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Challenge
Computing the mutual information I(M;Z) is 
slow (high time complexity) and thus 
becomes the bottleneck of autonomous 
exploration system.

Robotic Exploration
Where should the robot move next to learn 
the most about its environment?

Occupancy Map Mutual Information (MI)
𝐻 𝑀 𝑍 = 𝐻 𝑀 − 𝐼(𝑀; 𝑍)

Theoretically Proven Approach
Move to the location that maximizes the 
mutual information between prospective 
range measurements and the map.

5. Extending MI Computation to 3D Environments
Computing MI on a 3D map 

requires a significant amount 
of storage and computation 

Compress the 3D map with 
OctoMap 

[Hornung, et al., Autonomous Robots, 2013]
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Ray-tracing 
in OctoMap

𝒏𝒓 ≪ 𝒏, significant reduction if the 
constants are comparable 𝑶(𝒏)à 𝑶(𝒏𝒓)

For more information, please see:
Z. Zhang et al., FSMI: Fast computation of 

Shannon Mutual Information for 
information-theoretic mapping, arXiv 2019 

http://arxiv.org/abs/1905.02238

Computing FSMI directly on a 3D OctoMap 
achieves an acceleration ratio of 𝟖×

Compute FSMI on the Compressed 3D Map

Uncompressed input format
!", !", … , !", !%, … , !%, !&, … , !&, … , !'(, … , !')

*" *% *& *')+ + + = -
Compressed format (Run Length Encoding)

(!", *"), (!%, *%), !&, *& , … , (!'), *'))

-(

A 3D environment 
featuring an arch, a giant 

cat, a box and a tree 

3D OctoMap where 
color indicates the 
height of a voxel

4. Results

2. Autonomous Exploration Pipeline & MI Formulation

3. Hardware Architecture

1. Introduction & Summary of Contribution

Single core performance:
10x compared with a single 
core (thread) Intel Xeon CPU

Multicore performance: 
throughput within 94% of theoretical 

limit (unlimited bandwidth) 

System throughput: entire MI map with 200x200 cells at 2Hz, 
>100x faster than a single core (thread) Intel Xeon CPU

Power: 2W on Xilinx XC7Z045 FPGA, 10x less than Intel Xeon CPU 

Exploration path: 
20% shorter trajectory

Our Contribution
Multicore mutual information (MI) 
hardware accelerator consisting of:
1) Specialized memory architecture
2) Fast & fair arbiter
3) 16 high-performance MI cores

System Performance
Ø Computes the mutual information for an 

entire map of 20m x 20m at 0.1m 
resolution in under a second while 
consuming under 2W on an FPGA

Typical Autonomous Exploration Pipeline

Approximate Fast Shannon Mutual Information (FSMI)
[Zhang, et al., ICRA 2019]

where

Computing Shannon 
MI at more locations 

allows for more 
optimal selection of 

the next scan location 
for exploration

a) Algorithm is highly parallelizable across MI 
computation for every sensor beam 

Ideally, each core computes MI for each beam using its 
own memory read port to independently access the map

b) Standard, low power SRAM has only two ports!

Data delivery, specifically memory bandwidth
(not compute), limits the system throughput

c) Partition and store the occupancy map into several 
memory banks to increase memory bandwidth 

Specialized map partitioning pattern & arbiter are 
required to optimize data delivery to the cores

Challenge: Memory Bandwidth (Not Compute) Limits Performance

Proposed Solution & Detailed Implementation

1. Diagonal partitioning of the occupancy map 
minimizes memory read conflicts among cores

2. Round-robin arbiter fairly and quickly resolves 
memory read conflicts among cores

3. High-performance mutual information cores using  
parallelized and pipelined internal operations

Ø All cores access the same column or row of the map
every cycle (left Figure)

Ø Diagonal banking pattern minimizes read conflicts by
making cores access different banks every cycle (right
Figure)

Ø Naïve implementation (left Figure) executes in linear time 
O(T), T = # of cores

Ø Proposed implementation (right Figure) executes in 
logarithmic time O(log(T)+log(B)), T = # of cores, B = # of banks. 
(T=16, B=16 in our design)

Ø P(ej), Ck and I(M;Z) are executed in parallel while their
individual operations are pipelined internally

Ø MI for each beam is computed in n+15 cycles, where n
is the number of cells in a sensor beam

Ø Final hardware system contains 16 cores

Hardware architecture of the FSMI core

Note: Parameters (highlighted in red) needed for FSMI computation are
generated by Look Up Tables using quantized occupancy value bi from the map

http://arxiv.org/abs/1905.02238

