
1

DNN Model and
Hardware Co-Design

ISCA Tutorial (2019)
Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang

http://eyeriss.mit.edu/tutorial.html

2

Reduce Number of Ops and Weights

• Exploit Activation Statistics
• Exploit Weight Statistics
• Exploit Dot Product Computation
• Decomposed Trained Filters
• Knowledge Distillation

3

Sparsity in Fmaps

9 -1 -3
1 -5 5
-2 6 -1

Many zeros in output fmaps after ReLU
ReLU 9 0 0

1 0 5
0 6 0

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
CONV Layer

of activations # of non-zero activations

(Normalized)

4

…

…

…

…

… …

ReL
U

Input Image

Output Image

Filter Filt

Img

Psum

Psum

Buffer
SRAM

108K
B

14×12 PE Array

Link Clock Core Clock

I/O Compression in Eyeriss

Run-Length Compression (RLC)

Example:

Output (64b):

Input: 0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22, …

5b 16b 1b5b 16b 5b 16b
2 12 4 53 2 22 0
RunLevelRunLevelRunLevelTerm

Off-Chip DRAM
64 bits

Decomp

Comp

[Chen et al., ISSCC 2016]

DCNN Accelerator

5

Compression Reduces DRAM BW

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	

DR
AM

	A
cc
es
s	(
M
B)
	

AlexNet	Conv	Layer	

Uncompressed	 Compressed	

1 2 3 4 5
AlexNet Conv Layer

DRAM
Access

(MB)

0

2

4

6
1.2×

1.4×
1.7×

1.8×
1.9×

Uncompressed
Fmaps + Weights

RLE Compressed
Fmaps + Weights

[Chen et al., ISSCC 2016]

Simple RLC within 5% - 10% of theoretical entropy limit

6

Data Gating / Zero Skipping in Eyeriss

Filter
Scratch Pad

(225x16b SRAM)

Partial Sum
Scratch Pad

(24x16b REG)

Filt

Im
g

Input
Psum

2-stage
pipelined
multiplier

Output
Psum

0

Accumulate
Input Psum

1

0

== 0 Zero
Buffer

Enable

Image
Scratch Pad

(12x16b REG)

0
1

Skip MAC and mem reads
when image data is zero.

Reduce PE power by 45%

Reset

[Chen et al., ISSCC 2016]

7

Cnvlutin
• Process Convolution Layers
• Built on top of DaDianNao (4.49% area overhead)
• Speed up of 1.37x (1.52x with activation pruning)

[Albericio et al., ISCA 2016]

8

Pruning Activations

[Reagen et al., ISCA 2016]

Remove small activation values

[Albericio et al., ISCA 2016]

Speed up 11% (ImageNet) Reduce power 2x (MNIST)

Minerva
Cnvlutin

9

Exploit Correlation in Input Data
• Exploit Temporal Correlation of Inputs

– Reduce amount of computation if there is temporal correlation between
frames

– Requires additional storage and need to measure redundancy (e.g.
motion vector for videos)

– Application specific (e.g. videos) – requires that the same operation is
done for each frame (not always the case)

[Zhang et al., FAST, CVPRW 2017], [EVA2, ISCA 2018],
[Euphrates, ISCA 2018], [Riera et al., ISCA 2018]

10

Exploit Correlation in Input Data

• Exploit Spatial Correlation of Inputs
– Delta code neighboring values (activation) resulting in sparse inputs to

each layer
– Reduces storage cost and data movement for improvement in energy-

efficiency and throughput

[Diffy, MICRO 2018]

11

Pruning – Make Weights Sparse

• Optimal Brain Damage
1. Choose a reasonable network

architecture
2. Train network until reasonable

solution obtained

3. Compute the second derivative
for each weight

4. Compute saliencies (i.e. impact
on training error) for each weight

5. Sort weights by saliency and
delete low-saliency weights

6. Iterate to step 2

[Lecun et al., NeurIPS 1989]

retraining

12

Pruning – Make Weights Sparse

pruning
neurons

pruning
synapses

after pruningbefore pruning

Prune based on magnitude of weights

Train Connectivity

Prune Connections

Train Weights

Example: AlexNet
Weight Reduction: CONV layers 2.7x, FC layers 9.9x
(Most reduction on fully connected layers)
Overall: 9x weight reduction, 3x MAC reduction

[Han et al., NeurIPS 2015]

13

Speed up of Weight Pruning on CPU/GPU

Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV

NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV

NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV

Batch size = 1

On Fully Connected Layers Only
Average Speed up of 3.2x on GPU, 3x on CPU, 5x on mGPU

[Han et al., NeurIPS 2015]

14

Design of Efficient DNN Algorithms

• Popular efficient DNN algorithm approaches

pruning
neurons

pruning
synapses

after pruningbefore pruning

Network Pruning

C
1

1
S

R

1

R

S
C

Compact Network Architectures

Examples: SqueezeNet, MobileNet

... also reduced precision

• Focus on reducing number of MACs and weights
• Does it translate to energy savings and reduced latency?

15

Energy-Evaluation Methodology

CNN Shape Configuration
(# of channels, # of filters, etc.)

CNN Weights and Input Data
[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …]

CNN Energy Consumption
L1 L2 L3

Energy

…

Memory
Accesses

Optimization

of MACs
Calculation

…

acc. at mem. level 1
acc. at mem. level 2

acc. at mem. level n

of MACs

Hardware Energy Costs of each
MAC and Memory Access

Ecomp

Edata

Evaluation tool available at http://eyeriss.mit.edu/energy.html

http://eyeriss.mit.edu/energy.html

16

Key Observations

• Number of weights alone is not a good metric for energy
• All data types should be considered

Output Feature Map
43%

Input Feature Map
25%

Weights
22%

Computation
10%

Energy Consumption
of GoogLeNet

[Yang et al., CVPR 2017]

17

Energy-Aware Pruning

Directly target energy and
incorporate it into the

optimization of DNNs to
provide greater energy savings

• Sort layers based on energy and
prune layers that consume most
energy first

• EAP reduces AlexNet energy by
3.7x and outperforms the
previous work that uses
magnitude-based pruning by 1.7x

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Ori. DC EAP

Normalized Energy (AlexNet)

2.1x 3.7x

x109

Magnitude
Based Pruning

Energy Aware
Pruning

Pruned models available at
http://eyeriss.mit.edu/energy.html

[Yang et al., CVPR 2017]

http://eyeriss.mit.edu/energy.html

18

of Operations vs. Latency

• # of operations (MACs) does not approximate latency well

Source: Google (https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)

https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html

19

NetAdapt: Platform-Aware DNN Adaptation
• Automatically adapt DNN to a mobile platform to reach a

target latency or energy budget
• Use empirical measurements to guide optimization (avoid

modeling of tool chain or platform architecture)

[Yang et al., ECCV 2018]

NetAdapt Measure

…

Network Proposals

Empirical Measurements
Metric Proposal A … Proposal Z

Latency 15.6 … 14.3

Energy 41 … 46

…… …

Pretrained
Network Metric Budget

Latency 3.8

Energy 10.5

Budget

Adapted
Network

… …

Platform

A B C D Z

Code to be released at http://netadapt.mit.edu

http://netadapt.mit.edu/

20

Improved Latency vs. Accuracy Tradeoff
• NetAdapt boosts the real inference speed of MobileNet

by up to 1.7x with higher accuracy

+0.3% accuracy
1.7x faster

+0.3% accuracy
1.6x faster

Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018

*Tested on the ImageNet dataset and a Google Pixel 1 CPU

[Yang et al., ECCV 2018]

21

Compression of Weights & Activations

• Compress weights and activations between DRAM
and accelerator

• Variable Length / Huffman Coding

• Tested on AlexNet à 2× overall BW Reduction

[Moons et al., VLSI 2016; Han et al., ICLR 2016]

Value: 16’b0 à Compressed Code: {1’b0}

Value: 16’bx à Compressed Code: {1’b1, 16’bx}

Example:

22

Compression Overhead

Index (non-zero position info – e.g., IA and JA for CSR) accounts for
approximately half of storage for fine grained pruning

[Han et al., ICLR 2016]

23

Coarse-Grained Pruning

…

E

output fmap

…

…

many
filters (M)

Many
Output Channels (M)

M

…

R

S
1

R

S

… …

…

C …

M

H

input fmap

…

…

……C…

C …

…

…

W F

May prune by eliminating entire filter
planes or extremely sparse input
activation planes or just a tile of either.

24

Structured/Coarse-Grained Pruning
• Scalpel

– Prune to match the underlying data-parallel hardware
organization for speed up

[Yu et al., ISCA 2017]

Dense weights Sparse weights

Example: 2-way SIMD

25

Exploit Redundant Weights
• Preprocessing to reorder weights (ok since weights are

known)

• Perform addition before multiplication to reduce number
of multiplies and reads of weights

• Example: Input = [1 2 3] and filter [A B A]

Typical processing: Output = A*1+B*2+A*3

If reorder as [A A B]: Output = A*(1+3)+B*1

3 multiplies and 3 weight reads

2 multiplies and 2 weight reads

Note: Bitwidth of multiplication may need to increase

[UCNN, ISCA 2018]

26

Exploit ReLU
• Reduce number operations when if resulting activation will be

negative as ReLU will set to zero

• Need to either perform preprocess (sort weights) or minimize
prediction overhead and error

[PredictiveNet, ISCAS 2017], [SnaPEA, ISCA 2018], [Song et al., ISCA 2018]

27

Compact Network Architectures

• Break large convolutional layers into a series of
smaller convolutional layers
– Fewer weights, but same effective receptive field

• Before Training: Network Architecture Design
(already discussed this morning; e.g., MobileNet)

• After Training: Decompose Trained Filters

28

Decompose Trained Filters
After training, perform low-rank approximation by applying tensor
decomposition to weight kernel; then fine-tune weights for accuracy

[Lebedev et al., ICLR 2015]R = canonical rank

29

Decompose Trained Filters

[Denton et al., NeurIPS 2014]

• Speed up by 1.6 – 2.7x on CPU/GPU for CONV1,
CONV2 layers

• Reduce size by 5 - 13x for FC layer
• < 1% drop in accuracy

Original Approx.
Visualization of Filters

30

Decompose Trained Filters on Phone

[Kim et al., ICLR 2016]

Tucker Decomposition

31

Knowledge Distillation

[Bucilu et al., KDD 2006],[Hinton et al., arXiv 2015]

Complex
DNN B

(teacher)

Simple DNN
(student)

so
ftm

ax

so
ftm

ax

Complex
DNN A

(teacher) so
ftm

ax

scores
class
probabilities

Try to match

