Efficient Computing for Autonomous Navigation using Algorithm-and-Hardware Co-design

Zhengdong Zhang

Committee:

- Prof. Vivienne Sze (thesis advisor)
- Prof. Sertac Karaman

- Prof. Luca Carlone
- Prof. Phillip Isola

Autonomous Navigation

Disaster response

Self driving cars

Key Techniques

Visual Perception

Localization

Mapping

COMPUTATIONAL POWER

Run algorithms for autonomous navigation **LOCALLY**

Low delay

High speed

Energy efficiency

Thesis Contributions

Object detection chip

		IFE		
Feature Tracking		VFE Control	Shared Memory	Graph
Feature Detection			Marginal Horizon St	Horizon States
Undistort & Rectify	Sparse Stereo			Linear Solver
Undistort & Rectify				

Visual Inertial Odometry (VIO) chip

Information theoretic mapping algorithms and system on FPGA

Detection on full HD videos at 30 fps

In collaboration with Amr Suleiman

Localization and mapping for miniature drones

Autonomous exploration of the environment

In collaboration with Trevor Henderson and Peter Li

Thesis Contributions

Object detection chip

Feature Tracking		IFE VFE Control		Graph
			Marginal	

Visual Inertial odometry (VIO) chip

Information theoretic mapping algorithms and system on FPGA

Detection on full HD videos at 30 fps

Localization and mapping for miniature drones

Autonomous exploration of the environment

In collaboration with Trevor Henderson and Peter Li

In collaboration with Amr Suleiman

In collaboration with Amr Suleiman

l'liiT

Navigation in Unknown Environment

Car for building Google Map

Drones

Build the map of an unknown environment with **depth sensor** scans

Time Sensitive Mapping Tasks

Need to explore and map the environment fast!

Where to Scan

Different scan location sequences impact mapping time

Information Theoretic Mapping

A **probabilistic framework** to model the mapping problem as the fastest **reduction of the uncertainty of the map**

Information Theoretic Mapping

Occupancy grid map, M

Mutual information map, I(M; Z)

$$H(M|Z) = H(I)$$
Perspective updated Current map entropy entropy

H(M)

Current map entropy I(M;Z)Mutual information

Figures from B. Julian et al. On mutual-information-based control of range sensing robots for mapping applications. IJRR, 2014

—

Information Theoretic Mapping 11

Generate candidate scan locations \mathcal{X}

For $x_i \in \mathcal{X}$: Evaluate $I(M; Z(x_i))$

Find $x^* \leftarrow \operatorname{argmax} I(M; Z(x_i)) / dist(x_i)$

Vehicle moves to x^*

Vehicle scans at x^*

Update the occupancy map

Require evaluation of I(M; Z) at multiple locations **Bottleneck of the entire pipeline**

Challenge I: High Complexity

Map resolution λ_m : number of cells per meter

Мар

 $I(M_i; Z) = \int_{z \ge 0} P(Z = z) f(\delta_i(z), r_i) dz$

Mutual Information

Expensive numerical integration at resolution λ_z

Time complexity of $O(\lambda_m^2 \lambda_z)$

Challenge 2: Amount of Input Data

A basic system needs to process huge amount of occupancy cells, each with complexity $O(\lambda_m^2 \lambda_z)$.

Solutions Presented in This Thesis

$$O\left(\lambda_m^2 \lambda_z\right) \to O(\lambda_m)$$

Better algorithm with lower complexity

Computation on the compressed 3D map

Specialized hardware for high-throughput, energy-efficient computation

Is Contributions

• Better algorithm with lower complexity

- Exact FSMI algorithm
- Approximation via noise Truncation
- Even faster algorithm with uniform noise
- Efficient implementation via look-up table and pre-computation

Computation on the compressed 3D map

- FSMI algorithm on the compressed OctoMap
- Closed-form solution to the problem
- Look-up table size reduction via noise approximation
- Look-up table split and reconstruction
- Algorithm for uniform case
- Specialized hardware for high-throughput, energy-efficient computation
 - Novel memory banking to minimize the collisions among multi cores
 - Packing multiple entries into one memory address
 - High throughput circuit to compute Shannon MI
 - Novel arbiter to resolve the conflicts of memory requests
 - Workload balance mechanism to reduce the overall latency

Contributions

Better algorithm with lower complexity

- Exact FSMI algorithm
- Approximation via noise Truncation
- Even faster algorithm with uniform noise
- Efficient implementation via look-up table and pre-computation

Computation on the compressed 3D map

- FSMI algorithm on the compressed OctoMap
- Closed-form solution to the problem
- Look-up table size reduction via noise approximation
- Look-up table split and reconstruction
- Algorithm for uniform case
- Specialized hardware for high-throughput, energy-efficient computation
 - Novel memory banking to minimize the collisions among multi cores
 - Packing multiple entries into one memory address
 - High throughput circuit to compute Shannon MI
 - Novel arbiter to resolve the conflicts of memory requests
 - Workload balance mechanism to reduce the overall latency

Overview of Thesis Defense

$$I(M_i; Z) = \int_{z \ge 0}^{z \ge 0} P(Z = z) f(\delta_i(z), r_i) dz$$
$$I(M^i; Z) = \frac{1}{2^{z \ge 0}} P(Z = z) f(\varphi^i(z), r_i) dz$$

Preliminaries and notations

FSMI on compressed occupancy map for 3D mapping

$$O\left(\lambda_m^2 \lambda_z\right) \to O(\lambda_m)$$

FSMI: Fast computation of Shannon Mutual Information

Dedicated hardware for FSMI

Overview of Thesis Defense

$$I(M_i; Z) = \int_{z \ge 0}^{z \ge 0} P(Z = z) f(\delta_i(z), r_i) dz$$
$$I(W^i; Z) = \frac{1}{2^{z \ge 0}} P(Z = z) f(\varphi^i(z), r_i) dz$$

Preliminaries and notations

FSMI on compressed occupancy map for 3D mapping

 $O(\lambda_m^2 \lambda_z) \rightarrow O(\lambda_m)$

FSMI: Fast computation of Shannon Mutual Information

Dedicated hardware for FSMI

Occupancy Grid Map

- $M_i \in \{0, 1\}, 0$ for empty, 1 for occupied
- Occupancy value $o_i = \Pr(M_i = 1)$
- Occupied $o_i = 1$, empty $o_i = 0$, unknown $o_i = 0.5$
- Odds ratio $r_i = \frac{\Pr(M_i=1)}{\Pr(M_i=0)} = \frac{o_i}{1-o_i}$, higher indicating the cell is more likely occupied

²⁰ Map Entropy

Entropy of a cell: $H(M_i) = -o_i \log o_i - (1 - o_i) \log(1 - o_i)$

Goal: Reduce the **entropy of the map** $\sum_{i} H(M_i)$

²¹ Update the Occupancy Map via the Bayesian Filter

Inverse sensing model $\delta_i(z) = \begin{cases} \delta_e < 1 & z \text{ indicates cell i empty} \\ \delta_o > 1 & z \text{ indicates cell } i \text{ occupied} \\ 1 & \text{otherwise} \end{cases}$

Bayesian filter
$$r_i^{t+1} = r_i^t \,\delta_i(z)$$

²² Evaluation of MI

Assumption I: Beams are independent

$$I(M;Z) = \sum_{b} I(M;Z_{b})$$

Only need to study the evaluation of MI on a single beam

²³ Evaluation of MI on ID Beam

i – index of the cell in the beam

Assumption 2 (Independence among cells on the same beam):

$$I(M;Z) = \sum_{i} I(M_i;Z)$$

Only need to study the evaluation of MI for a single cell

²⁴ Evaluation of MI at a Single Cell

Theorem (MI at a single cell):

Let the probability for the j-th cell to be the first non-empty cell on the beam

$$P(e_j) = \mathbf{o}_j \prod_{i < j} (1 - \mathbf{o}_i)$$

Let the probability for the perspective depth measurement being z be

$$P(z) = \sum_{j} P(e_j) \mathbf{P}(\boldsymbol{z}|\boldsymbol{e_j})$$

Let the MI contribution for depth measurement being z to i-th cell

$$f(\delta_i(z), r_i) = \log\left(\frac{r_i + 1}{r_i + \delta_i^{-1}(z)}\right) - \frac{\log \delta_i(z)}{r_i \delta_i(z) + 1}$$

We have

$$I(M_i; Z) = \int P(z) f(\delta_i(z), r_i) dz$$

No known closed-form solution

²⁵ Numerical Solution

$$I(M_i; Z) = \int P(z) f(\delta_i(z), r_i) dz$$

$$I(M_i; Z) \approx \sum_{z} P(z) f(\delta_i(z), r_i) \lambda_z^{-1}$$

$$I(M;Z) = \sum_{i} I(M_i;Z)$$

 $n = \text{Beam Length} \times \lambda_m$ – number of cells on the beam

Time Complexity $O(n^2 \lambda_z)$ or $O(\lambda_m^2 \lambda_z)$

$$I(M_i; Z) = \int_{z \ge 0}^{z \ge 0} P(Z = z) f(\delta_i(z), r_i) dz$$
$$I(W^i; Z) = \frac{1}{2} \sum_{z \ge 0}^{z \ge 0} P(Z = z) f(\varphi^i(z), r_i) dz$$

Preliminaries and notations

FSMI on compressed occupancy map for 3D mapping

 $O(\lambda_m^2 \lambda_z) \rightarrow O(\lambda_m)$

FSMI: Fast computation of Shannon Mutual Information

Dedicated hardware for FSMI

Original Shannon MI Algorithm

For i = 1 To n:

Evaluate $I(\underline{M_i}; Z) \leftarrow \sum_z P(z) f(\delta_i(z), r_i) \lambda_z^{-1}$

Evaluate

$$I(\boldsymbol{M}; \boldsymbol{Z}) = \sum_{i} I(\boldsymbol{M}_{i}; \boldsymbol{Z})$$

Evaluate $I(M_i; Z)$ one-by-one and then sum up

Fast computation of Shannon MI (FSMI)

FSMI: Evaluate the MI for all the cells in an entire beam altogether

l'liī

²⁹ Derivation of the FSMI Algorithm

$$I(M;Z) = \sum_{i=1}^{n} I(M_i;Z) = \sum_{i=1}^{n} \int_{z \ge 0} P(z) f(\delta_i(z), r_i) dz$$

$$P(z) = \sum_j P(e_j) P(z|e_j)$$

$$I(M;Z) = \sum_{i=1}^{n} \int_{z \ge 0} \sum_{j=1}^{n} P(e_j) P(z|e_j) f(\delta_i(z), r_i) dz$$
Switch order
$$I(M;Z) = \sum_{j=1}^{n} P(e_j) \int_{z \ge 0} P(z|e_j) \left(\sum_i f(\delta_i(z), r_i)\right) dz$$

³⁰ Piecewise Constant MI Contribution

$$I(M;Z) = \sum_{j=1}^{n} P(e_j) \int_{z \ge 0} P(z|e_j) \left(\sum_{i} f(\delta_i(z), r_i) \right) dz$$

 $\sum_{i} f(\delta_i(z), r_i) = C_k \quad \text{if } z \text{ falls into the } k \text{-th cell}$

Derivation of the FSMI Algorithm

$$I(M;Z) = \sum_{j=1}^{n} P(e_j) \int_{z \ge 0} P(z|e_j) \left(\sum_{i} f(\delta_i(z), r_i) \right) dz$$

Break up the integral into summation of multiple integrals over
the cell boundary

$$I(M;Z) = \sum_{j=1}^{n} P(e_j) \sum_{k} \int_{l_k}^{l_{k+1}} P(z|e_j) C_k dz$$

$$I(M;Z) = \sum_{j=1}^{n} P(e_j) \sum_{k} C_k \int_{l_k}^{l_{k+1}} P(z|e_j) dz$$

CDF function: $\Phi_j(l_{k+1}) - \Phi_j(l_k)$

FSMI under Gaussian Noise Model

$$I(M;Z) = \sum_{j=1}^{n} \sum_{k=1}^{n} P(e_j) C_k G_{k,j}$$

Most important equation of the defense!

where $P(e_i) = o_i \prod_{j < i} (1 - o_j), i = 1, ..., n$ O(n)

$$C_k = f(\delta_o, r_k) + \sum_{i < k} f(\delta_e, r_i), i = 1, \dots, n \qquad O(n)$$

$$G_{k,j} = \int_{l_k}^{l_{k+1}} P(z|e_j) dz = \Phi_j(l_{k+1}) - \Phi_j(l_k) \qquad O(1)$$

I(M;Z) can be computed exactly in $O(n^2)$

Approximation of Noise Model for Depth Sensor

I(M; Z) can be computed *approximately* in O(n)

Charrow et al., Information-theoretic mapping using cauchy-schwarz quadratic mutual information, ICRA 2015

1411

Comparison against Alternative Metrics

Cauchy Schwarz Quadratic Mutual Information (CSQMI)

$$I_{CS}(M;Z) = \log\left(\sum_{l=0}^{n} w_{l}\mathcal{N}(0,2\sigma^{2})\right)$$
$$+ \log\left(\prod_{i}^{n} \left(o_{i}^{2} + (1-o_{i})^{2}\right)\sum_{j=0}^{n} \sum_{l=0}^{n} P(e_{j})P(e_{l})\mathcal{N}(\mu_{l} - \mu_{j},2\sigma^{2})\right)$$
$$-2\log\left(\sum_{j=0}^{n} \sum_{l=0}^{n} P(e_{j})w_{l}\mathcal{N}(\mu_{l} - \mu_{j},2\sigma^{2})\right)$$
Two double for-loop

FSMI
$$I(M; Z) = \sum_{j=1}^{n} \sum_{k=1}^{n} P(e_j) C_k G_{k,j}$$

One double for-loop

³⁵ Evaluation on ID Synthetic Beam

1411
Synthetic 2D experiment

Acceleration with no penalty on trajectory length

36

33 Real Experiments (4×Realtime)

In collaboration with Trevor Henderson

Real Experiments (4×Realtime)

In collaboration with Trevor Henderson

Summary of Contributions

- **FSMI algorithm:** New formula that avoids numerical integration and computes the exact Shannon MI in $O(n^2)$
- Approx FSMI algorithm: Approximate the sensor noise model to compute Shannon MI in O(n) with negligible accuracy loss
- **Tested in real system**: 2D mapping in the motion capture room with mini racecar

Compared with Original Shannon MI from [1]

 $O(n^2\lambda_z)$

FSMI is more than 1000× faster (measured results) (Alternative Metric) Approx CSQMI [2] alternative information metric, O(n)

FSMI is around 1.7 – 2.8× faster (measured results)

Published: Zhang, et. al, "FSMI: Fast computation of Shannon Mutual Information for Information Theoretic Mapping". ICRA, 2019

Julian, et. al, "On mutual information based control of range sensing robots for mapping applications," IJRS, 2014
Charrow et al., Information-theoretic mapping using cauchy-schwarz quadratic mutual information, ICRA 2015

Overview of Thesis Defense

$$I(M_i; Z) = \int_{z \ge 0}^{z \ge 0} P(Z = z) f(\delta_i(z), r_i) dz$$
$$I(W^i; Z) = \frac{1}{2^{z \ge 0}} P(Z = z) f(\varphi^i(z), r_i) dz$$

Preliminaries and notations

FSMI on compressed occupancy map for 3D mapping

 $O(\lambda_m^2 \lambda_z) \rightarrow O(\lambda_m)$

FSMI: Fast computation of Shannon Mutual Information

Dedicated hardware for FSMI

40

Extension from 2D to 3D

2D Occupancy Map

3D Voxel Map

The size of the **memory** grows more than $10 \times$

OctoMap for Compression

Adaptive 3D representation supporting multiple scales

Hornung, et al., OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees, Autonomous Robots, 2013

Ray-tracing on the OctoMap 43

The ID occupancy vector consists of multiple segments of repeated occupancy values

Uncompressed input format

Compressed format (Run Length Encoding)

 n_r

Time complexity of Approx FSMI

 $\boldsymbol{0}(\boldsymbol{n})$

Goal: achieve the complexity of

 $O(n_r)$

 $n_r \ll n$, significant reduction if the constants are comparable

45

46

If the summation is evaluable in O(1), the exact FSMI can be evaluated in $O(n_r^2)$, and the approx. FSMI can be evaluated in $O(n_r)$

Analytical Solution

$$\sum_{j=1}^{L_u} \sum_{k=1}^{L_v} k \cdot x^j \exp\left(-\frac{(j-k+t)^2}{2\sigma^2}\right)$$

$$\int \int k \cdot x^{j} \exp\left(-\frac{(j-k+t)^{2}}{2\sigma^{2}}\right) dj \, dk$$

There is a closed-form solution!

Analytical solution

8 different erf() evaluations, 10 evaluations of non-trivial terms, about 60 multiplications to combine them

49

50 Tabulation based Solution

$$A[L_u, L_v, x, t] = \sum_{j=1}^{L_u} \sum_{k=1}^{L_v} k \cdot x^j \exp\left(-\frac{(j-k+t)^2}{2\sigma^2}\right)$$

Size of the table: $n^3|X|$, where |X| is the number of possible quantization levels of occupancy value o_i

When n = 256, |X| = 100, the size of the table is 6. 25GB

Reducing the Table Size via Decomposition

 $A[L_u, L_v, x, t] = \sum_{i=1}^{L_u} \sum_{j=1}^{L_v} k \cdot x^j exp\left(-\frac{(j-k+t)^2}{2\sigma^2}\right)$ Remove a dimension for *t* from the tabulation $\alpha[L_u, L_v, x] = \sum_{i=1}^{L_u} \sum_{j=1}^{L_v} k \cdot x^j \exp\left(-\frac{(j-k)^2}{2\sigma^2}\right)$ Size of the table is reduced from $n^3|X|$ to $n^2|X|$ **Reconstruct** an entry in A[] from entries in α []:

When t > 1, $A[L_u, L_v, x, t] = x^{-t}(\alpha[x, L_u + t, L_v] - \alpha[x, t, L_v])$

Compute the entries of a big table with multiple accesses to a smaller table

52 Gaussian Truncation

Gaussian Truncation:
$$\exp\left(-\frac{(j-k)^2}{2\sigma^2}\right) \approx 0$$
, when $|j-k| > \Delta$

When n = 256, $\Delta = 5$, |X| = 100, the size of the table is reduced from 6. 5GB to 40KB

14117

Acceleration on ID Synthetic Data

Average Completion Time (us) on a Beam of 256 cells Baseline (Approx FSMI): 56us

	L = 1	L = 2	L = 4	L = 8	L = 16	L = 32	L = 64	L = 128
Approx FSMI-RLE	240.9	79.4	31.5	12.3	7.6	4.9	3.4	2.3
Acceleration	0.2 imes	0.7 imes	$1.8 \times$	$4.6 \times$	7.4 imes	$11.2\times$	$16.5 \times$	$24.4 \times$

Measured on an Intel Xeon CPU

54 Experiments

Motion capture room of size $10m \times 10m \times 5m$, In collaboration with Trevor Henderson at 0.05m, with $200\times200\times100 = 4M$ cells

55 Experiments

We record an average compression ratio of around $18\times$, with an acceleration ratio of $8\times$

Summary of Contributions

FSMI-RLE Algorithm that computes directly on a compressed format by run-length encoding, yielding $8 \times$ acceleration for 3D mapping with OctoMap

Gaussian truncation, and table decomposition to reduce size of the look-up table by 162, 500×, in practice this reduces a table of size 6.5 GB to 40 KB

Tested on real platforms and integrated into a real system of racecar in motion capture room of $10m \times 10m \times 5m$

In preparation for submission

Overview of Thesis Defense

$$I(M_i; Z) = \int_{z \ge 0}^{z \ge 0} P(Z = z) f(\delta_i(z), r_i) dz$$
$$I(W^i; Z) = \frac{1}{2^{z \ge 0}} P(Z = z) f(\varphi^i(z), r_i) dz$$

Preliminaries and notations

FSMI on compressed occupancy map for 3D mapping

 $O(\lambda_m^2 \lambda_z) \rightarrow O(\lambda_m)$

FSMI: Fast computation of Shannon Mutual Information

Dedicated hardware for FSMI

System Overview

Shannon MI at the input locations

FPGA

NVIDIA Jetson TX2

In collaboration with Peter Li

58

FSMI Algorithm is Parallelizable

FSMI Algorithm on a beam

$$I(M;Z) = \sum_{j=1}^{n} \sum_{k=j-\Delta}^{j+\Delta} P(e_j) C_k G_{k,j}$$

FSMI can run in parallel among different beams of a scan

High-level Architecture 60

 $10 \times$ faster than an Intel Xeon Core

Challenge: provide enough **memory bandwidth** to keep all the FSMI cores busy

Memory Bandwidth on FPGA

On FPGA, an SRAM only has at most two read ports

Solution: Banking

Challenge: How to break up the memory to reduce the chance for multiple FSMI cores to visit the same bank?

l'liiT

Special Memory Access Pattern 63

Bresenham's Ray-tracing Algorithm

Naïve Ray-tracing Algorithm

Along the major axis, only one cell per step

Special Memory Access Pattern 64

Cells with the same numbers are accessed at the same time. Ideally they should be stored in different banks. Otherwise there would be **read conflicts and some cores will stall**.

Simple Banking does NOT Work

Different beams always collide

Proposed Banking Pattern

Further Improvement on Bandwidth

Increase the bandwidth by packing more values in one address.

FPGA Implementation

- Xilinx Zynq-7000(XC7Z045) FPGA
- 16 FSMI cores
- 512x512 Occupancy Map
- Baseline: Intel Xeon E5-4627 CPU

Experimental Results

Average time of FSMI on a single sensor beam (us)

With 16 cores, the system is over 100x faster than an Intel Xeon core. Can compute MI for a complete 200×200 map at 2Hz.

l'liī

Experimental Results

	Baseline	Vertical banking & No packing	Diagonal banking & No packing	Diagonal banking & Pack 2x2	Unlimited Bandwidth
Latency	86.53 us	39.15 us	16.48 us	12.58us	11.84 us
Speed up	$1 \times$	$2.21 \times$	5.25 imes	$6.88 \times$	$7.31 \times$
				''	

The final design is only 6.25% slower than the ideal case with unlimited bandwidth.

FPGA Profile

Module	LUT (Logic)	LUT (Reg)	BRAM	LUT (RAM)	DSP	Dynamic Power	
Angle Assigner	131	437	0	0	0	0.001W	
Bresenham (16x)	10602	3017	0	1408	32	0.042W	
Arbiter	25226	2055	0	662	0	0.107W	
Occupancy Grid Map	0	0	64	0	0		
FSMI Core (16x)	163141	36856	40	49	288	1.827W	
Total	199101	42365	104	2119	320	1.977W	
Utilization of FPGA	91.1%	9.7%	19.1%	3.0%	35.6%	NA	

Less than 10% of the CPU power, despite more than 100x faster.
⁷³ Impact of Acceleration

Being able to evaluate 25x more FSMI leads to 19% shorter exploration path in a synthetic 2D exploration task.

Summary Of Contributions

- Optimization on memory design to provide 6.8× more memory bandwidth for 16 FSMI cores to run in parallel
- **Diagonal stripe banking pattern** for the special memory access pattern introduced by the Bresenham's algorithm
- **Packing multiple occupancy values** into one cell to increase the memory bandwidth
- More than 100× faster than an Intel CPU core while consuming less than 10% of power
- 200x200 MI map at 2 Hz
- In submission

Summary of Contributions Presented in the Defense

- FSMI Algorithm that computes Shannon Mutual Information in O(n), three orders of magnitude faster
- FSMI-RLE Algorithm that computes FSMI on Compressed Input from OctoMap, around 8x faster
- Novel architecture on FPGA to run FSMI 100x faster than CPU while consuming 10% power.

$$O\left(\lambda_m^2 \lambda_z\right) \to O\left(\lambda_m\right)$$

Comparison with Previous Works

- Three orders of magnitude faster than the original algorithm to Compute Shannon MI between perspective range measurements and map [1]
- 2-3 times faster than less well-understood, alternative metric CSQMI [2]
- **First work** to study the computation of mutual information on OctoMap for 3D mapping
- **First work** to build dedicated accelerator for the computation of mutual information

Julian, et. al, "On mutual informationbased control of range sensing robots for mapping applications," IJRS, 2014
Charrow et al., Information-theoretic mapping using cauchy-schwarz quadratic mutual information, ICRA 2015

Conclusion of the Thesis

- Algorithm-hardware co-design can improve the overall energy efficiency and throughput of the system more than what could be achieved from optimization each individually
- Compressing the data and directly performing computation on the compressed data structure enables significant acceleration
- Even if the algorithm is parallelizable, it is critical to design a memory architecture that can provide enough memory bandwidth such that the cores can be fully utilized to deliver higher throughput

Acknowledgement

- Mom
- Vivienne Sze
- Sertac Karaman, Luca Carlone, Phillip Isola
- Amr Suleiman, James Noraky, Yu-Hsin Chen, Mehul Tikekar, Tien-Ju Yang, Hsin-Yu Lai, Gladynel Pena, Yannan Wu, Peter Li, Soumya Sudhakar
- Edward Adelson, Wenzhen Yuan, Bei Xiao, Lavanya Sharan, Derya Akkaynak, Rui Li, Shaoxiong Wang, Yu Zhang, Tianfan Xue, Chiyuan Zhang, Xuhong Zhang, Daniel Li, Ling Ren, Peng Wang, Jiajun Wu, Xue Feng, Sizhuo Zhang, Tianren Liu, Chengtao Li, Guolong Su, Xiao Fang, Yu Wang, Duanhui Li, Xi Yang, Yuan Zhang, Lixin Shi, Xiaoxue Wang, Dongying Shen, Bai Liu, Fangchang Ma, Trevor Henderson, and so many other colleagues and friends

• • • •

Questions?

$$O\left(\lambda_m^2 \lambda_z\right) \to O(\lambda_m)$$

