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Compute Demands for DNN

Common carbon footprint benchmarks
in Ibs of CO2 equivalent

Roundtrip flight b/w NY and SF
(1 passenger) ‘ 1,984
Human life (avg. 1 year) I 11,023

American life (avg. 1 year) . 36,156

US car including fuel (avg. 1
lifetime) 126,000
Transformer (213M

parameters) w/ neural 626,155

architecture search

Chart: MIT Technology Review * Source: Strubell et al. * Created with Datawrapper
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Existing Processors Consume Too Much Power
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Transistors are NOT Getting More Efficient

Slow down of Moore’s Law and Dennard Scaling
General purpose microprocessors not getting faster or more efficient

I Stune"ng Chip introduction
® Transistors per chip, ‘000 ® Clock speed (max), MHz ® Thermal design power*, w dates, selected

* Need specialized hardware for significant improvement in
speed and energy efficiency

* Redesign computing hardware from the ground up!
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Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist *Maximum safe power consumption
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Power Dominated by Data Movement

Operation: Energy
(pJ)
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Memory access is orders of magnitude higher energy than compute

[Horowitz, ISSCC 2014]

RESEARCH LABORATORY
OF ELECTRONICS A

MTLeee

microsystoms tech: no y laboratories
a

--------




Bl Efficient Computing with Cross-Layer Design

Algorithms

Linear Object
Convolutions Pooling Convs Classifier Categories / Positions

>{ O Fat(xiy)

-

] 5 at (x,y)

Input data :
ol Lﬁ;j } at (x )
C1 feature maps C3 feature maps
Architectures
Link Clock! Core Clock DCNN Accelerator
_“'
| - 14x12 PE Array
: ilter i
=TT} =

Off-Chip DRAM
64 bits
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Exploiting Reuse and

Sparsity for Efficient DNN
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Bl Properties We Can Leverage

* Operations exhibit high parallelism
= high throughput possible

* Memory Access is the Bottleneck

Memory Read MAC’ Memory Write
filter wei_ght? . ALU 2
ORAV T W I
200x 1x * multiply-and-accumulate

Worst Case: all memory R/W are DRAM accesses

« Example: AlexNet has 724M MACs
- 2896M DRAM accesses required
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Elll Properties We Can Leverage

* Operations exhibit high parallelism
= high throughput possible

Image

* Input data reuse opportunities (up to 500x)

Filters

Filter Image | Image FiIter/ .

Convolutional Image Filter
Reuse Reuse Reuse
(pixels, weights) (pixels) (weights)
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Exploit Data Reuse at Low-Cost Memories

NoC: 200 - 1000 PEs | PE

100 - 500 kB [N}
DRAM |

Global

Buffer

Specialized

PE H PE Reg File hardware with

PE

small (< 1kB)
ALU low cost memory

Control near compute

Normalized Enerqy Cost’

ALU

ALU

0.5-1.0 kB [lg—>

>

ALU

>

ALU

>

ALU

1% (Reference)
1%

2%
6%

{ 200x

* measured from a commercial 65nm process

Farther and larger memories consume more power o




Eyeriss: Deep Neural Network Accelerator

Link Clock! Core Clock DCNN Accelerator A

14x12 PE Array

Filter
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' Input Image
Il Decomp

' Output Image
1T

Comp pg RelU
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[Chen et al., ISSCC 2016, ISCA 2016]

Exploits data reuse for 100x reduction in memory accesses from global
buffer and 1400x reduction in memory accesses from off-chip DRAM

Overall >10x energy reduction compared to a mobile GPU (Nvidia TK1) |

Results for AlexNet

it [Joint work with Joel Emer] e L0



Sparsity in DNN due to ReLU and Pruning

RelLU
RelU 2113 9|00
(activations) T|o[5— ‘f B[ 1[0|5
2|16 |-1 olelo

after pruning

pruning >
Network SRS
Pruning
(weights) neurons ">
‘ Compress sparse feature maps and weights
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Exploit Sparsity for Speed and Energy

Method 1. Skip memory access and computation
(if in compressed format, can also save cycles)

No R/W No Switching

Register File L:_:D—@-@—P
45% power

Enable reduction

Method 2. Compress data to reduce storage and data movement
1 2% Run length encoding

6 1 x within 5-10% of entropy
DRAM 4 1 8% 1 9x m Uncompressed
Access , Fmaps + Weights
(MB)
. m RLE Compressed

Fmaps + Weights

Uiy A'eXNet CO”V '-ayer [Chen et al., ISSCC 2016]



Maximizing Sparsity Z Minimize Energy

* Number of weights alone is not a good metric for energy

* All data types should be considered

Computation
10% Input Feature Map

25%

. Weights
Energy Consumption 22%

of GooglLeNet

i [Yang et al., CVPR 2017] o ML
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Energy-Aware Pruning

Directly target energy and Normalized Energy (AlexNet)
incorporate it into the 45 X10°

optimization of DNNs to A e
provide greater energy savings | 3.5
3

e Sort layers based on energy and 2.5 2.1x 3.7X

prune layers that consume most 2
energy first 1.5
* EAP reduces AlexNet energy by 1
0.5
3.7x and outperforms the 0

previous work that uses Ori. Magnitude  Energy Aware
magnitude-based pruning by 1.7x Based Pruning  Pruning

Pruned models available at
http://eyeriss.mit.edu/energy.html

i [Yang et al., CVPR 2017] Y secsierrey MTLeee
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NetAdapt: Platform-Aware DNN Adaptation

* Automatically adapt DNN to a mobile platform to reach a
target latency or energy budget

Use empirical measurements to guide optimization (avoid
modeling of tool chain or platform architecture)

Pretrained

Budget . Platform
Network —— Budget Empirical Measurements
Latency 38 Metric Proposal A Proposal Z FU:
: : Latency 15.6 14.3 =
Energy 10.5 : : : ﬂ
l l Energy 41 46 1
NetAdapt »| Measure
Network Proposals
E \ A B C D i
Adapted | | | | |
Network

[Yang et al., ECCV 2018]
i /n collaboration with Google’s Mobile Vision Team [ sesivsy  MIL9ee, ..
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Improved Latency vs. Accuracy Tradeoff

* NetAdapt boosts the real inference speed of MobileNet
by up to 1.7x with higher accuracy

59%
57%: - @ b,
55% - pe
53%: 4 o— —A ® NetAdapt (This Work)

o® o
D +0.3% accurac
51% - o A ey Y AMobileNet Family

49% - P & & MorphNet
47% | °

o] &— 4
45% - ® A.0.3% accuracy
43% 4 @ 1.6x faster

Top-1 Accuracy

41% 1 ) ] L} L
3 S 7 9 11 13

Latency (ms)

*Tested on the ImageNet dataset and a Google Pixel 1 CPU
Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018

[Ty [Yang et al., ECCV 2018] ey MIL®ee
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Tutorial Material on Efficient DNNSs

A significant amount of algorithm and hardware research
on energy-efficient processing of DNNs

ﬁ'i'r’d‘i:’é“édings IEEE

nt Processing of Deep
l\r kx:r\Tr ial and Survey

V. Sze, Y.-H. Chen,
T-J. Yang, J. Emer,
“Efficient Processing of
Deep Neural Networks:
A Tutorial and Survey,”
Proceedings of the IEEE,
Dec. 2017

Hardware Architectures for
Deep Neural Networks

ISCA Tutorial
June 22, 2019

Website: http://eyeriss.mit.edu/tutorial.html

< NVIDIA.

http://eyeriss.mit.edu/tutorial.html
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Looking Beyond the DNN

Accelerator for Acceleration

Z.Zhang, V. Sze, “FAST: A Framework to Accelerate Super-Resolution
Processing on Compressed Videos,” CVPRW 2017
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Super-Resolution on Mobile Devices

Low High
Resolution Resolution
Streaming Playback

Use super-resolution to improve the viewing experience of
lower-resolution content (reduce communication bandwidth)
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FAST: A Framework to Accelerate SuperRes

SR
15x faster

Compressed V|do

Real-time

A framework that accelerates any SR algorithm by up to
15x when running on compressed videos

i [Zhang et al., CVPRW 2017] Y sericngienion MTLeee ..
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Free Information in Compressed Videos

_ Pixels Block-structure  Motion-compensation
Compressed video

Video as a stack of pixels Representation in compressed video

This representation can help accelerate super-resolution
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Transfer is Lightweight

Low-res video

Low-res video
High-res video High-res video

| Transfer allows SR to run on only a subset of frames |

+ L =

Fractional Bicubic Skip Flag
Interpolation Interpolation

(e

skip

The complexity of the transfer is comparable to bicubic interpolation.
Transfer N frames, accelerate by N

rLe RESEARCH LABORATORY MTLeeo
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Evaluation: Accelerating SRCNN

PartyScehe RaceHorse BasketballPass
Examples of videos in the test set (20 videos for HEVC development)

PSNR with 4x acceleration PSNR with 16x acceleration
GOP =4 GOP =16
315 31.04 31.04 31 30.65
31 305
3053 29 87 30 29 77
205 29.5
29 29
SRCNN SRCNN with Bicubic SRCNN SRCNN with Bicubic
FAST FAST

4 x acceleration with NO PSNR LOSS. 16 x acceleration with 0.2 dB loss of PSNR
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Visual Evaluation

SRCNN FAST + Bicubic
SRCNN

Look beyond the DNN accelerator for opportunities to accelerate
DNN processing (e.g., structure of data and temporal correlation)

Code released at www.rle.mit.edu/eems/fast

Mir [Zhang et al., CVPRW 2017] Al wicamosron MITL 00O
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Beyond Deep Neural

Networks

Z. Zhang et al., “FSMI: Fast computation of Shannon Mutual
Information for information-theoretic mapping,” ICRA 2019

Extended version arXiv 2019 http://arxiv.org/abs/1905.02238
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Where to Go Next: Planning and Mapping

Robot Exploration: Decide where to go by computing
Shannon Mutual Information

. Move to Update
Select canc!ldate Compute Shannon MI and location o Occupancy
scan locations choose best location
and scan Map
Where to scan? Mutual Information Updated Map

[Joint work with Sertac Karaman]
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Information Theoretic Mapping

Occupancy grid map, M Mutual information map, I(M; Z)
HM|Z) = HM) - IM;2)
Perspective updated Current map Mutual
map entropy entropy information
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FSMI: Fast Shannon Mutual Information

Shannon Mutual Information | Zy

(between beam Z and map M) -
[Julian et al., I[JRR 2014] ] -
I(M; Z) = z j P(2)f(8;(z),r)dz :
i—1|” 220

No closed form solution. Requires expensive
numerical integration at resolution 1,. 0(n?1,)

>’¥=~$~

FSMI: Fast Shannon Mutual Information Approximate FSMI
n n n Jj+A
I(M; 7) = 2 z P(e)CiGr;  I(M;Z) = z z P(&)CiGre;
J=1k=1 =1 k=j—A
Evaluate MI for all cells in entire beam altogether Approximate noise model of depth sensor
removes numerical integration. 0(n?) with truncated Gaussian®. 0(n)

*Charrow et al., ICRA 2015

i [Z. Zhang et al., ICRA 2019] I e MILOS ...



Experimental Results (4x Real Time)

Occupancy map
with planned
path using RRT*
(compute Ml on
all possible paths)

MI
surface

Exploration with a mini race car using motion capture for localization

Approximate FSMI is over 1000x faster than original Ml
and 1.7 — 2.8x faster than previous state-of-the-art methods (e.g., CSQMI)

i [Zhang et al., ICRA 2019] J sy MILS® e



Computing Ml in 3D Environments

Computing Ml on a
3D map requires
significant amounts of
storage and compute

Compress map
with OctoMap

[Hornung, et al., Autonomous
Robots, 2013]
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Experiments of 3D FSMI (4x Real Time)

We achieve an average compression ratio of around 18X,
with an acceleration ratio of 8X

Z. Zhang et al., FSMI: Fast computation of Shannon Mutual Information for
information-theoretic mapping, arXiv 2019 http://arxiv.orq/abs/1905.02238
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Localization on Chip

Localization is a key step in
autonomous navigation
(also AR and VR)

GT (green) vs. VIO (blue) ~ Keyframe id: 217

Entire system fully integrated on chip.
Use compression/sparsity to reduce
storage to under 1MB

Navion Feature
Consumes 684x and 1582x |ess ) Tracking | w [sus] Graph
. Technology 650m CMOS | Supply 1V E
energy than mobile and desktop el e e ) D] et
CPUs, respectivel R = . S —
Akl Y s e | e W
http://navion.mit.edu | |
p:// [Zhang et al., RSS 2017],

i [Joint work with Sertac Karaman] [Suleiman et al., VLSI 2018]
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Summary of Key Insights

Data movement dominates energy consumption

— Exploit data reuse to reduce data movement cost

Design considerations for co-design of algorithm and
hardware

— Incorporate direct metrics into algorithm design for improved efficiency

Accelerate deep learning by looking beyond the accelerator

— Exploit data representation for FAST Super-Resolution

Processing in compressed domain can accelerate many
applications

Today’s slides available at www.rle.mit.edu/eems For Updates | J e imis
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