Exploiting Redundancy for Efficient Processing of Deep Neural Nets and Beyond

Vivienne Sze

Follow @eems_mit

Compute Demands for DNN

Common carbon footprint benchmarks

in lbs of CO2 equivalent

Human life (avg. 1 year)

American life (avg. 1 year)

US car including fuel (avg. 1 lifetime)

Transformer (213M parameters) w/ neural architecture search

Chart: MIT Technology Review • Source: Strubell et al. • Created with Datawrapper

626,155

Existing Processors Consume Too Much Power 3

< 1 Watt

> 10 Watts

141i7

Transistors are NOT Getting More Efficient

Slow down of Moore's Law and Dennard Scaling

General purpose microprocessors not getting faster or more efficient

Power Dominated by Data Movement

[Horowitz, ISSCC 2014]

Efficient Computing with Cross-Layer Design

Systems

Architectures

Circuits

Exploiting Reuse and Sparsity for Efficient DNN

Properties We Can Leverage

- Operations exhibit high parallelism
 → high throughput possible
- Memory Access is the Bottleneck

Worst Case: all memory R/W are **DRAM** accesses

• Example: AlexNet has **724M** MACs

→ 2896M DRAM accesses required

Properties We Can Leverage

Operations exhibit high parallelism
 → high throughput possible

9

Input data reuse opportunities (up to 500x)

Image

10 Exploit Data Reuse at Low-Cost Memories

* measured from a commercial 65nm process

Farther and larger memories consume more power

I'lii

11 Eyeriss: Deep Neural Network Accelerator

[Chen et al., ISSCC 2016, ISCA 2016]

Exploits data reuse for **100x** reduction in memory accesses from global buffer and **1400x** reduction in memory accesses from off-chip DRAM

Overall >10x energy reduction compared to a mobile GPU (Nvidia TK1)

Results for AlexNet

Sparsity in DNN due to ReLU and Pruning

ReLU (activations)

Network Pruning (weights)

Compress sparse feature maps and weights

Exploit Sparsity for Speed and Energy

<u>Method 1</u>. Skip memory access and computation (if in compressed format, can also save cycles)

<u>Method 2</u>. Compress data to reduce storage and data movement

Maximizing Sparsity [?] Minimize Energy

- Number of weights *alone* is not a good metric for energy
- All data types should be considered

[Yang et al., CVPR 2017]

15 Energy-Aware Pruning

Directly target energy and incorporate it into the optimization of DNNs to provide greater energy savings

- Sort layers based on energy and prune layers that consume most energy first
- EAP reduces AlexNet energy by
 3.7x and outperforms the previous work that uses magnitude-based pruning by **1.7x**

Pruned models available at http://eyeriss.mit.edu/energy.html

¹⁶ NetAdapt: Platform-Aware DNN Adaptation

- Automatically adapt DNN to a mobile platform to reach a target latency or energy budget
- Use **empirical measurements** to guide optimization (avoid modeling of tool chain or platform architecture)

RESEARCH LABORATORY OF ELECTRONICS AT MIT

ns technology laboratories

IIII In collaboration with Google's Mobile Vision Team

Improved Latency vs. Accuracy Tradeoff

 NetAdapt boosts the real inference speed of MobileNet by up to 1.7x with higher accuracy

Reference:

MobileNet: Howard et al, "Mobilenets: Efficient convolutional neural networks for mobile vision applications", arXiv 2017 **MorphNet:** Gordon et al., "Morphnet: Fast & simple resource-constrained structure learning of deep networks", CVPR 2018

[Yang et al., ECCV 2018]

18 Tutorial Material on Efficient DNNs

A significant amount of algorithm and hardware research on energy-efficient processing of DNNs

Proceedings of IEEE

Efficient Processing of Deep Neural Networks: A Tutorial and Survey System Scaling With Nanostructured Power and RF Components Nonorthogonal Multiple Access for 5G and Beyond

Point of View: Beyond Smart Grid—A Cyber–Physical–Social System in Energy Future Scanning Our Past: Materials Science, Instrument Knowledge, and the Power Source Renaissance

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey," Proceedings of the IEEE, Dec. 2017

http://eyeriss.mit.edu/tutorial.html

Looking Beyond the DNN Accelerator for Acceleration

Z. Zhang, V. Sze, "FAST: A Framework to Accelerate Super-Resolution Processing on Compressed Videos," CVPRW 2017

20 Super-Resolution on Mobile Devices

Transmit low resolution for lower bandwidth

Screens are getting larger

Use **super-resolution** to improve the viewing experience of lower-resolution content (*reduce communication bandwidth*)

²¹ FAST: A Framework to Accelerate SuperRes

Real-time

A framework that accelerates **any SR** algorithm by up to **15x** when running on compressed videos

[Zhang et al., CVPRW 2017]

I'lii

²² Free Information in Compressed Videos

Compressed video

Pixels

Block-structure

Motion-compensation

Video as a stack of pixels

Representation in compressed video

This representation can help accelerate super-resolution

²³ Transfer is Lightweight

Fractional Bicubic Interpolation Interpolation **Skip Flag**

The complexity of the transfer is comparable to bicubic interpolation. Transfer N frames, accelerate by N

Evaluation: Accelerating SRCNN

PartyScene

RaceHorse

BasketballPass

Examples of videos in the test set (20 videos for HEVC development)

 $4 \times$ acceleration with NO PSNR LOSS. $16 \times$ acceleration with 0.2 dB loss of PSNR

²⁵ Visual Evaluation

SRCNN FAST + SRCNN

Bicubic

hnology laboratories

Look **beyond** the DNN accelerator for opportunities to accelerate DNN processing (e.g., structure of data and temporal correlation)

Code released at <u>www.rle.mit.edu/eems/fast</u>

|'|iī

[Zhang et al., CVPRW 2017]

26

Beyond Deep Neural Networks

Z. Zhang et al., "FSMI: Fast computation of Shannon Mutual Information for information-theoretic mapping," ICRA 2019

Extended version arXiv 2019 http://arxiv.org/abs/1905.02238

27 Where to Go Next: Planning and Mapping

Robot Exploration: Decide where to go by computing Shannon Mutual Information

[Joint work with Sertac Karaman]

Information Theoretic Mapping

Occupancy grid map, M

Mutual information map, I(M; Z)

$$H(M|Z) =$$

Perspective updated map entropy

Current map entropy I(M;Z)

Mutual information

FSMI: Fast Shannon Mutual Information

Shannon Mutual Information (between beam Z and map M)

. [Julian et al., IJRR 2014]

$$I(M;Z) = \sum_{i=1}^{n} \int_{z \ge 0} P(z) f(\delta_i(z), r_i) dz$$

No closed form solution. Requires expensive **numerical integration at resolution** λ_z . $O(n^2 \lambda_z)$

FSMI: Fast Shannon Mutual Information

$$I(M;Z) = \sum_{j=1}^{n} \sum_{k=1}^{n} P(e_j) C_k G_{k,j}$$

Evaluate MI for all cells in entire beam altogether removes numerical integration. $O(n^2)$

Approximate FSMI

$$V(M;Z) = \sum_{j=1}^{n} \sum_{k=j-\Delta}^{j+\Delta} P(e_j) C_k G_{k,j}$$

Approximate noise model of depth sensor with **truncated Gaussian***. **0**(**n**)

*Charrow et al., ICRA 2015

Image: Second Second

Exploration with a mini race car using motion capture for localization

Approximate FSMI is over 1000x faster than original MI and 1.7 – 2.8x faster than previous state-of-the-art methods (e.g., CSQMI)

l'liiT

[Zhang et al., ICRA 2019]

31 Computing MI in 3D Environments

Computing MI on a **3D map** requires significant amounts of storage and compute

Compress map with OctoMap [Hornung, et al., Autonomous Robots, 2013]

Experiments of 3D FSMI (4x Real Time)

We achieve an average compression ratio of around $18 \times$, with an acceleration ratio of $8 \times$

Z. Zhang et al., FSMI: Fast computation of Shannon Mutual Information for information-theoretic mapping, arXiv 2019 <u>http://arxiv.org/abs/1905.02238</u>

Localization on Chip

Entire system fully integrated on chip. Use compression/sparsity to reduce storage to under 1MB

Consumes **684× and 1582×** less energy than mobile and desktop CPUs, respectively

http://navion.mit.edu

[Joint work with Sertac Karaman]

Localization is a key step in autonomous navigation (also AR and VR)

[Zhang et al., RSS 2017], [Suleiman et al., VLSI 2018]

l'lii7

34 Summary of Key Insights

- Data movement dominates energy consumption
 - Exploit data reuse to reduce data movement cost
- Design considerations for co-design of algorithm and hardware
 - Incorporate *direct metrics* into algorithm design for improved efficiency
- Accelerate deep learning by looking beyond the accelerator
 - Exploit data representation for FAST Super-Resolution
- Processing in compressed domain can accelerate many applications

Acknowledgements

Joel Emer

Thomas Heldt

Sertac Karaman

Research conducted in the **MIT Energy-Efficient Multimedia Systems Group** would not be possible without the support of the following organizations:

³⁶ References

- Efficient Processing for Deep Neural Networks
 - Project website: <u>http://eyeriss.mit.edu</u>
 - Y.-H. Chen, T. Krishna, J. Emer, V. Sze, "Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks," IEEE Journal of Solid State Circuits (JSSC), ISSCC Special Issue, Vol. 52, No. 1, pp. 127-138, January 2017.
 - Y.-H. Chen, J. Emer, V. Sze, "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks," International Symposium on Computer Architecture (ISCA), pp. 367-379, June 2016.
 - V. Sze, Y.-H. Chen, T.-J. Yang, J. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey," Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, December 2017.
 - Hardware Architecture for Deep Neural Networks: <u>http://eyeriss.mit.edu/tutorial.html</u>
- Co-Design of Algorithms and Hardware for Deep Neural Networks
 - T.-J. Yang, Y.-H. Chen, V. Sze, "Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
 - Energy estimation tool: <u>http://eyeriss.mit.edu/energy.html</u>
 - T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, V. Sze, H. Adam, "NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications," European Conference on Computer Vision (ECCV), 2018.

References

• Fast Shannon Mutual Information for Robot Exploration

- Z. Zhang, T. Henderson, V. Sze, S. Karaman, "FSMI: Fast computation of Shannon Mutual Information for information-theoretic mapping," IEEE International Conference on Robotics and Automation (ICRA), May 2019.
- P. Li*, Z. Zhang*, S. Karaman, V. Sze, "High-throughput Computation of Shannon Mutual Information on Chip," Robotics: Science and Systems (RSS), June 2019
- Z. Zhang, T. Henderson, S. Karaman, V. Sze, "FSMI: Fast computation of Shannon Mutual Information for information-theoretic mapping," extended preprint on arXiv, May 2019 <u>http://arxiv.org/abs/1905.02238</u>

• Energy-Efficient Visual Inertial Localization

- Project website: <u>http://navion.mit.edu</u>
- A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, "Navion: A Fully Integrated Energy-Efficient Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones," IEEE Symposium on VLSI Circuits (VLSI-Circuits), June 2018.
- Z. Zhang*, A. Suleiman*, L. Carlone, V. Sze, S. Karaman, "Visual-Inertial Odometry on Chip: An Algorithm-and-Hardware Co-design Approach," Robotics: Science and Systems (RSS), July 2017.
- A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, "Navion: A 2mW Fully Integrated Real-Time Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones," IEEE Journal of Solid State Circuits (JSSC), VLSI Symposia Special Issue, Vol. 54, No. 4, pp. 1106-1119, April 2019.

