Understanding the Challenges of Algorithm and Hardware Co-design for Deep Neural Networks

Vivienne Sze

Massachusetts Institute of Technology Image: Amage: Amag

Contact InfoSertac Iemail: sze@mit.eduZwebsite: www.rle.mit.edu/eems

In collaboration with Yu-Hsin Chen, Joel Emer, Sertac Karaman, Fangchang Ma, Diana Wofk, Tien-Ju Yang, Zhengdong Zhang, Google Mobile Vision Team

Energy-Efficient Processing of DNNs

A significant amount of algorithm and hardware research on energy-efficient processing of DNNs

http://eyeriss.mit.edu/tutorial.html

Efficient Processing of Deep Neural Networks: A Tutorial and Survey System Scaling With Nanostructured Power and RF Components Nonorthogonal Multiple Access for 5G and Beyond Point of View: Beyond Smart Grid—A Cyber–Physical–Social System in Energy Future Scanning Our Past: Materials Science, Instrument Knowledge, and the Power Source Renaissance

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey," Proceedings of the IEEE, Dec. 2017

We identified various challenges to existing approaches

l'lli7

Design of Efficient DNN Algorithms

Popular efficient DNN algorithm approaches

... also reduced precision

- Focus on reducing number of MACs and weights
- **Does it translate to energy savings and reduced latency?**

l'lii T

Network Pruning

Data Movement is Expensive

* measured from a commercial 65nm process

Energy of weight depends on **memory hierarchy** and **dataflow**

Energy-Evaluation Methodology

5

Plii

Hardware Energy Costs of each **MAC and Memory Access**

Key Observations

- Number of weights *alone* is not a good metric for energy
- All data types should be considered

Energy-Aware Pruning

Directly target energy and incorporate it into the optimization of DNNs to provide greater energy savings

- Sort layers based on energy and prune layers that consume most energy first
- EAP reduces AlexNet energy by
 3.7x and outperforms the previous work that uses magnitude-based pruning by **1.7x**

Pruned models available at http://eyeriss.mit.edu/energy.html

of Operations vs. Latency

• # of operations (MACs) does not approximate latency well

Source: Google (https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)

NetAdapt: Platform-Aware DNN Adaptation

- Automatically adapt DNN to a mobile platform to reach a target latency or energy budget
- Use empirical measurements to guide optimization (avoid modeling of tool chain or platform architecture)

IIII In collaboration with Google's Mobile Vision Team

Improved Latency vs. Accuracy Tradeoff

 NetAdapt boosts the real inference speed of MobileNet by up to 1.7x with higher accuracy

Reference:

MobileNet: Howard et al, "Mobilenets: Efficient convolutional neural networks for mobile vision applications", arXiv 2017 **MorphNet:** Gordon et al., "Morphnet: Fast & simple resource-constrained structure learning of deep networks", CVPR 2018

[Yang et al., ECCV 2018]

Problem Formulation

 $\max_{Net} Accuracy(Net) \text{ subject to } Resource_j(Net) \leq Budget_j, j = 1, \cdots, m$

Break into a set of simpler problems and solve iteratively

 $\max_{Net_i} Acc(Net_i) \text{ subject to } Res_j(Net_i) \leq Res_j(Net_{i-1}) - \Delta R_{i,j}, j = 1, \cdots, m$

*Acc: accuracy function, Res: resource evaluation function, ΔR : resource reduction, Bud: given budget Budget incrementally tightens $Res_i(Net_{i-1}) - \Delta R_{i,i}$

Advantages

- Supports multiple resource budgets at the same time
- Guarantees that the budgets will be satisfied because the resource consumption decreases monotonically
- Generates a family of networks (from each iteration) with different resource versus accuracy trade-offs
- Intuitive and can easily set one additional hyperparameter $(\Delta R_{i,j})$

12 Simplified Example of One Iteration

Illi Code to be released at <u>http://netadapt.mit.edu</u>

13 FastDepth: Fast Monocular Depth Estimation

Depth estimation from a single RGB image desirable, due to the relatively low cost and size of monocular cameras.

RGB

Prediction

Auto Encoder DNN Architecture (Dense Output)

l'liī

[Joint work with Sertac Karaman]

IF FastDepth: Fast Monocular Depth Estimation

Apply NetAdapt, compact network design, and depth wise decomposition to decoder layer to enable depth estimation at **high frame rates on an embedded platform** while still maintaining accuracy

I'lii Models available at <u>http://fastdepth.mit.edu</u>

[Wofk*, Ma* et al., ICRA 2019]

DeeperLab: Single-Shot Image Parser

Results from Xception

Joint Semantic and Instance Segmentation (high resolution input image)

One-shot parsing for efficient processing

Fully convolutional, one-shot parsing (bottom-up approach)

http://deeperlab.mit.edu/

[Yang et al., arXiv 2019]

In collaboration with Google's Mobile Vision Team

DeeperLab: Efficient Image Parsing

Address memory requirement for large feature map

Wide MobileNet: Increase kernel size rather than depth

2

Space-to-depth/depth-to-space: Avoid upsampling

Achieves near real-time 6.19 fps on GPU (V100) with 25.2% PQ and 49.8% PC on Mapillary Vistas dataset

http://deeperlab.mit.edu/

17 Many Efficient DNN Design Approaches

[Chen et al., SysML 2018]

Existing DNN Architectures

- Specialized DNN hardware often rely on certain properties of DNN in order to achieve high energy-efficiency
- Example: Reduce memory access by amortizing across MAC array

Limitation of Existing DNN Architectures

- Example: Reuse and array utilization depends on # of channels, feature map/batch size
 - Not efficient across all network architectures (e.g., compact DNNs)

Limitation of Existing DNN Architectures

- Example: Reuse and array utilization depends on # of channels, feature map/batch size
 - Not efficient across all network architectures (e.g., compact DNNs)

²¹ Limitation of Existing DNN Architectures

- Example: Reuse and array utilization depends on # of channels, feature map/batch size
 - Not efficient across all network architectures (e.g., compact DNNs)
 - Less efficient as array scales up in size
 - Can be challenging to exploit sparsity

Need Flexible Dataflow

 Use flexible dataflow (Row Stationary) to exploit reuse in any dimension of DNN to increase energy efficiency and array utilization

Example: Depth-wise layer

Need Flexible NoC for Varying Reuse

- When reuse available, need **multicast** to exploit spatial data reuse for energy efficiency and high array utilization
- When reuse not available, need **unicast** for high BW for weights for FC and weights & activations for high PE utilization
- An all-to-all satisfies above but too expensive and not scalable

23

[Chen et al., JETCAS 2019]

technology laboratorie

²⁴ Hierarchical Mesh


```
1411
```

[Chen et al., JETCAS 2019]

Eyeriss v2: Balancing Flexibility and Efficiency

Efficiently supports

25

- Wide range of filter shapes
 - Large and Compact
- Different Layers
 - CONV, FC, depth wise, etc.
- Wide range of sparsity
 - Dense and Sparse
- Scalable architecture

🛚 v1.5 & MobileNet 🔎 v2 & MobileNet 📮 v2 & sparse MobileNet

Speed up over Eyeriss v1 scales with number of PEs

# of PEs	256	1024	16384
AlexNet	17.9x	71.5x	1086.7x
GoogLeNet	10.4x	37.8x	448.8x
MobileNet	15.7x	57.9x	873.0x

Over an order of magnitude faster and more energy efficient than Eyeriss v1

[Chen et al., JETCAS 2019]

Need More Comprehensive Benchmarks

Processors should support a **diverse set of DNNs** that utilize different techniques

Example:

- Sparse and Dense
- Large and Compact network architectures
- Different Layers (e.g., CONV and FC)
- Variable Bit-width

Network Pruning

Reduce Precision

Compact Network Architecture

l'lii T

²⁷ Super-Resolution on Mobile Devices

Transmit low resolution for lower bandwidth

Screens are getting larger

Use **super-resolution** to improve the viewing experience of lower-resolution content (*reduce communication bandwidth*)

FAST: A Framework to Accelerate SuperRes

28

I'lii

Real-time

A framework that accelerates **any SR** algorithm by up to **15x** when running on compressed videos

[Zhang et al., CVPRW 2017]

²⁹ Free Information in Compressed Videos

Compressed video

Block-structure

Motion-compensation

Video as a stack of pixels

Representation in compressed video

This representation can help accelerate super-resolution

Transfer is Lightweight

Fractional Bicubic Interpolation

Skip Flag

The complexity of the transfer is comparable to bicubic interpolation. Transfer N frames, accelerate by N

Evaluation: Accelerating SRCNN

PartyScene

RaceHorse

BasketballPass

Examples of videos in the test set (20 videos for HEVC development)

 $4 \times$ acceleration with NO PSNR LOSS. $16 \times$ acceleration with 0.2 dB loss of PSNR

³² Visual Evaluation

SRCNN FAST + SRCNN

Bicubic

Look **beyond** the DNN accelerator for opportunities to accelerate DNN processing (e.g., structure of data and temporal correlation)

Code released at <u>www.rle.mit.edu/eems/fast</u>

|'|iī

[Zhang et al., CVPRW 2017]

33 Summary of Key Insights

- Design considerations for co-design of algorithm and hardware
 - Incorporate *direct metrics* into algorithm design for improved efficiency
 - Diverse workloads requires a *flexible dataflow and NoC* to exploit data *reuse in any dimension* and increase core utilization for speed and scalability
- Accelerate deep learning by looking beyond the accelerator
 - Exploit data representation for FAST Super-Resolution

Acknowledgements

34

Joel Emer

Thomas Heldt

Sertac Karaman

Research conducted in the **MIT Energy-Efficient Multimedia Systems Group** would not be possible without the support of the following organizations:

References

- Limitations of Existing Efficient DNN Approaches
 - Y.-H. Chen*, T.-J. Yang*, J. Emer, V. Sze, "Understanding the Limitations of Existing Energy-Efficient Design Approaches for Deep Neural Networks," SysML Conference, February 2018.
 - V. Sze, Y.-H. Chen, T.-J. Yang, J. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey," Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, December 2017.
 - Hardware Architecture for Deep Neural Networks: <u>http://eyeriss.mit.edu/tutorial.html</u>
- Co-Design of Algorithms and Hardware for Deep Neural Networks
 - T.-J. Yang, Y.-H. Chen, V. Sze, "Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
 - Energy estimation tool: <u>http://eyeriss.mit.edu/energy.html</u>
 - T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, V. Sze, H. Adam, "NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications," European Conference on Computer Vision (ECCV), 2018.
 - D. Wofk*, F. Ma*, T.-J. Yang, S. Karaman, V. Sze, "FastDepth: Fast Monocular Depth Estimation on Embedded Systems," IEEE International Conference on Robotics and Automation (ICRA), May 2019. <u>http://fastdepth.mit.edu/</u>
 - T.-J. Yang, M. D. Collins, Y. Zhu, J.-J. Hwang, T. Liu, X. Zhang, V. Sze, G. Papandreou, L.-C. Chen, "DeeperLab: Single-Shot Image Parser," arXiv, February 2019.

References

36

Energy-Efficient Hardware for Deep Neural Networks

- Project website: <u>http://eyeriss.mit.edu</u>
- Y.-H. Chen, T. Krishna, J. Emer, V. Sze, "Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks," IEEE Journal of Solid State Circuits (JSSC), ISSCC Special Issue, Vol. 52, No. 1, pp. 127-138, January 2017.
- Y.-H. Chen, J. Emer, V. Sze, "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks," International Symposium on Computer Architecture (ISCA), pp. 367-379, June 2016.
- Y.-H. Chen, T.-J. Yang, J. Emer, V. Sze, "Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices," IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS), June 2019.
- Eyexam: <u>https://arxiv.org/abs/1807.07928</u>
- Looking beyond DNN Accelerator for Acceleration
 - Z. Zhang, V. Sze, "FAST: A Framework to Accelerate Super-Resolution Processing on Compressed Videos," CVPR Workshop on New Trends in Image Restoration and Enhancement, July 2017. <u>www.rle.mit.edu/eems/fast</u>

