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Processing Near vs. In Memory

Modified image from [Gonugondla, ISSCC 2018]
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Processing Near Memory
• Bring compute closer to the memory 
• Benefits

– Increase memory bandwidth 
– Reduce energy per access

• Challenges
– Cost

• Embedded DRAM (eDRAM)
• 3D Stacked Memory (DRAM, SRAM)



4

eDRAM (DaDianNao)

• Advantages of eDRAM
– 2.85x higher density than SRAM
– 321x more energy-efficient than DRAM (DDR3)

• Store weights in eDRAM (36MB)
– Target fully connected layers since dominated by weights

[Chen et al., DaDianNao, MICRO 2014]

16 Parallel 
Tiles
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Stacked DRAM (NeuroCube)
• NeuroCube on Hybrid Memory Cube Logic Die 

– 6.25x higher BW than DDR3

• HMC (16 ch x 10GB/s) > DDR3 BW (2 ch x 12.8GB/s)

– Computation closer to memory (reduce energy)

[Kim et al., NeuroCube, ISCA 2016]
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Stacked DRAM (TETRIS)

[Gao et al., Tetris, ASPLOS 2017]

Eyeriss
design

• Explores the use of HMC with the Eyeriss spatial 
architecture and row stationary dataflow

• Allocates more area to the computation (PE array) than 
on-chip memory (global buffer) to exploit the low energy 

and high throughput properties of the HMC
– 1.5x energy reduction, 4.1x higher throughput vs. 2-D DRAM
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Stacked SRAM (Quest)

• Explores use of stacked SRAM 
which has lower latency and power 
dissipation than DRAM
– Lower storage density than DRAM 

but can stack more due to low 
power density

• Use inductive coupling to connect 
to SRAM rather than TSV for lower 
integration cost 

– 9.6Gb/s per channel x 24 channels = 
28.8 GB/s

[Ueyoshi, ISSCC 2018]
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Processing In Memory

• Embed processing in peripheral or perform compute in analog domain

• Benefits 
– read multiple weights in parallel (high bandwidth)
– perform multiple computations in parallel (high throughput)

– Increase density of compute engines (lower capacitance on input delivery)
– reduce number of conversions (sense amp only applied to final accumulated value) 

• Challenges
– non-idealities of analog compute (non-linearity, sensitivity to process and temperature 

variations)

– conversion cost from analog to digital (fewer conversions, but each one is more expensive)
– increase size of bit cell and increase size in peripheral (reduce storage density)

– limited precision that can be stored in each storage element (e.g. bit cell, device); need to 
use bit serial or multiple elements if want to support higher precision; also may need to use 
two arrays to enable differential signal to represent negative values

• Memory Technology
– SRAM, DRAM, NVM (Flash, memristors)
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Dataflow for PIM
• Weight stationary dataflow

• Overhead in conversion 
from analog to digital and 
digital back to analog
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DRAM (DRISA)

• Build multiplier and adders from 
NOR logic in DRAM

– Add shift logic to output of DRAM 
before write back

• Requires multiple cycles
– Number of cycles depends on bit 

width

– Tradeoff parallelism for cycles

• Parallelism dictated by array 
width and number of arrays

• Demonstrate on BNN: 1b 
weights, 8 bit activation for 
AlexNet, VGG-16, VGG-19, 
ResNet

[Li, MICRO 2017]
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Analog Computation

V1
G1

I1 = V1×G1
V2

G2

I2 = V2×G2

I = I1 + I2 
= V1×G1 + V2×G2

Figure Source:  ISAAC, ISCA 2016

• Conductance = Weight
• Voltage = Input
• Current = Voltage × Conductance 
• Sum currents for addition

Input = V1, V2, …

Filter Weights = G1, G2, … (conductance)

Weight Stationary Dataflow

Output = Weight × Input∑
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Compute Dot Product in SRAM
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[J. Zhang, 
VLSI 2016] [S. Gonugondla, 

ISSCC 2018]

[A. Biswas, ISSCC 2018]

Approaches vary in terms of how data applied to BL and/or WL
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Analog Compute with Flash Memory
Floating Gate: Program by changing threshold voltage (shift I-V curve)

Image source: 
Diorio, ISFIIE 1999

Source: Mythic, 
Hot Chips 2018
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Memristor Computation

• Advantages
– High Density (< 10nm x 10nm size*)

• ~30x smaller than SRAM**

• 1.5x smaller than DRAM**

– Non-Volatile
– Operates at low voltage
– Computation within memory (in situ)

• Reduce data movement

Use memristors as programmable 
weights (resistance)

*[Govoreanu et al., IEDM 2011], **ITRS 2013
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Memristor

[Chi et al., ISCA 2016]
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Challenges with Memristors

• Limited Precision 
• A/D and D/A Conversion

• Array Size and Routing
– Wire dominates energy for array size of 1k × 1k
– IR drop along wire can degrade read accuracy

• Write/programming energy
– Multiple pulses can be costly

• Variations & Yield
– Device-to-device, cycle-to-cycle

– Non-linear conductance across range 

[Eryilmaz et al., ISQED 2016]
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ISAAC

[Shafiee et al., ISCA 2016]

V1
G1 I1 = V1.G1

V2
G2

I2 = V2.G2

I = I1 + I2 =V1.G1 + V2.G2

S&H S&H S&H S&H S&H S&H S&H S&H

ADC

Shift & ADD

• eDRAM using memristors

• 16-bit dot-product operation
– 8 x 2-bits per memristors

– 1-bit per cycle computation
– Trade off area and cycles to address low 

precision 
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ISAAC

[Shafiee et al., ISCA 2016]

Eight 128x128 
arrays per IMA

12 IMAs per Tile

14x12 Tiles in 
ISAAC
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PRIME

[Chi et al., ISCA 2016]

• Bit precision for each 256x256 ReRAM array

– 3-bit input, 4-bit weight (2x for 6-bit input and 8-bit weight)

– Dynamic fixed point (6-bit output)

• Reconfigurable to be main memory or accelerator

– 4-bit MLC computation; 1-bit SLC for storage
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Fabricated Arrays
– Ternary weights and binary activations

– Use two arrays for ternary weights {-1, 0, +1}

• [Su, VLSI 2017]
– Array size: 32x32 (2 arrays)

• Accumulate 32 values into a 3-bit output

– Demo Task
• Input: 5x5 image (25 values) 

• Classify with 2 FC (25x32x4)

• Output: 4 directions 

• nvCIM [Chen, ISSCC 2018]

– Array size: 512 x 256 (8 arrays)
• Accumulate 512 values into a 3-bit output

• Max 32 rows activated at a time due to sensing 
margin and yield

– Demo Task
• Input: 5x5 image (MNIST) – 96.2% accuracy

• Classify with 2 FC (25x25x3) ??

• Output: 9 digits
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Optical Neural Network

[Shen et al., Nature Photonics 2017]

Matrix Multiplication in the Optical Domain

The photodetection rate is 100 GHz

“In principle, such a system can be at least 
two orders of magnitude faster than 
electronic neural networks (which are 

restricted to a GHz clock rate)”


