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Wide Range of Compute-Intensive Applications2

Video 
Compression

Robotics:
Autonomous Navigation

AI:
Deep Neural Networks
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• Rapidly growing volume of data to be processed
• Increasingly complex algorithms for higher quality of result
• Require high throughput/low latency and energy efficiency
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Parallel 
CABAC

[ISSCC 2011]

Need Domain Specific Architectures à 2 to 3 years to design!



• Exploit properties of workloads
– Specialized hardware translates parallelism, data access patterns and 

representation into increased throughput and energy efficiency

• Design more efficient workloads
– Co-design of algorithms and hardware without affecting quality of result

• Define range of workloads 
– Balance flexibility and efficiency depending on application requirements

Key Design Considerations3

How can Agile and Open Hardware help 
accelerate the design process?



Deep Neural Networks 
(DNN)
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Properties We Can Leverage
• Operations exhibit high parallelism

à high throughput possible

• Memory Access is the Bottleneck

ALU

Memory Read Memory WriteMAC*

* multiply-and-accumulate

filter weight
image pixel
partial sum updated 

partial sum

200x 1x

DRAM DRAM
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Properties We Can Leverage
• Operations exhibit high parallelism

à high throughput possible

• Input data reuse opportunities (up to 500x)
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Data Movement is Expensive

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 

Design memory hierarchy and dataflow to 
exploit data reuse at low cost memories
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Eyeriss: Deep Neural Network Accelerator
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[Chen et al., ISSCC 2016, ISCA 2016] 

[Joint work with Joel Emer]

Results for AlexNet

[Chen et al., ISSCC 2016, ISCA 2016] 

Exploits data reuse for 100x reduction in memory accesses from global 
buffer and 1400x reduction in memory accesses from off-chip DRAM
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Features: Energy vs. Accuracy 
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Measured in on VOC 2007 Dataset
1. DPM v5 [Girshick, 2012]
2. Fast R-CNN [Girshick, CVPR 2015] 

Exponential

Linear

Video 
Compression

[Suleiman et al., ISCAS 2017]

Measured in 65nm*

* Only feature extraction. Does 
not include data, classification 

energy, augmentation and 
ensemble, etc.
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• Popular efficient DNN algorithm approaches 

Design of Efficient DNN Algorithms

pruning 
neurons

pruning 
synapses

after pruningbefore pruning

Network Pruning
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Compact Network Architectures

Examples: SqueezeNet, MobileNet

... also reduced precision

• Focus on reducing number of MACs and weights
• Does it translate to energy savings and reduced latency?
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• Number of weights alone is not a good metric for energy

• All data types should be considered 

Key Observations

Output Feature Map
43%

Input Feature Map
25%

Weights
22%

Computation
10%

Energy Consumption 
of GoogLeNet

[Yang et al., CVPR 2017]
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Directly target energy and 
incorporate it into the 

optimization of DNNs to 
provide greater energy savings

Energy-Aware Pruning

• Sort layers based on energy and 
prune layers that consume most 
energy first

• EAP reduces AlexNet energy by 
3.7x and outperforms the 
previous work that uses 
magnitude-based pruning by 1.7x
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Pruned models available at 
http://eyeriss.mit.edu/energy.html

[Yang et al., CVPR 2017]
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Many Efficient DNN Design Approaches

pruning 
neurons

pruning 
synapses

after pruningbefore pruning

Network Pruning Compact Network Architectures
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Reduce Precision

32-bit float

8-bit fixed

Binary 0

No guarantee that DNN algorithm 
designer will use a given approach.

Need flexible hardware!

[Chen et al., SysML 2018]
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• When reuse available, need multicast to exploit spatial data 
reuse for energy efficiency and high array utilization

• When reuse not available, need unicast for high BW for weights 
for FC and weights & activations for high PE utilization

• An all-to-all satisfies above but too expensive and not scalable

Need Flexible NoC for Varying Reuse
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Eyeriss v2: Balancing Flexibility and Efficiency

[Chen et al., JETCAS 2019]
Over an order of magnitude faster and 
more energy efficient than Eyeriss v1

Speed up over Eyeriss v1 scales with number of PEs 

# of PEs 256 1024 16384

AlexNet 17.9x 71.5x 1086.7x

GoogLeNet 10.4x 37.8x 448.8x

MobileNet 15.7x 57.9x 873.0x

Efficiently supports
• Wide range of filter shapes 
– Large and Compact

• Different Layers 
– CONV, FC, depth wise, etc.

• Wide range of sparsity 
– Dense and Sparse

• Scalable architecture

[Joint work with Joel Emer]

5.6
10.9
12.6
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• Exploit properties of workloads
– Efficient memory hierarchy and dataflow for data reuse; 

exploit natural sparsity in activation

• Design more efficient workloads
– Design efficient DNN models with increased sparsity, 

reduced precision, and compact network architectures
– Drive design of algorithms with direct metrics (i.e., energy, 

latency) rather than indirect metrics (i.e., # of ops, weights)

• Define range of workloads 
– Flexibility to support a wide range of DNNs, including 

different efficient DNN approaches

DNN Design Considerations16



Autonomous Navigation
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[Joint work with Sertac Karaman]

Robot Exploration

Select candidate 
scan locations

Compute Shannon MI and 
choose best location

Move to 
location 

and scan

Update 
Occupancy 

Map

Where to scan?

Occupancy map Mutual information map

Mutual Information (MI) Updated Map

Decide where to go by computing Shannon Mutual Information

Exploration with a mini 
race car using motion 
capture for localization

Occupancy map 
with planned path

MI surface
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Challenge is Data Delivery to All Cores
Process multiple beams in parallel

Core 1

Core 2

Core 3

Core N

Core N

Core 2

Core 1

Core N

Core 2

Core 1

Data delivery from memory is limited

Read Port 1

Read Port 2
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Specialized Memory Architecture
Break up map into separate memory banks and novel storage pattern 
to minimize read conflicts when processing different beams in parallel.

[Li et al., RSS 2019]
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Achieves throughput within 94% of theoretical limit (unlimited bandwidth). 
Compute entire 20mx20m map in under a second!

20



Robot Localization in Under 25mW

[Joint work with Sertac Karaman]
[Zhang et al., RSS 2017], 

[Suleiman et al., VLSI 2018]

Navion
Consumes 684× and 1582× less 
energy than mobile and desktop 

CPUs, respectively
http://navion.mit.edu

Entire system fully integrated on chip. 
Use compression/sparsity to reduce 

total storage to 854kB!

Localization is a key step in 
autonomous navigation

(also AR and VR)

21
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Configurable for Different Environments

[Suleiman et al., JSSC 2019]
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Dark scenes (MH_4) Motion blur (V2_3)

Examples of Easy Sequences

Examples of Difficult Sequences

Adapting to the environment 
results in a 2 - 3x energy reduction

Navion has over 250 configurable 
parameters to adapt to different 

sensors and environments

MH_1 V1_1

EuRoC dataset is a very challenging, and widely used UAV dataset 
11 sequences with three categories: easy, medium & difficult



• Exploit properties of workloads
– Optimized memory banking and mapping to meet 

memory bandwidth requirements for high throughput 
parallel processing

• Design more efficient workloads
– Compact data representation to reduce data movement, 

storage and accelerate computation

• Define range of workloads
– Adapt to changing environment for improved efficiency

Autonomous Navigation Design Considerations23



Video Compression
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• Video codec composed of multiple heterogenous modules
– entropy coding, transform, motion comp, intra coding, deblocking, etc.

• Specialized hardware for each module 
– Hardcode values for parameters defined by video coding standard (e.g., 

weights of interpolation filter and coefficients of transform)
– Dedicated optimized memories and dataflow for each module

• Parallel and pipeline across and within modules

Video Compression25



• Advanced algorithms more difficult to parallelize
– Limits throughput due to Amdahl’s law

Parallelism Limited By Algorithm

bits

De-Binarizer
(DB)

Arithmetic
Decoder (AD)

Context 
Memory

Context 
Selection

(CS)

syntax 
elements

Context Modeling (CM)

bins

probability

Context-Adaptive Binary Arithmetic Coding (CABAC) 

[Joint work with Anantha Chandrakasan]
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• Advanced algorithms more difficult to parallelize

• Re-design algorithms to be more hardware-friendly

Parallelism Limited By Algorithm

Parallel entropy coding algorithm gives >10x higher throughput 
than state-of-the-art with minimal impact on coding loss
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[Joint work with Anantha Chandrakasan]

27



High Efficiency Video Coding (HEVC)

Coding 

Efficiency

Efficient 

Implementation

Larger and Flexible Coding Block Size X

More Sophisticated Intra Prediction X

Larger Interpolation for Motion 

Comp.

X

Larger Transform Size X

Parallel Deblocking Filter X

Sample Adaptive Offset X

High-Throughput CABAC X X

High Level Parallel Tools X

Size Energy

H.265/HEVC
(2013)

MPEG-2
(1994)

H.264/AVC
(2003)

4x

1.5x

2x

2x

Co-design of algorithm and hardware to address coding efficiency, 
throughput and power challenges

• H.265/HEVC is the successor to H.264/AVC 

• Achieves 2x higher compression than H.264/AVC
• High throughput (Ultra-HD 8K @ 120fps) & low power

Primetime Emmy
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Flexibility Needed for Video Compression29

VVC
Legacy (2003, 2013) Emerging (2019, 2020)

Pre-Processing Encoding
Source

Destination
Post-Processing Decoding

Scope of Standard

While decoder is standardize, 
encoder allows for product differentiation 

(e.g., better motion estimation)

Shared resources (e.g., cache for motion compensation), but modules tend 
to be hardcoded due to tight power and speed requirements

• Encoder must be flexible

• Support multiple standards



• Exploit properties of workloads
– Specialized hardware for heterogenous set of modules with 

hardcoded parameters; exploit parallelism and pipelining

• Design more efficient workloads
– Parallel entropy coding algorithm to remove compute 

bottleneck
– Co-design of algorithms and hardware in HEVC standard

• Define range of workloads
– Flexibility to support multiple video standards and 

algorithm changes in encoder

Video Compression Design Considerations30



• Domain-specific hardware can address the rising compute demands for 
many existing and emerging applications

• Opportunities
– Exploit properties of workloads (e.g., parallelism, access patterns, representation)
– Design efficient workloads using co-design of algorithms and hardware without affecting 

quality of result

• Challenges
– Define range of workloads to support based on flexibility versus efficiency tradeoff
– Workloads will evolve over time and across use cases/environments

• Agile design can be used for rapid exploration of workloads and tradeoff 

• Open hardware can allows for rapid system development with shared 
building blocks
– May need to configure for given application requirements
– What is the granularity of the blocks?

Summary

Today’s slides available at www.rle.mit.edu/eems For Updates
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– Y.-H. Chen, T.-J Yang, J. Emer, V. Sze, “Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural 
Networks on Mobile Devices,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems 
(JETCAS), Vol. 9, No. 2, pp. 292-308, June 2019.

– Y.-H. Chen, T. Krishna, J. Emer, V. Sze, “Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep 
Convolutional Neural Networks,” IEEE Journal of Solid State Circuits (JSSC), ISSCC Special Issue, Vol. 52, 
No. 1, pp. 127-138, January 2017.

– Y.-H. Chen, J. Emer, V. Sze, “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for 
Convolutional Neural Networks,” International Symposium on Computer Architecture (ISCA), pp. 367-
379, June 2016. 

– Y.-H. Chen*, T.-J. Yang*, J. Emer, V. Sze, “Understanding the Limitations of Existing Energy-Efficient 
Design Approaches for Deep Neural Networks,” SysML Conference, February 2018.

– V. Sze, Y.-H. Chen, T.-J. Yang, J. Emer, “Efficient Processing of Deep Neural Networks: A Tutorial and 
Survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, December 2017.

– A. Suleiman*, Y.-H. Chen*, J. Emer, V. Sze, “Towards Closing the Energy Gap Between HOG and CNN 
Features for Embedded Vision,” IEEE International Symposium of Circuits and Systems (ISCAS), Invited 
Paper, May 2017.

– Hardware Architecture for Deep Neural Networks: http://eyeriss.mit.edu/tutorial.html

References33

http://eyeriss.mit.edu/
http://eyeriss.mit.edu/tutorial.html


• Co-Design of Algorithms and Hardware for Deep Neural Networks
– T.-J. Yang, Y.-H. Chen, V. Sze, “Designing Energy-Efficient Convolutional Neural Networks using Energy-

Aware Pruning,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 

– Energy estimation tool: http://eyeriss.mit.edu/energy.html
– T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, V. Sze, H. Adam, “NetAdapt: Platform-Aware Neural 

Network Adaptation for Mobile Applications,” European Conference on Computer Vision (ECCV), 2018.

References34

http://eyeriss.mit.edu/energy.html


• Fast Shannon Mutual Information for Robot Exploration
– Z. Zhang, T. Henderson, V. Sze, S. Karaman, “FSMI: Fast computation of Shannon Mutual Information 

for information-theoretic mapping,” IEEE International Conference on Robotics and Automation (ICRA), 
May 2019.

– P. Li*, Z. Zhang*, S. Karaman, V. Sze, “High-throughput Computation of Shannon Mutual Information 
on Chip,” Robotics: Science and Systems (RSS), June 2019

– Z. Zhang, T. Henderson, S. Karaman, V. Sze, “FSMI: Fast computation of Shannon Mutual Information 
for information-theoretic mapping,” extended preprint on arXiv, May 2019 
http://arxiv.org/abs/1905.02238

• Energy-Efficient Visual Inertial Localization  
– Project website: http://navion.mit.edu

– A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, “Navion: A Fully Integrated Energy-Efficient 
Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones,” IEEE Symposium on 
VLSI Circuits (VLSI-Circuits), June 2018. 

– Z. Zhang*, A. Suleiman*, L. Carlone, V. Sze, S. Karaman, “Visual-Inertial Odometry on Chip: An 
Algorithm-and-Hardware Co-design Approach,” Robotics: Science and Systems (RSS), July 2017. 

– A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, “Navion: A 2mW Fully Integrated Real-Time 
Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones,” IEEE Journal of Solid 
State Circuits (JSSC), VLSI Symposia Special Issue, Vol. 54, No. 4, pp. 1106-1119, April 2019.

References35

http://arxiv.org/abs/1905.02238
http://navion.mit.edu/


• Video Compression
– V. Sze, A. P. Chandrakasan, “A Highly Parallel and Scalable CABAC Decoder for Next-Generation Video 

Coding,” IEEE Journal of Solid-State Circuits (JSSC), ISSCC Special Issue, Vol. 47, No. 1, pp. 8-22, January 
2012.

– V. Sze, M. Budagavi, “High Throughput CABAC Entropy Coding in HEVC,” IEEE Transactions on Circuits 
and Systems for Video Technology (TCSVT), Vol. 22, No. 12, pp. 1778-1791, December 2012.

– V. Sze, A. P. Chandrakasan, “Joint Algorithm-Architecture Optimization of CABAC to Increase Speed and 
Reduce Area Cost,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 
pp. 1577–1580, May 2011.

– V. Sze, A. P. Chandrakasan, “A High Throughput CABAC Algorithm Using Syntax Element 
Partitioning,” IEEE International Conference on Image Processing (ICIP), pp. 773-776, November 2009.

– V. Sze, M. Budagavi, A. P. Chandrakasan, M. Zhou, “Parallel CABAC for Low Power Video Coding,” IEEE 
International Conference on Image Processing (ICIP), pp. 2096-2099, October 2008.

– V. Sze, D. F. Finchelstein, M. E. Sinangil, A. P. Chandrakasan, “A 0.7-V 1.8-mW H.264/AVC 720p Video 
Decoder,” IEEE Journal of Solid State Circuits (JSSC), A-SSCC Special Issue , Vol. 44, No. 11, pp. 2943-
2956, November 2009.

– V. Sze, M. Budagavi, G. J. Sullivan (Editors), High Efficiency Video Coding (HEVC): Algorithms and 
Architectures, Springer, 2014.

References36


