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Where to Go Next: Planning and Mapping

e Exploration: decide where to go by computing Shannon Mutual Information (Ml)
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Computing Shannon MI at more locations allows for more optimal
selection of the next scan location for mapping




Hardware Design Challenge: Data Delivery to Ml Cores

* Computing Shannon Ml for multiple sensor beams is extremely parallel, which
requires a compute hardware with a multi-port memory architecture

Occupancy map

Process beams in parallel with multiple cores using a multi-port

memory to store the occupancy map
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Parallelism and high system throughput require each beam to use its own

memory read port to independently access the map




Hardware Design Challenge: Data Delivery to Ml Cores

» Data delivery, specifically memory bandwidth (not compute), limits the throughput

A standard, low power SRAM is Partition the occupancy map into several
limited to two ports! memory banks to increase memory bandwidth
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Specialized banking pattern required to optimize data delivery to
the cores




Specialized Memory Architecture

* Goal: Maximize data delivery bandwidth to computation cores

Memory access pattern at every cycle Diagonally partition occupancy map
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* Final design: diagonal partitioned occupancy grid map of size 512x512 into 16 dual-
port memory banks provides enough bandwidth for 16 cores.



Result
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e System throughput: M| computation for the entire map with 200x200 grids at 2Hz
(>100x faster than single-threaded Intel Xeon CPU)

* System power: 2W on Xilinx FPGA, which is 10x less than single-threaded Intel Xeon CPU



Bl Summary

* Having a parallelizable algorithm is not a sufficient condition for high-throughput
computation on hardware

* Throughput of the multicore hardware is also dictated by its memory architecture
and data delivery method to the cores

* Near real-time computation of Shannon MI for an entire map with low power
consumption

Journal paper with proofs for the
optimality of the memory
architecture and an ASIC
implementation coming soon!




