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Compute Demands for DNN 2



Existing Processors Consume Too Much Power

< 1 Watt > 10 Watts
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Transistors are NOT Getting More Efficient
Slow down of Moore’s Law and Dennard Scaling 

General purpose microprocessors not getting faster or more efficient 

• Need specialized hardware for significant improvement in 
speed and energy efficiency

• Redesign computing hardware from the ground up!

Slowdown
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Power Dominated by Data Movement
Operation: Energy 

(pJ)

8b Add 0.03

16b Add 0.05

32b Add 0.1

16b FP Add 0.4

32b FP Add 0.9

8b Mult 0.2

32b Mult 3.1

16b FP Mult 1.1

32b FP Mult 3.7

32b SRAM Read (8KB) 5

32b DRAM Read 640

Area 
(µm2)

36

67

137

1360

4184

282

3495

1640

7700

N/A

N/A

[Horowitz, ISSCC 2014] 

Relative Energy Cost

1 10 102 103 104

Relative Area Cost
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Memory access is orders of magnitude higher energy than compute
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Efficient Computing with Cross-Layer Design

Architectures

Algorithms Systems

Circuits
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Exploiting Reuse and 
Sparsity for Efficient DNN
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Properties We Can Leverage
• Operations exhibit high parallelism

à high throughput possible

• Memory Access is the Bottleneck

ALU

Memory Read Memory WriteMAC*

* multiply-and-accumulate

filter weight
image pixel
partial sum updated 

partial sum

• Example: AlexNet has 724M MACs 
à 2896M DRAM accesses required

Worst Case: all memory R/W are DRAM accesses

200x 1x

DRAM DRAM
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Properties We Can Leverage
• Operations exhibit high parallelism

à high throughput possible

• Input data reuse opportunities (up to 500x)
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Exploit Data Reuse at Low-Cost Memories

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 

Farther and larger memories consume more power

0.5 – 1.0 kB

Control

Reg File
Specialized 

hardware with 
small (< 1kB) 

low cost memory 
near compute
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Eyeriss: Deep Neural Network Accelerator
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[Chen et al., ISSCC 2016, ISCA 2016] 

[Joint work with Joel Emer]
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Results for AlexNet

Overall >10x energy reduction compared to a mobile GPU (Nvidia TK1)

[Chen et al., ISSCC 2016, ISCA 2016] 

Exploits data reuse for 100x reduction in memory accesses from global 
buffer and 1400x reduction in memory accesses from off-chip DRAM



Sparsity in DNN due to ReLU and Pruning12

pruning 
neurons

pruning 
synapses

after pruningbefore pruning

Network 
Pruning 

(weights)

Compress sparse feature maps and weights

9 -1 -3
1 -5 5
-2 6 -1

ReLU 9 0 0
1 0 5
0 6 0

ReLU
(activations)



Exploit Sparsity for Speed and Energy

[Chen et al., ISSCC 2016]
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Method 1. Skip memory access and computation

45% power 
reduction

(if in compressed format, can also save cycles)

Method 2. Compress data to reduce storage and data movement
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• Number of weights alone is not a good metric for energy

• All data types should be considered 

Maximizing Sparsity = Minimize Energy

Output Feature Map
43%

Input Feature Map
25%

Weights
22%

Computation
10%

Energy Consumption 
of GoogLeNet

[Yang et al., CVPR 2017]
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Directly target energy and 
incorporate it into the 

optimization of DNNs to 
provide greater energy savings

Energy-Aware Pruning

• Sort layers based on energy and 
prune layers that consume most 
energy first

• EAP reduces AlexNet energy by 
3.7x and outperforms the 
previous work that uses 
magnitude-based pruning by 1.7x

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 
4.5 

Ori. DC EAP 

Normalized Energy (AlexNet) 

2.1x 3.7x 

x109 

Magnitude 
Based Pruning 

Energy Aware 
Pruning 

Pruned models available at 
http://eyeriss.mit.edu/energy.html

[Yang et al., CVPR 2017]
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http://eyeriss.mit.edu/energy.html


NetAdapt: Platform-Aware DNN Adaptation
• Automatically adapt DNN to a mobile platform to reach a 

target latency or energy budget
• Use empirical measurements to guide optimization (avoid 

modeling of tool chain or platform architecture) 

[Yang et al., ECCV 2018]

In collaboration with Google’s Mobile Vision Team

NetAdapt Measure

…

Network Proposals

Empirical Measurements
Metric Proposal A … Proposal Z

Latency 15.6 … 14.3

Energy 41 … 46

…… …

Pretrained
Network Metric Budget

Latency 3.8

Energy 10.5

Budget

Adapted
Network

… …

Platform

A B C D Z
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• NetAdapt boosts the real inference speed of MobileNet
by up to 1.7x with higher accuracy

Improved Latency vs. Accuracy Tradeoff

+0.3% accuracy
1.7x faster

+0.3% accuracy
1.6x faster

Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018

*Tested on the ImageNet dataset and a Google Pixel 1 CPU

[Yang et al., ECCV 2018]
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Tutorial Material on Efficient DNNs18

V. Sze, Y.-H. Chen, 
T-J. Yang, J. Emer, 

“Efficient Processing of 
Deep Neural Networks: 
A Tutorial and Survey,” 
Proceedings of the IEEE, 

Dec. 2017

A significant amount of algorithm and hardware research 
on energy-efficient processing of DNNs

http://eyeriss.mit.edu/tutorial.html

http://eyeriss.mit.edu/tutorial.html


Looking Beyond the DNN 
Accelerator for Acceleration

19

Z. Zhang, V. Sze, “FAST: A Framework to Accelerate Super-Resolution 
Processing on Compressed Videos,” CVPRW 2017



Super-Resolution on Mobile Devices20

Use super-resolution to improve the viewing experience of 
lower-resolution content (reduce communication bandwidth)

Screens are getting larger

Low 
Resolution
Streaming

Transmit low resolution for lower bandwidth

High
Resolution
Playback



FAST: A Framework to Accelerate SuperRes21

A framework that accelerates any SR algorithm by up to 
15x when running on compressed videos

FAST SR
15x faster

Compressed video

SR algorithm

Real-time

[Zhang et al., CVPRW 2017]



Free Information in Compressed Videos22

Compressed video
Pixels

Video as a stack of pixels

Block-structure Motion-compensation

Representation in compressed video

This representation can help accelerate super-resolution

Decode



High-res video

Transfer is Lightweight23

Low-res video
High-res video

SR

Low-res video

Transfer

Fractional
Interpolation

Bicubic
Interpolation

Skip Flag

The complexity of the transfer is comparable to bicubic interpolation.
Transfer N frames, accelerate by N

Transfer allows SR to run on only a subset of frames

SR
SRSRSR

SR



Evaluation: Accelerating SRCNN24



Visual Evaluation25

SRCNN FAST + 
SRCNN

Bicubic

Code released at www.rle.mit.edu/eems/fast

[Zhang et al., CVPRW 2017]

Look beyond the DNN accelerator for opportunities to accelerate 
DNN processing (e.g., structure of data and temporal correlation)

http://www.rle.mit.edu/eems/fast


Beyond Deep Neural 
Networks

26

Z. Zhang et al., “FSMI: Fast computation of Shannon Mutual 
Information for information-theoretic mapping,” ICRA 2019

Extended version arXiv 2019 http://arxiv.org/abs/1905.02238

http://arxiv.org/abs/1905.02238


Where to Go Next: Planning and Mapping

Select candidate 
scan locations

Compute Shannon MI and 
choose best location

Move to 
location 

and scan

Update 
Occupancy 

Map

Where to scan?

Occupancy map Mutual information map

Mutual Information Updated Map

Robot Exploration: Decide where to go by computing 
Shannon Mutual Information
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[Joint work with Sertac Karaman]



Information Theoretic Mapping28

Occupancy grid map, !

" ! # = " ! − &(!; #)
Perspective updated 

map entropy
Mutual 

information
Current map 

entropy

Mutual information map, &(!; #)



FSMI: Fast Shannon Mutual Information29

Shannon Mutual Information
(between beam Z and map M)

[Julian et al., IJRR 2014]
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FSMI: Fast Shannon Mutual Information

Evaluate MI for all cells in entire beam altogether 
removes numerical integration. 7(9:)

Approximate FSMI

Approximate noise model of depth sensor 
with truncated Gaussian*. 7(9)
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[Z. Zhang et al., ICRA 2019]
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Experimental Results (4x Real Time)30

Occupancy map 
with planned 

path using RRT* 
(compute MI on 

all possible paths)

MI 
surface

Exploration with a mini race car using motion capture for localization

[Zhang et al., ICRA 2019]

Approximate FSMI is over 1000x faster than original MI 
and 1.7 – 2.8x faster than previous state-of-the-art methods (e.g., CSQMI)



Computing MI in 3D Environments31

Computing MI on a
3D map requires 

significant amounts of 
storage and compute 

Compress map 
with OctoMap

[Hornung, et al., Autonomous 
Robots, 2013]



Experiments of 3D FSMI (4x Real Time)32

Z. Zhang et al., FSMI: Fast computation of Shannon Mutual Information for 
information-theoretic mapping, arXiv 2019 http://arxiv.org/abs/1905.02238

We achieve an average compression ratio of around 18×, 
with an acceleration ratio of 8×

http://arxiv.org/abs/1905.02238


Localization on Chip33

[Joint work with Sertac Karaman]
[Zhang et al., RSS 2017], 

[Suleiman et al., VLSI 2018]

Navion
Consumes 684× and 1582× less 
energy than mobile and desktop 

CPUs, respectively
http://navion.mit.edu

Entire system fully integrated on chip. 
Use compression/sparsity to reduce 

storage to under 1MB

Localization is a key step in 
autonomous navigation

(also AR and VR)

http://navion.mit.edu/


• Data movement dominates energy consumption
– Exploit data reuse to reduce data movement cost

• Design considerations for co-design of algorithm and 
hardware
– Incorporate direct metrics into algorithm design for improved efficiency

• Accelerate deep learning by looking beyond the accelerator
– Exploit data representation for FAST Super-Resolution

• Processing in compressed domain can accelerate many 
applications 

Summary of Key Insights34

Today’s slides available at www.rle.mit.edu/eems For Updates
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• Efficient Processing for Deep Neural Networks
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