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Energy-Efficient Processing of DNNs2

V. Sze, Y.-H. Chen, 
T-J. Yang, J. Emer, 

“Efficient Processing of 
Deep Neural Networks: 
A Tutorial and Survey,” 
Proceedings of the IEEE, 

Dec. 2017

A significant amount of algorithm and hardware research 
on energy-efficient processing of DNNs

We identified various challenges to existing approaches

http://eyeriss.mit.edu/tutorial.html

http://eyeriss.mit.edu/tutorial.html


• Popular efficient DNN algorithm approaches 

Design of Efficient DNN Algorithms
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Compact Network Architectures

... also reduced precision

• Focus on reducing number of MACs and weights
• Does it translate to energy savings and reduced latency?
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Data Movement is Expensive

Energy of weight depends on memory hierarchy and dataflow

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 
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Energy-Evaluation Methodology

DNN Shape Configuration
(# of channels, # of filters, etc.)

DNN Weights and Input Data
[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …]

DNN Energy Consumption 
L1 L2 L3

Energy

…

Memory 
Accesses

Optimization

# of MACs
Calculation

…

# acc. at mem. level 1
# acc. at mem. level 2

# acc. at mem. level n

# of MACs

Hardware Energy Costs of each 
MAC and Memory Access

Ecomp

Edata

Tool available at: https://energyestimation.mit.edu/

[Yang et al., CVPR 2017]
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• Number of weights alone is not a good metric for energy

• All data types should be considered 

Key Observations

Output Feature Map
43%

Input Feature Map
25%

Weights
22%

Computation
10%

Energy Consumption 
of GoogLeNet

[Yang et al., CVPR 2017]
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Directly target energy and 
incorporate it into the 

optimization of DNNs to 
provide greater energy savings

Energy-Aware Pruning

• Sort layers based on energy and 
prune layers that consume most 
energy first

• EAP reduces AlexNet energy by 
3.7x and outperforms the 
previous work that uses 
magnitude-based pruning by 1.7x

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 
4.5 

Ori. DC EAP 

Normalized Energy (AlexNet) 

2.1x 3.7x 

x109 

Magnitude 
Based Pruning 

Energy Aware 
Pruning 

Pruned models available at 
http://eyeriss.mit.edu/energy.html

[Yang et al., CVPR 2017]
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# of Operations vs. Latency

• # of operations (MACs) does not approximate latency well

Source: Google (https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)
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NetAdapt: Platform-Aware DNN Adaptation
• Automatically adapt DNN to a mobile platform to reach a 

target latency or energy budget
• Use empirical measurements to guide optimization (avoid 

modeling of tool chain or platform architecture) 

[Yang et al., ECCV 2018]

In collaboration with Google’s Mobile Vision Team

NetAdapt Measure

…

Network Proposals

Empirical Measurements
Metric Proposal A … Proposal Z

Latency 15.6 … 14.3

Energy 41 … 46

…… …

Pretrained
Network Metric Budget

Latency 3.8

Energy 10.5

Budget

Adapted
Network

… …

Platform

A B C D Z

9



• NetAdapt boosts the real inference speed of MobileNet
by up to 1.7x with higher accuracy

Improved Latency vs. Accuracy Tradeoff

+0.3% accuracy
1.7x faster

+0.3% accuracy
1.6x faster

Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018

*Tested on the ImageNet dataset and a Google Pixel 1 CPU

[Yang et al., ECCV 2018]
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Problem Formulation

• Advantages
– Supports multiple resource budgets at the same time
– Guarantees that the budgets will be satisfied because the resource 

consumption decreases monotonically
– Generates a family of networks (from each iteration) with different resource 

versus accuracy trade-offs
– Intuitive and can easily set one additional hyperparameter (∆"#,%)

max
*+,

-../01.2 345 6/784.5 59 :469/0.4; 345 ≤ =/>?45;, 8 = 1,⋯ ,C

max
*+,D

-.. 345E 6/784.5 59 :46; 345E ≤ :46; 345EFG − ∆:E,;, 8 = 1,⋯ ,C

Break into a set of simpler problems and solve iteratively

*Acc: accuracy function, Res: resource evaluation function, 
ΔR: resource reduction, Bud: given budget

Budget incrementally tightens "IJ% KIL#FM − ∆"#,%
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Simplified Example of One Iteration

Latency: 100ms
Budget: 80ms

100ms 90ms 80ms

100ms 80ms

Selected

Selected

Layer 1

Layer 4

…

Acc: 60%

Acc: 40%

…

Selected

2. Meet Budget

Latency: 80ms
Budget: 60ms

1. Input 4. Output3. Maximize 
Accuracy

Network from 
Previous Iteration

Network for 
Next Iteration
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Code to be released at http://netadapt.mit.edu
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FastDepth: Fast Monocular Depth Estimation
Depth estimation from a single RGB image desirable, due to 

the relatively low cost and size of monocular cameras.
RGB Prediction

[Joint work with Sertac Karaman]

Auto Encoder DNN Architecture (Dense Output)

Reduction 
(similar to classification) Expansion
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FastDepth: Fast Monocular Depth Estimation
Apply NetAdapt, compact network design, and depth wise decomposition 

to decoder layer to enable depth estimation at high frame rates on an 
embedded platform while still maintaining accuracy

[Wofk*, Ma* et al., ICRA 2019]

Configuration: Batch size of one (32-bit float)

Models available at http://fastdepth.mit.edu

> 10x
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~40fps on 
an iPhone

http://fastdepth.mit.edu/


DeeperLab: Single-Shot Image Parser15

In collaboration with Google’s Mobile Vision Team

Joint Semantic and 
Instance Segmentation

(high resolution 
input image)

Fully convolutional, 
one-shot parsing

(bottom-up approach)

http://deeperlab.mit.edu/
[Yang et al., arXiv 2019]

One-shot parsing for efficient processing

One backbone for 
two tasks

Results from Xception

http://deeperlab.mit.edu/


DeeperLab: Efficient Image Parsing16

http://deeperlab.mit.edu/

Address memory requirement for large feature map

Wide MobileNet: Increase kernel size rather than depth 

3x3 à 5x5

1

Space-to-depth/depth-to-space: Avoid upsampling2

Achieves near real-time 6.19 
fps on GPU (V100) with 

25.2% PQ and 49.8% PC on 
Mapillary Vistas dataset

http://deeperlab.mit.edu/


Many Efficient DNN Design Approaches

pruning 
neurons

pruning 
synapses

after pruningbefore pruning

Network Pruning Compact Network Architectures

10100101000000000101000000000100

01100110

Reduce Precision

32-bit float

8-bit fixed

Binary 0

No guarantee that DNN algorithm 
designer will use a given approach.

Need flexible hardware!

[Chen et al., SysML 2018]
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DNNs are Becoming More Compact!18

Year Accuracy* # Layers # Weights # MACs
AlexNet 2012 80.4% 8 61M 724M

MobileNet[1] 2017 89.5% 28 4M 569M[1]

* ImageNet Classification Top-5

[1] Howard, arXiv 2017

Filter Decomposition

R

S

C …

…

…

R

S

…
…

C
1
1

*

Bottleneck Layer



Data Reuse Going Against Our Favor19

[1] Szegedy, arXiv 2014

Data Reuse
(MAC/data)

100

101

102

103

104

AlexNet MobileNetGoogLeNet

Amount of Input Fmap Reuse

[1]

median value

(2012) (2014) (2017)



How Does Reuse Affect Performance?20

Example: reuse the same Weight with different Inputs

PE PE PE PE

I1 I2 I3 I4

W1



How Does Reuse Affect Performance?21

Example: reuse the same Weight with different Inputs

PE PE PE PE

I1 I2 I3 I4

W1

Case 1: Dataflow not flexible enough 

I1 I2

W1

PE PE PE PE

Idle PEs

If weight reuse is low, performance will go down!



How Does Reuse Affect Performance?22

Example: reuse the same Weight with different Inputs

PE PE PE PE

I1 I2 I3 I4

W1

I1 I2 I1 I2

W1 W2 W1 W2 …

W1 W1 W2 W2
PE PE PE PE

Case 2: Insufficient NoC bandwidthCase 1: Dataflow not flexible enough 

I1 I2

W1

PE PE PE PE

Idle PEs

If weight reuse is low, performance will go down!



Eyexam
Performance Eval Framework

• A systematic way to quickly understand the
performance limits of DNN accelerators in
a step-by-step process



Eyexam: Performance Eval Framework24

MAC/cycle

MAC/data

Number of PEspeak
perf.

Slope = BW to PEs



Eyexam: Performance Eval Framework25

Number of PEspeak
perf.

Slope = BW to PEs

MAC/cycle

MAC/data

BW
Bounded 

Compute
Bounded



Eyexam: Performance Eval Framework26

Step 1: max workload parallelism
Step 2: max dataflow parallelism
Number of PEspeak

perf.

MAC/cycle

MAC/data



Eyexam: Performance Eval Framework27

Step 1: max workload parallelism
Step 2: max dataflow parallelism

Step 3: # of act. PEs under a finite PE array size
Number of PEs

Step 4: # of act. PEs under fixed PE array dims.

peak
perf.

Step 5: # of act. PEs under fixed storage cap.

Slope = BW to only active PE

MAC/cycle

MAC/data

I1 I2

W1

PE PE PE PE

Idle PEs



Eyexam: Performance Eval Framework28

Step 1: max workload parallelism
Step 2: max dataflow parallelism

Step 3: # of act. PEs under a finite PE array size
Number of PEs

Step 4: # of act. PEs under fixed PE array dims.

peak
perf.

Step 5: # of act. PEs under fixed storage cap.

workload operational intensity

Step 6: lower act. PE util. due to insuff. avg. BW
Step 7: lower act. PE util. due to insuff. inst. BW

MAC/cycle

MAC/data



Example: A Common Design Pattern29

PE



Example: A Common Design Pattern30

PE

input activations
from different

input channels 
(C)



Example: A Common Design Pattern31

PE

input activations
from different

input channels 
(C)

psums from different 
output channels (M)



Example: A Common Design Pattern32

PE

input activations
from different

input channels 
(C)

psums from different 
output channels (M)



Example: A Common Design Pattern33

PE

1. PE array underutilized If
there are fewer input and/or
output channels than the
array dimensions

2. Effective data delivery BW 
also becomes lower à
further impact performance

3. Not scalable àutilization will 
be worse at larger scales

C

M



Example: A Common Design Pattern34

PE

1. PE array underutilized If
there are fewer input and/or
output channels than the
array dimensions

2. Effective data delivery BW 
also becomes lower à
further impact performance

3. Not scalable àutilization will 
be worse at larger scales

C

M

How to effectively deliver data to achieve 
high performance and energy efficiency? 



A More Flexible Data Delivery Strategy35

4 Inputs

1 Weight

2 Inputs

2 Weights

1 Input

4 Weights

PE PE PE PE PE PE PE PE PE PE PE PE

Adapt to the reuse and bandwidth requirements



A More Flexible Mapping Strategy36

4 Inputs

1 Weight

2 Inputs

2 Weights

1 Input

4 Weights

PE PE PE PE PE PE PE PE PE PE PE PE

Unicast

Broadcast
Grouped Multicast

Interleaved Multicast

4 Data Delivery Patterns

Adapt to the reuse and bandwidth requirements



On-Chip Network (NoC) is the Bottleneck37

src

dst

Broadcast Network
(Eyeriss v1 NoC)

Unicast Networks All-to-All Networks

src

dst

src

dst

High Reuse

Low Bandwidth

Low Reuse

High Bandwidth

High Reuse

High Bandwidth

Hard to Scale



Mesh Network – Best of Both Worlds38
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Mesh Network – Best of Both Worlds39
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src

dst

router

High-Bandwidth Mode



Mesh Network – Best of Both Worlds40

src

dst

router

src

dst

router

High-Reuse Mode

src

dst

router

High-Bandwidth Mode



Mesh Network – More Complicated Cases41

Grouped-Multicast Mode

src

dst

router



Mesh Network – More Complicated Cases42

Grouped-Multicast Mode

src

dst

router

src

dst

router

Bandwidth-limited route
(flow control required)

Interleaved-Multicast Mode



Hierarchical
Mesh Network
• Flexible to support patterns ranging from
high reuse to high bandwidth scenarios

• Can be easily scaled at a low cost



Hierarchical Mesh Network44

src
cluster

dst
cluster

router
cluster



Hierarchical Mesh Network45

src
cluster

dst
cluster

router
cluster

Mesh Network for inter-cluster connections



Hierarchical Mesh Network46

src
cluster

dst
cluster

router
cluster

All-to-All Network for intra-cluster connections
Complexity is contained within a cluster



Hierarchical Mesh Network47

High-Bandwidth Mode



Hierarchical Mesh Network48

High-Reuse Mode
from any one src



Hierarchical Mesh Network49

Grouped-Multicast Mode



Hierarchical Mesh Network50

Interleaved-Multicast Mode



Hierarchical Mesh Network51

Interleaved-Multicast Mode

Can interleave more by scaling up the cluster size



Hierarchical Mesh Network52

Interleaved-Multicast Mode

All routes are determined at configuration time
à Routers are circuit-switched (only MUXes)



Scaling the Hierarchical Mesh Network53

… …

Cost of the mesh network scales linearly

Cluster size can scale up depending on
tolerable cost of the all-to-all networks



Eyeriss with Hierarchical Mesh Network54
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Eyeriss v1 Eyeriss v2

• Multicast Network

• Centralized GLB

• Hierarchical Mesh Network

• Distributed GLB



Eyeriss with Hierarchical Mesh Network55
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Eyeriss v1 Eyeriss v2

Speedup Energy Efficiency
AlexNet 6.9× 2.6×

MobileNet 5.6× 1.8×
192 PEs and 192 KB total GLB for both v1 and v2



DNNs are Becoming More Compact!56

[1] Yang, CVPR 2017

pruning 
neurons

pruning 
synapses

after pruningbefore pruning

Network Pruning

Year Accuracy* # Layers # Weights # MACs
AlexNet 2012 80.4% 8 61M 724M
AlexNet
(pruned) 2017 79.6% 8 5.7M

(non-zero)
58M

(non-zero)

* ImageNet Classification Top-5

[1]



Processing in Eyeriss v1 PE57

Input Activations

Psums

C0×S
…

Weights

…



Processing in Eyeriss v1 PE58

M0

Input Activations
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Processing in Eyeriss v1 PE59
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Processing in Eyeriss v1 PE60

M0

Psums

…

Weights

…
C0×S



Processing in a PE with Sparsity61

M0

Psums

…

Weights

…
C0×S



Processing in a PE with Sparsity62

M0

Psums

…

Weights

…
C0×S

Only read non-zeros in a window

Only read non-zeros in a column



Sparse PE Architecture in Eyeriss v263

Iact 
Addr
SPad

9×4b
Regs

Iact
Data
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16×12b
Regs
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Addr
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Regs

Weight 
Data
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96×24b
SRAM
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Input Activations
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Sparse PE Architecture in Eyeriss v264

Iact 
Addr
SPad

9×4b
Regs

Iact
Data
SPad

16×12b
Regs

Weight 
Addr
SPad

16×7b
Regs

Weight 
Data
SPad

96×24b
SRAM

Psum
SPad

32×20b
Regs

Input Activations

iact

weight

Weights

Psums In

Psums Out

MAC unit only takes < 5% area and 3% – 5% power



SIMD Processing in a PE65

M0

Psums

…

Weights

…
C0×S

Cycle 1

Cycle 2

Cycle 3

Cycle 4



Sparse SIMD PE Architecture in Eyeriss v266

each word = 2 weights

2 read / 2 write ports

x2 x2



Eyeriss v2 Performance Summary67

AlexNet sparse-AlexNet MobileNet
GOPS 148.3 405.8 126.4
fps 102.4 280.1 1285.2
Over v1 15.5× 42.5× 10.9×
GOPS/W 277.9 1028.1 198.5
Inferences/J 191.8 709.7 2020.8
Over v1 3.0× 11.3× 1.9×

Same Accuracy



Benchmarking Metrics 
for DNN Hardware

68

How can we compare designs?

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, 
“Efficient Processing of Deep Neural Networks:  A Tutorial and Survey,” 

Proceedings of the IEEE, Dec. 2017



• Accuracy
– Quality of result for a given task

• Throughput
– Analytics on high volume data
– Real-time performance (e.g., video at 30 fps)

• Latency
– For interactive applications (e.g., autonomous navigation)

• Energy and Power
– Edge and embedded devices have limited battery capacity
– Data centers have stringent power ceilings due to cooling costs

• Hardware Cost 
– $$$

Metrics for DNN Hardware69



• Accuracy
– Difficulty of dataset and/or task should be considered

• Throughput
– Number of cores (include utilization along with peak performance)
– Runtime for running specific DNN models

• Latency
– Include batch size used in evaluation

• Energy and Power
– Power consumption for running specific DNN models
– Include external memory access

• Hardware Cost 
– On-chip storage, number of cores, chip area + process technology

Specifications to Evaluate Metrics70



• All metrics should be reported for fair evaluation of design 
tradeoffs

• Examples of what can happen if certain metric is omitted:
– Without the accuracy given for a specific dataset and task, 

one could run a simple DNN and claim low power, high 
throughput, and low cost – however, the processor might 
not be usable for a meaningful task

– Without reporting the off-chip bandwidth, one could build 
a processor with only multipliers and claim low cost, high 
throughput, high accuracy, and low chip power – however, 
when evaluating system power, the off-chip memory access 
would be substantial

• Are results measured or simulated? On what test data?

Comprehensive Coverage71



The evaluation process for whether a DNN system is a viable 
solution for a given application might go as follows: 

1. Accuracy determines if it can perform the given task 

2. Latency and throughput determine if it can run fast enough 
and in real-time

3. Energy and power consumption will primarily dictate the 
form factor of the device where the processing can operate 

4. Cost, which is primarily dictated by the chip area, 
determines how much one would pay for this solution

Evaluation Process72



• The number of weights and MACs are not sufficient for 
evaluating the energy consumption and latency of DNNs
– Designers of efficient DNN algorithms should directly target direct 

metrics such as energy and latency and incorporate into the design  

• Many of the existing DNN processors rely on certain 
properties of the DNN which cannot be guaranteed as the 
wide range techniques used for efficient DNN algorithm 
design has resulted in a more diverse set of DNNs
– DNN hardware used to process these DNNs should be sufficiently 

flexible to support a wide range of techniques efficiently

• Evaluate DNN hardware on a comprehensive set of 
benchmarks and metrics

Summary 73
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