– Accuracy loss: 11% on AlexNet

Hardware needs to support 
both activation precisions

Scale factors (α, βi) can change per filter or position in filter
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• Allow for weights to be zero
– Increase sparsity, but also increase number of bits (2-bits)

• Ternary Weight Nets (TWN)
– Weights {-w, 0, w} à except first and last layers are 32-bit float
– Activations: 32-bit float
– Accuracy loss: 3.7% on AlexNet

• Trained Ternary Quantization (TTQ)
– Weights {-w1, 0, w2} à except first and last layers are 32-bit float
– Activations: 32-bit float
– Accuracy loss: 0.6% on AlexNet

Ternary Nets

[Li et al., arXiv 2016]

[Zhu et al., ICLR 2017]
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• Precision refers to the number of levels 
– Number of bits = log2 (number of levels)

• Quantization: mapping data to a smaller set of levels
– Linear, e.g., fixed-point
– Non-linear

• Computed
• Table lookup

Non-Linear Quantization

Objective: Reduce size to improve speed and/or reduce energy 
while preserving accuracy
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Computed Non-linear Quantization 

Log Domain Quantization

Product = X << WProduct =  X * W

[Lee et al., LogNet, ICASSP 2017]
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• Learned mapping of data to quantization levels (e.g., k-means)

• Additional Properties
– Fixed or Variable (across data types, layers, channels, etc.)

Reduce Precision Overview

[Han et al., ICLR 2016]

Implement with 
look up table
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Non-Linear Quantization Table Lookup

Trained Quantization: Find K weights via K-means clustering
to reduce number of unique weights per layer (weight sharing)

[Han et al., Deep Compression, ICLR 2016]

Weight 
Decoder/
Dequant 
U x 16b 

Weight  
index 

(log2U-bits) 
Weight  

(16-bits) 
Weight  
Memory 
CRSM x 

log2U-bits 
Output 

Activation 
(16-bits) 

  
  

  
  

MAC 

Input 
Activation  
(16-bits) 

Example: AlexNet (no accuracy loss)
256 unique weights for CONV layer

16 unique weights for FC layer

Does not reduce 
precision of MAC

Overhead
Smaller Weight 

Memory

Consequences: Narrow weight memory and second access from (small) table
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Category Method Weights
(# of bits)

Activations
(# of bits)

Accuracy Loss 
vs. 32-bit float (%)

Dynamic Fixed 
Point

w/o fine-tuning 8 10 0.4

w/ fine-tuning 8 8 0.6

Reduce weight Ternary weights 
Networks (TWN)

2* 32 3.7

Trained Ternary 
Quantization (TTQ)

2* 32 0.6

Binary Connect (BC) 1 32 19.2

Binary Weight Net 
(BWN)

1* 32 0.8

Reduce weight 
and activation

Binarized Neural Net 
(BNN)

1 1 29.8

XNOR-Net 1* 1 11

Non-Linear LogNet 5(conv), 4(fc) 4 3.2

Weight Sharing 8(conv), 4(fc) 16 0

Summary of Reduce Precision

* first and last layers are 32-bit float
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• Reduce size of operands for storage/compute
– Floating point à Fixed point
– Bit-width reduction
– Non-linear quantization

• Reduce number of operations for storage/compute
– Exploit Activation Statistics (Compression)
– Network Pruning
– Compact Network Architectures

Approaches93



Exploit Sparsity
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Sparsity in Feature Maps

9 -1 -3
1 -5 5
-2 6 -1

Many zeros in output fmaps after ReLU
ReLU 9 0 0

1 0 5
0 6 0

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
CONV Layer

# of activations # of non-zero activations

(Normalized)
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Exploit Sparsity

[Chen et al., ISSCC 2016]

Method 2: Compress data to reduce storage and data movement

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	

DR
AM

	Ac
ce
ss	

(M
B)	

AlexNet	Conv	Layer	

Uncompressed	 Compressed	

1 2 3 4 5
AlexNet Conv Layer

DRAM 
Access 
(MB) 

0

2

4

6
1.2×

1.4×
1.7×

1.8×
1.9×

Uncompressed
Fmaps + Weights

RLE Compressed
Fmaps + Weights

== 0 Zero 
Buff 

  
  Scratch Pad   

Enable 

Zero Data Skipping 

Register File
No R/W No Switching

Method 1: Skip memory access and computation

45% energy savings
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Optimal Brain Damage

Pruning – Make Weights Sparse

[Lecun et al., NeurIPS 1989]

retraining

pruning 
neurons

pruning 
synapses

after pruningbefore pruning

Prune DNN based on 
magnitude of weights

[Han et al., NeurIPS 2015]

Example: AlexNet
Weight Reduction: 

CONV layers 2.7x, FC layers 9.9x
Overall Reduction: 

Weights 9x, MACs 3x
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Pruning – Make Weights Sparse

[Yang et al., Energy-Aware Pruning, CVPR 2017]

Feature-Map-Based Method

Magnitude-Based Method

1 1 1
1 1 1
1 1 1

-8 1 1
1 1 1
1 1 1

-8 0 0
0 0 0
0 1 1

fmap filter

∗ Prune
= 0

1 1 1
1 1 1
1 1 1

-8 1 1
1 1 1
1 1 1

0 0 0
0 0 0
1 1 1

fmap filter

∗ Prune
=

-6
Error: 6

Error: 3
0 3

Remove the weights with the smallest joint impact on the output 
feature map instead of that with the smallest magnitude
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Fast Local Fine-Tuning
We then locally fine-tune the remaining weights, which is
much faster than performing end-to-end training

After Local Fine-Tuning

After Pruning

1 1 1
1 1 1
1 1 1

-8 1 1
1 1 1
1 1 1

0 0 0
0 0 0
1 1 1

fmap filter

∗ Prune
= 0

1 1 1
1 1 1
1 1 1

-8 1 1
1 1 1
1 1 1

0 0 0
0 0 0
-2 1 1

fmap filter

∗ Prune
=

3
Error: 3

Error: 0
0 0
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Compression of Weights & Activations
• Compress weights and activations between DRAM 

and accelerator

• Variable Length / Huffman Coding

• Tested on AlexNet à 2× overall BW Reduction

[Moons et al., VLSI 2016; Han et al., ICLR 2016]

Value: 16’b0 à Compressed Code: {1’b0}

Value: 16’bx à Compressed Code: {1’b1, 16’bx}

Example:
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Sparse Hardware

EIE

= 
x

a
b

d
e
f 

c y
z

xa * 
ya * 
za * 

xb * 
yb * 
zb * …

 

Scatter 
network 

Accumulate MULs 

PE frontend PE backend 

Densely Packed 
Storage of Weights 

and Activations 

All-to all 
Multiplication of 

Weights and Activations 

Mechanism to Add to 
Scattered Partial Sums  

~a
�

0 a1 0 a3
�

⇥ ~b
PE0

PE1

PE2

PE3

0

BBBBBBBBBBBBB@

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

b0
b1

�b2
b3

�b4
b5
b6

�b7

1

CCCCCCCCCCCCCA

ReLU)

0

BBBBBBBBBBBBB@

b0
b1
0

b3
0

b5
b6
0

1

CCCCCCCCCCCCCA

1

Input

Weights

Output

[Han et al., ISCA 2016]

SCNN
[Parashar et al., 

ISCA 2017]

Supports Convolutional 
Layers Only

Supports Fully 
Connected Layers Only
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Sparse Hardware – Eyeriss v2
Supports both Convolutional and Fully Connected Layers

Iact 
Addr
SPad

9×4b
Regs

Iact
Data
SPad

16×12b
Regs

Weight 
Addr
SPad

16×7b
Regs

Weight 
Data
SPad

96×24b
SRAM

Psum
SPad

32×20b
Regs

Input Activations

iact

weight

Weights

Psums In

Psums Out

M0

Psums

…

Weights

…
C0×S

Only read non-zeros in a window

Only read non-zeros in a column

AlexNet sparse-
AlexNet

GOPS 148.3 405.8
fps 102.4 280.1
Over v1 15.5× 42.5×
GOPS/W 277.9 1028.1
Inferences/J 191.8 709.7
Over v1 3.0× 11.3×

[Chen et al., JETCAS 2019]
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Manual Network 
Architecture Design
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Simplify CONV Layers

…

M

…

Many
Input fmaps (N) Many

Output fmaps (N)
…

R

S

R

S

… …

…

C …

C …

…

…

filters

…

E

F
…

…

H

…

…C…

H

W

…

…

……C…

…

E
…

…

1 1

N N

W F
1

M
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Simplify CONV Layers

…

M

…

Many
Input fmaps (N) Many

Output fmaps (N)
…

R

S

R

S

… …

…

C …

C …

…

…

filters

…

E

F
…

…

H

…

…C…

H

W

…

…

……C…

…

E
…

…

1 1

N N

W F
1

M

Methods can be roughly categorized by how the filters 
are simplified:

• Reduce spatial size (R, S): stacked filters

• Reduce channels (C): 1x1 convolution, group of 
filters

• Reduce filters (M): feature map reuse
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Simplify CONV Layers

…

M

…

Many
Input fmaps (N) Many

Output fmaps (N)
…

R

S

R

S

… …

…

C …

C …

…

…

filters

…

E

F
…

…

H

…

…C…

H

W

…

…

……C…

…

E
…

…

1 1

N N

W F
1

M

Methods can be roughly categorized by how the filters 
are simplified:

• Reduce spatial size (R, S): stacked filters

• Reduce channels (C): 1x1 convolution, group of 
filters

• Reduce filters (M): feature map reuse
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Stacked Filters

5x5 filter Two 3x3 filters 

decompose 

Apply sequentially 
VGG-16

Replace a large filter with a series of smaller filters

decompose 

5x5 filter 5x1 filter 

1x5 filter 

Apply sequentially 
GoogleNet/Inception v3

separable 
filters
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Stacked Filters

3 0 4 2 0 1 0

0 0 1 2 3 2 0

0 1 2 2 2 0 3

5 0 1 0 1 3 0

0 1 2 2 1 0 1

0 0 1 0 3 1 0

5 2 0 3 0 5 8

5x5 filterExample

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 31 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

• Use stack of smaller filters (3x3) to cover the same receptive 
field with fewer filter weights

0 1 2 3 2
1 2 2 2 0
0 1 0 1 3
1 2 2 1 0
0 1 0 3 1
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Stacked Filters

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 0 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 7 8 8 0 0

0 0 5 6 7 3 0

0 1 6 5 7 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

3x3 filter1

Example

• Use stack of smaller filters (3x3) to cover the same receptive 
field with fewer filter weights

0 1 0
1 1 1
0 1 0

filter (3x3)
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Stacked Filters

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 0 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 7 8 8 0 0

0 0 5 6 7 3 0

0 1 6 5 7 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

3x3 filter2

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 31 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

Example: 5x5 filter (25 weights) à two 3x3 filters (18 weights) 

3x3 filter1

0 1 0
1 1 1
0 1 0

filter (3x3)
• Use stack of smaller filters (3x3) to cover the same receptive 

field with fewer filter weights
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Simplify CONV Layers

…

M

…

Many
Input fmaps (N) Many

Output fmaps (N)
…

R

S

R

S

… …

…

C …

C …

…

…

filters

…

E

F
…

…

H

…

…C…

H

W

…

…

……C…

…

E
…

…

1 1

N N

W F
1

M

Methods can be roughly categorized by how the filters 
are simplified:

• Reduce spatial size (R, S): stacked filters

• Reduce channels (C): 1x1 convolution, group of 
filters

• Reduce filters (M): feature map reuse
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1x1 Convolution

Modified image from source: 
Stanford cs231n

[Lin et al., Network in Network, arXiv 2013, ICLR 2014]

Use 1x1 filter to condense the cross-channel information.

1

56

56

filter1
(1x1x64)
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1x1 Convolution

Modified image from source: 
Stanford cs231n

[Lin et al., Network in Network, arXiv 2013, ICLR 2014]

Use 1x1 filter to condense the cross-channel information.

filter2
(1x1x64)

2

56

56
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1x1 Convolution

Modified image from source: 
Stanford cs231n

[Lin et al., Network in Network, arXiv 2013, ICLR 2014]

Use 1x1 filter to condense the cross-channel information.

32
56

56
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GoogLeNet:1x1 Convolution

1x1 convolutions to 
reduce number of 
weights and 
multiplications

Inception 
Module

[Szegedy et al., arXiv 2014, CVPR 2015]

Apply 1x1 convolution before ‘large’ convolution filters.
Reduce weights such that entire CNN can be trained on one GPU.

Number of multiplications reduced from 854M à 358M
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Group of Filters

HR

S

… …

…

C/2

input fmap

output fmap1

…

…

……C…filter1

E

W F
input fmap

output fmap2

……

E

F

H …

…

……C…

W

Idea: split filters and channels of feature map into different groups
Example: 2 groups, each filter requires 2x fewer weights and multiplications.

R

… …

…

C/2 filter2

S
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Group of Filters

HR

S

input fmap

output fmap1

…

…

……C…
filter1

E

W F
input fmap

output fmapC

……

E

F

H …

…

……C…

W

The extreme case is depthwise convolution –
each group contains only one channel.

R

filterC

S
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Group of Filters

Split into 2 
Groups

Split into 2 
Groups

AlexNet uses group of filters to train on two separate GPUs 
(Drawback: correlation between channels of different groups is not used)

Mix 
Information
(3x3 CONV)

Mix 
Information

(FC)
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Group of Filters
Two ways of mixing information from groups

Pointwise (1x1) Convolution
(Mix in one step)

MobileNet

Shuffle Operation
(Mix in multiple steps)

ShuffleNet

C
1

1

S

R

1

R

S
C

+

fmap 0

layer 1

fmap 1

layer 2

fmap 2

119



MobileNets: Comparison120



Simplify CONV Layers

…

M

…

Many
Input fmaps (N) Many

Output fmaps (N)
…

R

S

R
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… …

…

C …

C …

…

…

filters

…
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…C…
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1 1
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M

Methods can be roughly categorized by how the filters 
are simplified:

• Reduce spatial size (R, S): stacked filters

• Reduce channels (C): 1x1 convolution, group of 
filters

• Reduce filters (M): feature map reuse
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Feature Map Reuse122

E

output fmap with M channels

……

M

…
R

S
1

C …

…

…

F

M Filters

…

R

S
K

C …

…

…

R

S
M

C …

…

…

…
……

……

M-K

Reuse (M-K) channels in feature 
maps from previously processed 

layers

L
2

L
3

L
1



Feature Map Reuse123

[Huang et al., CVPR 2017]

Feature maps are concatenated rather than added. 
Break into blocks to limit depth and thus size of combined feature map.

Reuse Feature Maps from Multi. Layers!
Connections not only from previous layer, but 
many past layers to strengthen feature map 
propagation and feature reuse.Dense 

Block

Transition layers



DenseNet

Note: 1 MAC = 2 FLOPS

Higher accuracy than ResNet with fewer weights and multiplications

Top-1 error Top-1 error

124

[Huang et al., CVPR 2017]



• More complicated layer aggregation

Feature Map Reuse

[Yu et al., CVPR 2018]
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Simplify FC Layers
CONV Layers: 5

Fully Connected Layers: 3

Weights: 61M

MACs: 724M

[Krizhevsky et al., NIPS 2012]

ILSCVR12 Winner

105M 224M 150M 112M 75M 38M 17M 4M# of MACs
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Simplify FC Layers

H
…

input fmap

output fmap1

…

…

……C…

1

W
1

H …

…C…

W

…

filter1

H

input fmap

output fmap1

…

…

……C…

1

W
1

Pool

Global Pooling 
replaces the large 
filters in the first 

FC layer

[Lin et al., ICLR 2014] 

…
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Knowledge Distillation

[Bucilu et al., KDD 2006],[Hinton et al., arXiv 2015] 

Complex 
DNN B 

(teacher) 

Simple DNN 
(student) 

so
ftm

ax
 

so
ftm

ax
 

Complex 
DNN A 

(teacher) so
ftm

ax
 

scores 
class  
probabilities 

Try to match 

128



Network Architecture 
Search (NAS)

129



Rather than handcrafting the architecture, automatically search for it

Learn Network Architecture

3x3? 5x5?

128 Filters?

Pool? CONV?

130

Three main components:
(1) search space, (2) optimization algorithm, 
and (3) performance evaluation.



• Key Metrics
– Achievable DNN accuracy
– Required search time

Evaluate NAS Performance

!"#$%&' = %)#'&#*+$'×!"#$*$-_'&#*+$

!"#$%&' ∝ (
%)#%&'_!)%"%1×'"2$'$&-34_'*&3$

$55"3"$%36&+1
)×(!"#$!-&"% + !"#$$9&+)

(1) Shrink the search 
space

(2) Improve the 
optimization algorithm

(3) Simplify the 
performance evaluation

Researchers improve the efficiency 
of NAS in 3 main components
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• Trade the discoverable architectures for search speed

(1) Shrink the Search Space

Architecture
Universe

Samples

Optimal

Architecture
Universe

Optimal
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• Trade the discoverable architectures for search speed
• May irrecoverably limit the achievable network performance

– Domain knowledge learned in manual network design provides guidance

(1) Shrink the Search Space

Architecture
Universe
Architecture
Universe

Search Space

Samples

Optimal
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• Search space = layer operations + connections between layers

(1) Shrink the Search Space

• Identity

• 1x3 then 3x1 convolution
• 1x7 then 7x1 convolution  
• 3x3 dilated convolution
• 1x1 convolution  

• 3x3 convolution

• 3x3 separable convolution  

• 5x5 separable convolution
• 3x3 average pooling  
• 3x3 max pooling
• 5x5 max pooling  

• 7x7 max pooling

Common layer operations:
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• Search space = layer operations + connections between layers

(1) Shrink the Search Space

[Zoph et al., arXiv, July 2017]
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(2) Improve Optimization Algorithm

Random Gradient Descent

Reinforcement Learning BayesianEvolutionary

Coordinate Descent
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(2) Improve Optimization Algorithm
Random Coordinate Descent Gradient Descent

Randomly samples the 
entire space

• Simple
• Does not use 

previous results

Starts from the previous 
best sample and goes in 
the direction that has the 
largest gradient
• Explores more 

directions

• The metric should be 
differentiable 

Starts from the previous 
best sample and greedily 
finds the best direction to 
move
• Uses previous results

• Simple
• Limited number of 

directions
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(2) Improve Optimization Algorithm
Starts from the previous 
best sample and goes in 
the best randomly-
sampled direction
• The metric does not 

need to be 
differentiable

• More complicated

Models the entire surface 
of the search space and 
picks the best sample

• Gets rid of the iterative 
process

• Hard to model a large 
search space

Learns from the previous 
samples and infers the 
best sample

• Better uses the 
previous samples

• Needs to design and 
train the agent
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• NAS needs only the rank of the performance values
• Method 1: approximate accuracy
• Method 2: approximate weights
• Method 3: approximate metrics (e.g., latency, energy)

(3) Simplify the Performance Evaluation139



• NAS needs only the rank of the performance values
• Method 1: approximate accuracy

• Method 2: approximate weights
• Method 3: approximate metrics

(3) Simplify the Performance Evaluation

Proxy Task Early Termination Accuracy Prediction
E.g., Smaller resolution, 

simpler tasks
Stop training earlier

A
cc

ur
ac

y

Iteration

Stop
Extrapolate accuracy

A
cc

ur
ac

y

Iteration

Predict
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• NAS needs only the rank of the performance values
• Method 1: approximate accuracy
• Method 2: approximate weights

• Method 3: approximate metrics

(3) Simplify the Performance Evaluation

Transfer Weights Estimate Weights
Reuse weights from other 

similar networks
Infer the weights from the 

previous feature maps

Transfer

Gen.

What 
weights?

Pre

New

Feat. 
Map

Filter
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• NAS needs only the rank of the performance values
• Method 1: approximate accuracy
• Method 2: approximate weights
• Method 3: approximate metrics (e.g., latency, energy)

(3) Simplify the Performance Evaluation

Look-Up TableProxy Metric
Use an easy-to-compute 

metric to approximate target
Use table lookup

Latency # MACs
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• The components may not be chosen individually
– Some optimization algorithms limit the search space
– Using direct hardware metrics may limit the selection of the 

optimization algorithms

• Commonly overlooked properties
– The complexity of implementation and usage
– The ease of tuning
– The probability of convergence to a good architecture

Other Things to Know143



NetAdapt: Platform-Aware DNN Adaptation
• Automatically adapt DNN to a mobile platform to reach a 

target latency or energy budget
• An example of coordinate descent NAS

[Yang et al., ECCV 2018]

In collaboration with Google’s Mobile Vision Team

NetAdapt Measure

…

Network Proposals

Empirical Measurements
Metric Proposal A … Proposal Z

Latency 15.6 … 14.3

Energy 41 … 46

…… …

Pretrained
Network Metric Budget

Latency 3.8

Energy 10.5

Budget

Adapted
Network

… …

Platform

A B C D Z
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Code available at  http://netadapt.mit.edu

http://netadapt.mit.edu/


Problem Formulation
max
$%&

'(( )*+ ,-./*(+ +0 1*,2 )*+ ≤ 4-52, / = 1,⋯ ,:

max
$%&;

'(( )*+< ,-./*(+ +0 1*,2 )*+< ≤ 1*,2 )*+<=> − ∆1<,2, / = 1,⋯ ,:

Break into a set of simpler problems and solve iteratively

*Acc: accuracy function, Res: resource evaluation function, 
ΔR: resource reduction, Bud: given budget

• Advantages
• Supports multiple resource budgets at the same time
• Guarantees that the budgets will be satisfied because the 

resource consumption decreases monotonically
• Generates a family of networks (from each iteration) with 

different resource versus accuracy trade-offs
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Code available at  http://netadapt.mit.edu

http://netadapt.mit.edu/


Simplified Example of One Iteration

Latency: 100ms
Budget: 80ms

100ms 90ms 80ms

100ms 80ms

Selected

Selected

Layer 1

Layer 4

…

Acc: 60%

Acc: 40%

…

Selected

2. Meet Budget

Latency: 80ms
Budget: 60ms

1. Input 4. Output3. Maximize 
Accuracy

Network from 
Previous Iteration

Network for 
Next Iteration
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Code available at  http://netadapt.mit.edu
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• NetAdapt boosts the real inference speed of MobileNet
by up to 1.7x with higher accuracy

Improved Latency vs. Accuracy Tradeoff

+0.3% accuracy
1.7x faster

+0.3% accuracy
1.6x faster

Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018

*Tested on the ImageNet dataset and a Google Pixel 1 CPU

[Yang et al., ECCV 2018]
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• Reimplemented framework on PyTorch

• Flexible: can support different networks and tasks
• Scalable: spawn multiple workers to simplify networks in parallel 

• Easy-to-use: require implementing only one file (8 functions)

Code of NetAdapt

master

100ms 90ms 80ms

Selected

Layer 1

worker

100ms 80ms

Selected

Layer 4

worker

�...

Code available at https://github.com/denru01/netadapt
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Code of NetAdapt

Latency: 100ms
Budget: 80ms

100ms 80ms

Selected

Layer i

Acc: 60%

Acc: 40%

…Selected

2. Meet Budget

Latency: 80ms
Budget: 60ms

1. Input 4. Output3. Maximize 
Accuracy

Network from 
Previous Iteration

Network for Next 
Iteration

…
…
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Code of NetAdapt

Latency: 100ms
Budget: 80ms

100ms 80ms

Selected

Layer i

Acc: 60%

Acc: 40%

…Selected

2. Meet Budget

Latency: 80ms
Budget: 60ms

1. Input 4. Output3. Maximize 
Accuracy

Network from 
Previous Iteration

Network for Next 
Iteration

…
…
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Code of NetAdapt

Latency: 100ms
Budget: 80ms

100ms 80ms

Selected

Layer i

Acc: 60%

Acc: 40%

…Selected

2. Meet Budget

Latency: 80ms
Budget: 60ms

1. Input 4. Output3. Maximize 
Accuracy

Network from 
Previous Iteration

Network for Next 
Iteration

…
…
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Code of NetAdapt

Latency: 100ms

Budget: 80ms

100ms 80ms

Selected

Layer i

Acc: 60%

Acc: 40%

…Selected

2. Meet Budget

Latency: 80ms

Budget: 60ms

1. Input 4. Output3. Maximize 
Accuracy

Network from 

Previous Iteration

Network for Next 

Iteration

…
…

Some ready-to-use utilities 

have been provided to 

facilitate implementation.
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Hardware In the Loop
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# of Operations vs. Latency

• # of operations (MACs) does not approximate latency well

Source: Google (https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)
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• Number of weights alone is not a good metric for energy

• All data types should be considered 

# of Weights vs. Energy

Output Feature Map
43%

Input Feature Map
25%

Weights
22%

Computation
10%

Energy Consumption 
of GoogLeNet

[Yang et al., CVPR 2017]
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• E.g., noise resilience in analog accelerators

Other Hardware Metrics

[Yang et al., IEDM 2019]
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DNN model that gives highest accuracy on a digital processor 
may not be the best for an analog processor



Data Movement is Expensive

Energy of weight depends on memory hierarchy and dataflow

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 
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Energy Estimation Methodology

DNN Shape Configuration
(# of channels, # of filters, etc.)

DNN Weights and Input Data
[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …]

DNN Energy Consumption 
L1 L2 L3

Energy

…

Memory 
Accesses

Optimization

# of MACs
Calculation

…

# acc. at mem. level 1
# acc. at mem. level 2

# acc. at mem. level n

# of MACs

Hardware Energy Costs of each 
MAC and Memory Access

Ecomp

Edata

[Yang et al., Asilomar 2017]
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Energy Estimation Tool V1
Website: https://energyestimation.mit.edu/

Output DNN energy breakdown across layers

Eyeriss V1
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Energy Estimation Tool V2 - Accelergy

[Wu et al., ICCAD 2019]

Accelergy
Energy 

Estimator
Architecture
description

(YAML)

Action 
counts
Action 
counts
(YAML)

Compound 
component
description

(YAML)

…
Energy 

estimations
(YAML)

Energy
estimation 
plug-in 0

Energy 
estimation 
plug-in 1

Input: energy consumption of 
each operation

Input: 
hardware architecture

Input: the count of 
each operation

Output: estimated 
energy
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Timeloop Automatic 

Mapping Explorer 

Accelergy Energy 

Estimation Framework

Architecture

Description
Action 
Counts

Estimated
Energy

Best Mapping

With Estimated 

Energy

Integrate 3rd-party tools to generate the 
count of each operation

Energy Estimation Tool V2 - Accelergy

DNN Shape Configuration
(# of channels, # of filters, etc.)

Tutorial at MICRO 2019: http://accelergy.mit.edu/tutorial.html
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Energy Estimation Tool V2 - Accelergy
Website: https://accelergy.mit.edu/

Output DNN energy breakdown 
across components
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Energy-Aware Pruning

Sort Layers 
Based on 

Energy

L1 L2 L3

Energy

L2 L1 L3

Output

Input Input

~Output

~Output

Input

Remove 
Redundant

Weights

• Problem formulation: 

• Reduces energy by removing redundant weights
• Uses estimated energy to guide the layer-by-layer pruning

• Prunes the layer that consume the most energy first

min
$%&

'() *+, -./0+1, ,2 311 *+, ≥ 5ℎ
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Directly target energy and 
incorporate it into the 

optimization of DNNs to 
provide greater energy savings

Energy-Aware Pruning

• Sort layers based on energy and 
prune layers that consume most 
energy first

• EAP reduces AlexNet energy by 
3.7x and outperforms the 
previous work that uses 
magnitude-based pruning by 1.7x

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 
4.5 

Ori. DC EAP 

Normalized Energy (AlexNet) 

2.1x 3.7x 

x109 

Magnitude 
Based Pruning 

Energy Aware 
Pruning 

Pruned models available at 
http://eyeriss.mit.edu/energy.html

[Yang et al., CVPR 2017]
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NetAdapt: Platform-Aware DNN Adaptation
• Automatically adapt DNN to a mobile platform to reach a 

target latency or energy budget
• Use empirical measurements to guide optimization (avoid 

modeling of tool chain or platform architecture) 

[Yang et al., ECCV 2018]

In collaboration with Google’s Mobile Vision Team

NetAdapt Measure

…

Network Proposals

Empirical Measurements
Metric Proposal A … Proposal Z

Latency 15.6 … 14.3

Energy 41 … 46

…… …

Pretrained
Network Metric Budget

Latency 3.8

Energy 10.5

Budget

Adapted
Network

… …

Platform

A B C D Z
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NetAdapt: Using Direct 
Metrics is Important

• If NetAdapt was guided by the number of MACs, it would 
also achieve a better accuracy-MAC trade-off

• However, it does not mean lower latency

• It is important to incorporate direct metrics rather than 
indirect metrics into the design of DNNs

Network Top-1 Accuracy # of MACs (M) Latency (ms)

Small MobileNet V1 45.1 (+0) 13.6 (100%) 4.65 (100%)

NetAdapt 46.3 (+1.2) 11.0 (81%) 6.01 (129%)

Large MobileNet V1 68.8 (+0) 325.4 (100%) 69.3 (100%)

NetAdapt 69.1 (+0.3) 284.3 (87%) 74.9 (108%)
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NetAdapt: Fast Resource 
Consumption Estimation

• Taking measurements can be slow due to the long turn-around 
time and the limited number of platforms

• Solution: use per-layer lookup tables
• The network latency can be estimated by the sum of the latency of each layer
• The layers with the same configuration only need to be measured once
• The network-wise lookup table grows exponentially with the number of layers

Fast Resource Consumption Estimation Real Latency vs. Estimated Latency
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• Support building and using lookup tables

NetAdapt: Code

get_num_simplifiable_blocks()

get_network_def_from_model()

Layer 1: (  3, 16)
Layer 2: (16, 32)
Layer 3: (32, 64)
Layer 4: (64, 10)

network_def

4 8 12 16
8
16
24
32

# channels

# 
fil

te
rs

Lookup table

build_lookup_table()

compute_resource()

Code available at https://github.com/denru01/netadapt
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Part 3: Applications (Beyond 
Image Classification)

169



FastDepth: Fast Monocular Depth Estimation
• Real-time low-power depth sensing is critical for navigation of small robotic 

vehicles. 
• Depth estimation from a single RGB image desirable, due to the relatively low 

cost and size of monocular cameras.

Our goal is to enable high accuracy, low latency, high throughput 
monocular depth estimation on a deployable embedded system.

RGB Prediction

[Wofk*, Ma* et al., ICRA 2019]
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Efficient Network Design for FastDepth

FastDepth achieves high frame rates through

• An efficient and lightweight encoder-decoder network architecture with a 
low-latency decoder design incorporating depthwise separable layers and 
additive skip connections

• Network pruning (NetAdapt) applied to whole encoder-decoder network

• Platform-specific compilation (TVM) targeting embedded systems

[Wofk*, Ma* et al., ICRA 2019]
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FastDepth: Fast Monocular Depth Estimation
Depth estimation at high frame rates on an embedded platform
(an order of magnitude faster than previous approaches) while 

still maintaining accuracy

Configuration: Batch size of one (32-bit float)

~40fps on 
an iPhone

Models available at http://fastdepth.mit.edu

> 10x
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Simplify Network by NetAdapt173



DeeperLab: Single-Shot Image Parser

In collaboration with Google’s Mobile Vision Team

Joint Semantic and 
Instance Segmentation

(high resolution 
input image)

Fully convolutional, 
one-shot parsing

(bottom-up approach)

http://deeperlab.mit.edu/
[Yang et al., arXiv 2019]

One-shot parsing for efficient processing

One backbone for 
two tasks

Results from Xception
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DeeperLab: Efficient Image Parsing

http://deeperlab.mit.edu/

Address memory requirement for large feature map

Wide MobileNet: Increase kernel size rather than depth 

3x3 à 5x5

1

Space-to-depth/depth-to-space: Avoid upsampling2

Achieves near real-time 6.19 
fps on GPU (V100) with 

25.2% PQ and 49.8% PC on 
Mapillary Vistas dataset
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Applications (Beyond DNN 
Acceleration)
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Super-Resolution on Mobile Devices

Use super-resolution to improve the viewing experience of 
lower-resolution content (reduce communication bandwidth)

Screens are getting larger

Low 
Resolution
Streaming

Transmit low resolution for lower bandwidth

High
Resolution
Playback
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FAST: A Framework to Accelerate SuperRes

A framework that accelerates any SR algorithm by up to 
15x when running on compressed videos

FAST SR
15x faster

Compressed video

SR algorithm

Real-time

[Zhang et al., CVPRW 2017]
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Free Information in Compressed Videos

Compressed video
Pixels

Video as a stack of pixels

Block-structure Motion-compensation

Representation in compressed video

This representation can help accelerate super-resolution

Decode
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High-res video

Transfer is Lightweight

Low-res video
High-res video

SR

Low-res video

Transfer

Fractional
Interpolation

Bicubic
Interpolation

Skip Flag

The complexity of the transfer is comparable to bicubic interpolation.
Transfer N frames, accelerate by N

Transfer allows SR to run on only a subset of frames

SR
SRSRSR

SR
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Evaluation: Accelerating SRCNN181



Visual Evaluation

SRCNN FAST + 
SRCNN

Bicubic

Code released at www.rle.mit.edu/eems/fast

[Zhang et al., CVPRW 2017]

Look beyond the DNN accelerator for opportunities to accelerate 
DNN processing (e.g., structure of data and temporal correlation)
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• DNNs are a critical component in the AI revolution, delivering 
record breaking accuracy on many important AI tasks for a 
wide range of applications; however, it comes at the cost of 
high computational complexity

• Efficient processing of DNNs is an important area of research 
with many promising opportunities for innovation at various 
levels of hardware design, including algorithm co-design

• When considering different DNN solutions it is important to 
evaluate with the appropriate workload in term of both input 
and model, and recognize that they are evolving rapidly.

• It’s important to consider a comprehensive set of metrics
when evaluating different DNN solutions: accuracy, speed, 
energy, and cost

Summary183



Additional Resources

For updates
http://mailman.mit.edu/mailman/listinfo/eems-news

Overview Paper
V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, “Efficient 
Processing of Deep Neural Networks: A Tutorial 
and Survey,” Proceedings of the IEEE, Dec. 2017

Book Coming Soon!

MIT Professional Education Course on 
“Designing Efficient Deep Learning Systems” 
http://professional-education.mit.edu/deeplearning
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More info about Tutorial on DNN Architectures 
http://eyeriss.mit.edu/tutorial.html
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• Overview on DNN and Popular DNN Models
– Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by 

reducing internal covariate shift," ICML 2015.
– LeNet: LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proc. IEEE 1998.

– AlexNet: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep 
convolutional neural networks." NIPS. 2012.

– VGGNet: Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale 
image recognition." ICLR 2015.

– GoogleNet: Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE 
conference on computer vision and pattern recognition. CVPR 2015.

– ResNet: He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE 
conference on computer vision and pattern recognition. CVPR 2016.

– DenseNet: Huang, Gao, et al. "Densely connected convolutional networks." CVPR 2017
– Wide ResNet: Zagoruyko, Sergey, and Nikos Komodakis. "Wide residual networks." BMVC 2017.

– ResNext: Xie, Saining, et al. "Aggregated residual transformations for deep neural networks.” CVPR 
2017.
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• Part 1: Energy-Efficient Hardware for Deep Neural Networks
– Project website: http://eyeriss.mit.edu

– Y.-H. Chen, T. Krishna, J. Emer, V. Sze, “Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep 
Convolutional Neural Networks,” IEEE Journal of Solid State Circuits (JSSC), ISSCC Special Issue, Vol. 52, 
No. 1, pp. 127-138, January 2017.

– Y.-H. Chen, J. Emer, V. Sze, “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for 
Convolutional Neural Networks,” International Symposium on Computer Architecture (ISCA), pp. 367-
379, June 2016. 

– Y.-H. Chen, T.-J. Yang, J. Emer, V. Sze, “Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural 
Networks on Mobile Devices,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems 
(JETCAS), June 2019. 

– Eyexam: https://arxiv.org/abs/1807.07928

• Limitations of Existing Efficient DNN Approaches 
– Y.-H. Chen*, T.-J. Yang*, J. Emer, V. Sze, “Understanding the Limitations of Existing Energy-Efficient 

Design Approaches for Deep Neural Networks,” SysML Conference, February 2018.

– V. Sze, Y.-H. Chen, T.-J. Yang, J. Emer, “Efficient Processing of Deep Neural Networks: A Tutorial and 
Survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, December 2017.

– Hardware Architecture for Deep Neural Networks: http://eyeriss.mit.edu/tutorial.html
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• Transforms for processing on GPU and CPUs
– Lavin, Andrew, and Gray, Scott, "Fast Algorithms for Convolutional Neural Networks," arXiv preprint  

arXiv:1509.09308 (2015)
– Mathieu, Michael, Mikael Henaff, and Yann LeCun. "Fast training of convolutional networks through 

FFTs." arXiv preprint arXiv:1312.5851 (2013).

– Cong, Jason, and Bingjun Xiao. "Minimizing computation in convolutional neural networks." 
International Conference on Artificial Neural Networks. Springer International Publishing, 2014.

• Part 2: Co-Design of Algorithms and Hardware for Deep Neural Networks
– T.-J. Yang, Y.-H. Chen, V. Sze, “Designing Energy-Efficient Convolutional Neural Networks using Energy-

Aware Pruning,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 

– Energy estimation tool: http://eyeriss.mit.edu/energy.html
– T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, V. Sze, H. Adam, “NetAdapt: Platform-Aware Neural 

Network Adaptation for Mobile Applications,” European Conference on Computer Vision (ECCV), 2018. 
http://netadapt.mit.edu

– T.-J. Yang, V. Sze, “Design Considerations for Efficient Deep Neural Networks on Processing-in-Memory 
Accelerators,” IEEE International Electron Devices Meeting (IEDM), Invited Paper, December 2019.

– Y. N. Wu, J. S. Emer, V. Sze, “Accelergy: An Architecture-Level Energy Estimation Methodology for 
Accelerator Designs,” International Conference on Computer Aided Design (ICCAD), November 2019. 
http://accelergy.mit.edu

– T.-J. Yang, Y.-H. Chen, J. Emer, V. Sze, “A Method to Estimate the Energy Consumption of Deep Neural 
Networks,” Asilomar Conference on Signals, Systems and Computers, Invited Paper, October 2017. 

References187

http://eyeriss.mit.edu/energy.html
http://netadapt.mit.edu/
http://accelergy.mit.edu/


• Reduced Precision
– Courbariaux, Matthieu, and Yoshua Bengio. "Binarynet: Training deep neural networks with weights 

and activations constrained to+ 1 or-1." arXiv preprint arXiv:1602.02830 (2016).
– Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David. "Binaryconnect: Training deep neural 

networks with binary weights during propagations," NeurIPS, 2015

– Rastegari, Mohammad, et al. "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural 
Networks,” ECCV, 2016

– Judd, Patrick, Jorge Albericio, and Andreas Moshovos. "Stripes: Bit-serial deep neural network 
computing." IEEE Computer Architecture Letters (2016).

– Lee, Edward H., et al. "LogNet: Energy-efficient neural networks using logarithmic computation." 2017 
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017.

– Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep neural network with 
pruning, trained quantization and huffman coding," ICLR, 2016.
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• Exploit Sparsity
– LeCun, Yann, et al. "Optimal brain damage," NIPS, 1989.

– Han, Song, et al. "Learning both weights and connections for efficient neural network,” NeurIPS, 2015.
– T.-J. Yang, Y.-H. Chen, V. Sze, “Designing Energy-Efficient Convolutional Neural Networks using Energy-

Aware Pruning,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 

– Parashar, Angshuman, et al. "SCNN: An Accelerator for Compressed-sparse Convolutional Neural 
Networks." ISCA, 2017

– Han, Song, et al. "EIE: efficient inference engine on compressed deep neural network," ISCA, 2016.
– Y.-H. Chen, T.-J. Yang, J. Emer, V. Sze, “Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural 

Networks on Mobile Devices,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems 
(JETCAS), June 2019. 

• Manual Network Design
– Network in Network: Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." ICLR 2014

– MobileNet: Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile 
vision applications." arXiv preprint arXiv:1704.04861 (2017).

– ShuffleNet: Zhang, Xiangyu, et al. "ShuffleNet: An Extremely Efficient Convolutional Neural Network for 
Mobile Devices." arXiv preprint arXiv:1707.01083 (2017).

– Yu, Fisher, et al. "Deep layer aggregation." Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition. 2018.
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• Neural Architecture Search
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