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Approaches

• Reduce size of operands for storage/compute
– Floating point à Fixed point

– Bit-width reduction
– Non-linear quantization

• Reduce number of operations for storage/compute
– Exploit Activation Statistics (Compression)
– Network Pruning

– Compact Network Architectures
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Taxonomy
• Precision refers to the number of levels 

– Number of bits = log2 (number of levels)

• Quantization: mapping data to a smaller set of levels
– Linear, e.g., fixed-point

– Non-linear

• Computed (e.g., floating point, log-domain)

• Table lookup (e.g., learned)

Objective: Reduce size to improve speed and/or reduce energy 
while preserving accuracy
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Cost of Operations
Operation: Energy 

(pJ)

8b Add 0.03

16b Add 0.05

32b Add 0.1

16b FP Add 0.4

32b FP Add 0.9

8b Mult 0.2

32b Mult 3.1

16b FP Mult 1.1

32b FP Mult 3.7

32b SRAM Read (8KB) 5

32b DRAM Read 640

Area 
(µm2)

36

67

137

1360

4184

282

3495

1640

7700

N/A

N/A

[Horowitz, “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014] 

Relative Energy Cost

1 10 102 103 104

Relative Area Cost

1 10 102 103
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Number Representation
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Range Accuracy

10-38 – 1038 .000006%

6x10-5 - 6x104 .05%

0 – 2x109 ½

0 – 6x104 ½

0 – 127 ½

Image Source: B. Dally
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Floating Point à Fixed Point

1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 032-bit float

exponent (8-bits) mantissa (23-bits)sign

8-bit 
fixed

0 1 1 0 0 1 1 0

sign

integer 
(4-bits)

mantissa (7-bits)

fractional
(3-bits)

s = 012.75 m=102

Floating Point

Fixed Point

e = 74s = 1 m = 20484-1.112934 x 10-16
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N-bit Precision

Accumulate+

Weight 
(N-bits)

Activation 
(N-bits)

N x N 
multiply

2N-bits

2N+M-bits

Output
(N-bits)

Quantize 
to N-bits

For no loss in precision, M is determined based on largest 
filter size (in the range of 10 to 16 bits for popular DNNs)
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Dynamic Fixed Point

1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 032-bit float

exponent (8-bits) mantissa (23-bits)sign

8-bit 
dynamic 

fixed

0 1 1 0 0 1 1 0

sign

integer 
([7-f ]-bits)

mantissa (7-bits)

fractional
(f-bits)

f = 3s = 012.75 m=102

8-bit 
dynamic 

fixed

0 1 1 0 0 1 1 0

sign mantissa (7-bits)

fractional
(f-bits)

f = 9s = 00.19921875 m=102

Allow f to vary based on data type and layer

Floating Point

Fixed Point

e = 74s = 1 m = 20484-1.112934 x 10-16
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Impact on Accuracy

[Gysel et al., Ristretto, ICLR 2016]

w/o fine tuning

Top-1 accuracy 
on of CaffeNet
on ImageNet
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Avoiding Dynamic Fixed Point

AlexNet
(Layer 6)

Image Source: Moons 
et al, WACV 2016

Batch normalization ‘centers’ dynamic range

‘Centered’ dynamic ranges might reduce need for 
dynamic fixed point
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Nvidia PASCAL

“New half-precision, 16-bit 
floating point instructions 
deliver over 21 TeraFLOPS for 
unprecedented training 
performance. With 47 TOPS 
(tera-operations per second) 
of performance, new 8-bit 
integer instructions in Pascal 
allow AI algorithms to deliver 
real-time responsiveness for 
deep learning inference.” 

– Nvidia.com (April 2016)
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Google’s Tensor Processing Unit (TPU)

“ With its TPU Google has 
seemingly focused on delivering 
the data really quickly by cutting 
down on precision. Specifically, 
it doesn’t rely on floating point 
precision like a GPU 
….
Instead the chip uses integer 
math…TPU used 8-bit integer.”

- Next Platform (May 19, 2016)

[Jouppi et al., ISCA 2017]
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Microsoft BrainWave

[Chung et al., Hot Chips 2017]

Narrow Precision for Inference

Custom 8-bit floating point format (“ms-fp8”)
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Precision Varies from Layer to Layer

[Moons et al., WACV 2016][Judd et al., ArXiv 2016]
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Bitwidth Scaling (Speed)
Bit-Serial Processing: Reduce Bit-width à Skip Cycles

Speed up of 2.24x vs. 16-bit fixed

[Judd et al., Stripes, CAL 2016]
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Bitwidth Scaling (Power)

[Moons et al., VLSI 2016]

Reduce Bit-width à
Shorter Critical Path 
à Reduce Voltage

Power reduction of 
2.56x vs. 16-bit fixed
On AlexNet Layer 2
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Reconfigure Spatial Multiply

[Envision, ISSCC 2017]

Configure 16bx16b multiplication into two 8x8b or 
four 4x4b (up to 256-64=192 adders are idle). 

Body bias to reduce leakage at low precision since 
more adders are idle (1.2x reduction)
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Reconfigure Spatial Multiply

[Bit Fusion, ISCA 2018]

Build larger multipliers (Fused Unit) from small 2x2 multipliers with 
programmable shifters (BitBrick)

One 8bx8b, four 2bx8b, sixteen 2bx2b 
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Binary Nets

• Binary Connect (BC)
– Weights {-1,1}, Activations 32-bit float
– MAC à addition/subtraction
– Accuracy loss: 19% on AlexNet

• Binarized Neural Networks (BNN)
– Weights {-1,1}, Activations {-1,1}
– MAC à XNOR
– Accuracy loss: 29.8% on AlexNet

Binary Filters

[Courbariaux, arXiv 2016]

[Courbariaux, NeurIPS 2015]
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Scale the Weights and Activations 

[Rastegari et al., BWN & XNOR-Net, ECCV 2016]

• Binary Weight Nets (BWN)
– Weights {-α, α} à except first and last layers are 32-bit float
– Activations: 32-bit float
– α determined by the l1-norm of all weights in a filter
– Accuracy loss: 0.8% on AlexNet

• XNOR-Net
– Weights {-α, α}
– Activations {-βi, βi} à except first and last layers are 32-bit float
– βi determined by the l1-norm of all activations across channels 

for given position i of the input feature map 
– Accuracy loss: 11% on AlexNet

Hardware needs to support 
both activation precisions

Scale factors (α, βi) can change per filter or position in filter
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Ternary Nets

• Allow for weights to be zero
– Increase sparsity, but also increase number of bits (2-bits)

• Ternary Weight Nets (TWN)
– Weights {-w, 0, w} à except first and last layers are 32-bit float
– Activations: 32-bit float
– Accuracy loss: 3.7% on AlexNet

• Trained Ternary Quantization (TTQ)
– Weights {-w1, 0, w2} à except first and last layers are 32-bit float
– Activations: 32-bit float
– Accuracy loss: 0.6% on AlexNet

[Li et al., arXiv 2016]

[Zhu et al., ICLR 2017]
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Computed Non-linear Quantization 

Log Domain Quantization

Product = X << WProduct =  X * W

[Lee et al., LogNet, ICASSP 2017]
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Log Domain Quantization
• Weights: 5-bits for CONV, 4-bit for FC; Activations: 4-bits
• Accuracy loss: 3.2% on AlexNet

[Miyashita et al., arXiv 2016],
[Lee et al., LogNet, ICASSP 2017]

Shift and Add

WS
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Reduce Precision Overview

• Learned mapping of data to quantization levels   
(e.g., k-means)

• Additional Properties
– Fixed or Variable (across data types, layers, channels, etc.)

[Han et al., ICLR 2016]

Implement with 
look up table
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Non-Linear Quantization Table Lookup
Trained Quantization: Find K weights via K-means clustering
to reduce number of unique weights per layer (weight sharing)

[Han et al., Deep Compression, ICLR 2016]

Weight 
Decoder/
Dequant 
U x 16b 

Weight  
index 

(log2U-bits) 
Weight  

(16-bits) 
Weight  
Memory 
CRSM x 

log2U-bits 
Output 

Activation 
(16-bits) 

  
  

  
  

MAC 

Input 
Activation  
(16-bits) 

Example: AlexNet (no accuracy loss)
256 unique weights for CONV layer

16 unique weights for FC layer

Does not reduce 
precision of MAC

Overhead
Smaller Weight 

Memory

Consequences: Narrow weight memory and second access from (small) table
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Summary of Reduce Precision
Category Method Weights

(# of bits)
Activations
(# of bits)

Accuracy Loss vs. 
32-bit float (%)

Dynamic Fixed 
Point

w/o fine-tuning 8 10 0.4
w/ fine-tuning 8 8 0.6

Reduce weight Ternary weights 
Networks (TWN)

2* 32 3.7

Trained Ternary 
Quantization (TTQ)

2* 32 0.6

Binary Connect (BC) 1 32 19.2
Binary Weight Net 
(BWN)

1* 32 0.8

Reduce weight 
and activation

Binarized Neural Net 
(BNN)

1 1 29.8

XNOR-Net 1* 1 11
Non-Linear LogNet 5(conv), 4(fc) 4 3.2

Weight Sharing 8(conv), 4(fc) 16 0

* first and last layers are 32-bit float


