High-throughput Computation of Shannon
Mutual Information on Chip

Peter Zhi Xuan Li*, Zhengdong Zhang*, Sertac Karaman, Vivienne Sze

Massachusetts Institute of Technology

Where to Go Next: Planning and Mapping

e Exploration: decide where to go by computing Shannon Mutual Information (Ml)

Occupancy grid map, M

H(M|Z)

Perspective updated
map entropy

H(M)

Current map
entropy

|

Mutual information map, I(M; Z)

I(M; Z)

Mutual
information

Autonomous exploration with a Occupancy
mini racecar using motion map with
capture for localization planned path

MI surface

1

Computing Shannon MI at more locations allows for more optimal
selection of the next scan location for mapping

Hardware Design Challenge: Data Delivery to Ml Cores

* Computing Shannon Ml for multiple sensor beams is extremely parallel, which
requires a compute hardware with a multi-port memory architecture

Occupancy map

Process beams in parallel with multiple cores using a multi-port

memory to store the occupancy map

Core 1

Core 2

v

Core1

Core 3

v

Core2

‘ Occupancy
o map

v

Core3

v

Core N

Parallelism and high system throughput require each beam to use its own

memory read port to independently access the map

Hardware Design Challenge: Data Delivery to Ml Cores

» Data delivery, specifically memory bandwidth (not compute), limits the throughput

A standard, low power SRAM is Partition the occupancy map into several
limited to two ports! memory banks to increase memory bandwidth
Core 1 Bank 1 > » Core1
Port 1 Q .
—b m »
> >
SIS Core 3 ‘ £ Bank 3 "| Arbiter *__Core3
map g_
Port 2 3
— o
Core N Bank M : » CoreN

Specialized banking pattern required to optimize data delivery to
the cores

Specialized Memory Architecture

* Goal: Maximize data delivery bandwidth to computation cores

Memory access pattern at every cycle Diagonally partition occupancy map
TB f [[] Banko
7 7 // D Bank |
6 [Bank2
/5 Bl Bankcs
s | [Banka4
3 5 | 5| 7 [] Banks
R [] Banke
. I 5 | 3 6| 718, [] Bank7

* Final design: diagonal partitioned occupancy grid map of size 512x512 into 16 dual-
port memory banks provides enough bandwidth for 16 cores.

Result

ot System Throughput vs. Cores

X

8§ —G;Basel;ne (1I banlk) ”";

7 || 16 banksvertical banking,L~1 ; Theoretical limit (dotted black line):

6 £| 5 16 banke diagenal banking L2 : . . :

| o L barke.diagana banking,.= _g throughput increases linearly with cores
=i | Baseline (blue line):
23} { throughput is memory bandwidth limited
S | X
= ~ f :

21 // Proposed system (purple line):

throughput within 94% of theoretical limit
o o ——————0
2 4 6 8 10 12 14 16

Number of FSMI cores

e System throughput: M| computation for the entire map with 200x200 grids at 2Hz
(>100x faster than single-threaded Intel Xeon CPU)

* System power: 2W on Xilinx FPGA, which is 10x less than single-threaded Intel Xeon CPU

Bl Summary

* Having a parallelizable algorithm is not a sufficient condition for high-throughput
computation on hardware

* Throughput of the multicore hardware is also dictated by its memory architecture
and data delivery method to the cores

* Near real-time computation of Shannon MI for an entire map with low power
consumption

Journal paper with proofs for the
optimality of the memory
architecture and an ASIC
implementation coming soon!

