
High-throughput Computation of
Shannon Mutual Information on Chip

Peter Zhi Xuan Li*, Zhengdong Zhang*, Sertac Karaman, Vivienne Sze
Massachusetts Institute of Technology

Challenge
Computing the mutual information I(M;Z) is
slow (high time complexity) and thus
becomes the bottleneck of autonomous
exploration system.

Robotic Exploration
Where should the robot move next to learn
the most about its environment?

Occupancy Map Mutual Information (MI)
𝐻 𝑀 𝑍 = 𝐻 𝑀 − 𝐼(𝑀; 𝑍)

Theoretically Proven Approach
Move to the location that maximizes the
mutual information between prospective
range measurements and the map.

5. Extending MI Computation to 3D Environments
Computing MI on a 3D map

requires a significant amount
of storage and computation

Compress the 3D map with
OctoMap

[Hornung, et al., Autonomous Robots, 2013]

𝑄0

𝑄1
𝑄2

𝑄3
𝑄4

𝑞0 𝑞1 𝑞2 𝑞3 𝑞4

𝑜1 𝑜2 𝑜3 𝑜4

𝑄0

𝑄1
𝑄2

𝑄3
𝑄4

𝑄0 𝑄1 𝑄2 𝑄3 𝑄4

𝑜1 𝑜1 𝑜1 𝑜1 𝑜2 𝑜2 𝑜2 𝑜3 𝑜3 𝑜4

𝐿1 𝐿2 𝐿3 𝐿4

Ray-tracing
in OctoMap

𝒏𝒓 ≪ 𝒏, significant reduction if the
constants are comparable 𝑶(𝒏)à 𝑶(𝒏𝒓)

For more information, please see:
Z. Zhang et al., FSMI: Fast computation of

Shannon Mutual Information for
information-theoretic mapping, arXiv 2019

http://arxiv.org/abs/1905.02238

Computing FSMI directly on a 3D OctoMap
achieves an acceleration ratio of 𝟖×

Compute FSMI on the Compressed 3D Map

Uncompressed input format
!", !", … , !", !%, … , !%, !&, … , !&, … , !'(, … , !')

*" *% *& *')+ + + = -
Compressed format (Run Length Encoding)

(!", *"), (!%, *%), !&, *& , … , (!'), *'))

-(

A 3D environment
featuring an arch, a giant

cat, a box and a tree

3D OctoMap where
color indicates the
height of a voxel

4. Results

2. Autonomous Exploration Pipeline & MI Formulation

3. Hardware Architecture

1. Introduction & Summary of Contribution

Single core performance:
10x compared with a single
core (thread) Intel Xeon CPU

Multicore performance:
throughput within 94% of theoretical

limit (unlimited bandwidth)

System throughput: entire MI map with 200x200 cells at 2Hz,
>100x faster than a single core (thread) Intel Xeon CPU

Power: 2W on Xilinx XC7Z045 FPGA, 10x less than Intel Xeon CPU

Exploration path:
20% shorter trajectory

Our Contribution
Multicore mutual information (MI)
hardware accelerator consisting of:
1) Specialized memory architecture
2) Fast & fair arbiter
3) 16 high-performance MI cores

System Performance
Ø Computes the mutual information for an

entire map of 20m x 20m at 0.1m
resolution in under a second while
consuming under 2W on an FPGA

Typical Autonomous Exploration Pipeline

Approximate Fast Shannon Mutual Information (FSMI)
[Zhang, et al., ICRA 2019]

where

Computing Shannon
MI at more locations

allows for more
optimal selection of

the next scan location
for exploration

a) Algorithm is highly parallelizable across MI
computation for every sensor beam

Ideally, each core computes MI for each beam using its
own memory read port to independently access the map

b) Standard, low power SRAM has only two ports!

Data delivery, specifically memory bandwidth
(not compute), limits the system throughput

c) Partition and store the occupancy map into several
memory banks to increase memory bandwidth

Specialized map partitioning pattern & arbiter are
required to optimize data delivery to the cores

Challenge: Memory Bandwidth (Not Compute) Limits Performance

Proposed Solution & Detailed Implementation

1. Diagonal partitioning of the occupancy map
minimizes memory read conflicts among cores

2. Round-robin arbiter fairly and quickly resolves
memory read conflicts among cores

3. High-performance mutual information cores using
parallelized and pipelined internal operations

Ø All cores access the same column or row of the map
every cycle (left Figure)

Ø Diagonal banking pattern minimizes read conflicts by
making cores access different banks every cycle (right
Figure)

Ø Naïve implementation (left Figure) executes in linear time
O(T), T = # of cores

Ø Proposed implementation (right Figure) executes in
logarithmic time O(log(T)+log(B)), T = # of cores, B = # of banks.
(T=16, B=16 in our design)

Ø P(ej), Ck and I(M;Z) are executed in parallel while their
individual operations are pipelined internally

Ø MI for each beam is computed in n+15 cycles, where n
is the number of cells in a sensor beam

Ø Final hardware system contains 16 cores

Hardware architecture of the FSMI core

Note: Parameters (highlighted in red) needed for FSMI computation are
generated by Look Up Tables using quantized occupancy value bi from the map

http://arxiv.org/abs/1905.02238

