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Autonomous Navigation1

Disaster response Self driving cars



Key Techniques2

LocalizationVisual Perception Mapping

COMPUTATIONAL POWER



Goal3

Run algorithms for autonomous navigation LOCALLY

Low delay High speed Energy efficiency



Thesis Contributions4

Object detection chip Detection on full HD videos at 30 fps

Visual Inertial Odometry (VIO) chip
Localization and mapping for 

miniature drones

Information theoretic mapping 
algorithms and system on FPGA

Autonomous exploration of 
the environment 

In collaboration with 
Amr Suleiman

In collaboration with 
Trevor Henderson and 
Peter Li

In collaboration with 
Amr Suleiman
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Navigation in Unknown Environment6

Build the map of an unknown environment with 
depth sensor scans

Car for building Google Map Drones



Time Sensitive Mapping Tasks7

Need to explore and map the environment fast!



Where to Scan8

Figures from B. Julian et al. On mutual-information-based control of range sensing robots for mapping applications. IJRR, 2014

Different scan location sequences impact mapping time



Information Theoretic Mapping9

A probabilistic framework to model the mapping problem 
as the fastest reduction of the uncertainty of the map

Scan

Figures from B. Julian et al. On mutual-information-based control of range sensing robots for mapping applications. IJRR, 2014



Information Theoretic Mapping10

Occupancy grid map, !

" ! # = " ! − &(!; #)

Figures from B. Julian et al. On mutual-information-based control of range sensing robots for mapping applications. IJRR, 2014

Perspective updated 
map entropy

Mutual 
information

Current map 
entropy

Mutual information map, &(!; #)



11 Information Theoretic Mapping

…"#

Generate candidate scan locations $

For "# ∈ $:
Evaluate & '; ) *+

Find "∗ ← argmax & ';) *+ /4+56 *+

Vehicle moves to "∗

Vehicle scans at "∗

Update the occupancy map

Require evaluation of &('; )) at multiple locations
Bottleneck of the entire pipeline



Challenge 1: High Complexity12

Map resolution !": number of cells per meter

Time complexity of #(%&' %()

Expensive numerical 
integration at resolution !*

Map

Mutual
Information



Challenge 2: Amount of Input Data13

A basic system needs to process huge amount of 
occupancy cells, each with complexity !(#$% #&).

2D map 3D map

Figures from B. Julian et al. On mutual-information-based control of range sensing robots for mapping applications. IJRR, 2014



Solutions Presented in This Thesis14

! "#$ "% → ! "# Better algorithm with lower complexity

Computation on the compressed 3D map

Specialized hardware for high-throughput, 
energy-efficient computation



• Better algorithm with lower complexity
– Exact FSMI algorithm
– Approximation via noise Truncation
– Even faster algorithm with uniform noise
– Efficient implementation via look-up table and pre-computation

• Computation on the compressed 3D map
– FSMI algorithm on the compressed OctoMap
– Closed-form solution to the problem
– Look-up table size reduction via noise approximation
– Look-up table split and reconstruction
– Algorithm for uniform case

• Specialized hardware for high-throughput, energy-efficient computation
– Novel memory banking to minimize the collisions among multi cores
– Packing multiple entries into one memory address
– High throughput circuit to compute Shannon MI
– Novel arbiter to resolve the conflicts of memory requests
– Workload balance mechanism to reduce the overall latency

Contributions15
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Overview of Thesis Defense17

! "#$ "% → ! "#

Preliminaries and notations FSMI: Fast computation of 
Shannon Mutual Information

FSMI on compressed occupancy map 
for 3D mapping

Dedicated hardware for FSMI
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Occupancy Grid Map19

Occupancy cell, !"

• !" ∈ 0, 1 , 0 for empty, 1 for occupied

• Occupancy value '" = Pr !" = 1

• Occupied '" = 1, empty '" = 0, 
unknown '" = 0.5

• Odds ratio -" = ./ 0123
./ 0124

= 51
3651

, higher 

indicating the cell is more likely occupied



Map Entropy20

Goal: Reduce the entropy of the map

!
"
#(%")

Entropy of a cell: 
# %" = −)" log )" − 1 − )" log 1 − )"



Update the Occupancy Map via 
the Bayesian Filter21

!"#$% = !"# '" (

Sensor 1D occupancy cell

A single beam

')'* 1

Bayesian filter

'" ( = ,
'* < 1 z indicates cell i empty
') > 1 z indicates cell < occupied
1 otherwise

Inverse sensing model

(

!"



Evaluation of MI22

Assumption 1: Beams are independent

! "; $ =&
'
!("; $')

Only need to study the evaluation of MI on a single beam

* = +
* = ,
* = -

…



Evaluation of MI on 1D Beam23

Sensor 1D occupancy cell

A single beam

!

Assumption 2 (Independence among cells on the same beam): 

" #; % ='
(
"(#(; %)

Only need to study the evaluation of MI for a single cell

+ – index of the cell in the beam



Evaluation of MI at a Single Cell24

Theorem (MI at a single cell):
Let the probability for the !-th cell to be the first non-empty cell on the beam 

" #$ = &'(
)*$

(1 − &.)

Let the probability for the perspective depth measurement being 0 be

" 0 =1
$
" #$ 2(3|5')

Let the MI contribution for depth measurement being 0 to 6-th cell 

7 8)(0), :) = log :) + 1
:) + 8)?@ 0

− log 8)(0)
:)8)(0) + 1

We have

A B); D = ∫ " 0 7(8)(0), :))F0
No known closed-form solution

B. Julian et al. On mutual-information-based control of range sensing robots for mapping applications. IJRR, 2014



Numerical Solution25

! "#; % ≈'
(

) * + ,# * , .# /(01

Time Complexity 2(4567) or 2(695 67)

! "; % ='
#

!("#; %)

! "#; % = ∫ ) * +(,#(*), .#)<*

= = Beam Length×/H – number of cells on the beam



Content26

! "#$ "% → ! "#

Preliminaries and notations FSMI: Fast computation of 
Shannon Mutual Information

FSMI on compressed occupancy map 
for 3D mapping

Dedicated hardware for FSMI



Original Shannon MI Algorithm27

For ! = 1To n:

Evaluate $ %&; ( ← ∑+, - . /& - , 1& 2+34

Evaluate

$ %; ( =5
&
$(%&; ()

Evaluate $(%&; () one-by-one and then sum up



Fast computation of Shannon MI 
(FSMI)28

⋯
" #$; & " #'; & " #(; & " #); &

Numerical 
integration 

only

Closed form 
solution

FSMI: Evaluate the MI for all the cells in an entire beam altogether



Derivation of the FSMI Algorithm29

! "; $ =&
'()

*
!("'; $) =&

'()

*
-
./0
1 2 3 4' 2 , 6' 72

1 2 =&
8
1 98 1(2|98)

! "; $ =&
'()

*
-
./0

&
8()

*
1 98 1(2|98)3 4' 2 , 6' 72

! "; $ =&
8()

*
1 98 -

./0
1 2 98 &

'
3 4' 2 , 6' 72

Switch order



Piecewise Constant MI Contribution30

Sensor

!

"($%, r() "($%, r*+() "($,, r*) 0 0

.
/
" $/ 0 , 1/ = 34 if 0 falls into the 5-th cell

6 7; 9 =.
:;(

<
= >: ?

@AB
= 0 >: .

C
D EC ! , FC G0



Derivation of the FSMI Algorithm31

! "; $ =&
'()

*
+ ,' -

./0
+ 1 ,' &

2
3 42 1 , 62 71

! "; $ =&
'()

*
+ ,' &

8
-
9:

9:;<
+ 1 ,' =871

Break up the integral into summation of multiple integrals over 
the cell boundary

! "; $ =&
'()

*
+ ,' &

8
=8 -

9:

9:;<
+ 1 ,' 71

CDF function: Φ? lAB) − Φ? lA



FSMI under Gaussian Noise Model32

! "; $ =&
'()

*

&
+()

*

, -' .+/+,'

, -1 = 213
'41

(1 − 2') , i = 1, … , ;where

.+ = < =>, ?+ +&
14+

<(=A, ?1) , i = 1, … , ;

B(;)

B(;)

/+,' = C
DE

DEFG
, H -' IH = Φ' K+L) − Φ'(K+) B(1)

!("; $) can be computed exactly in M NO

Most important equation of the defense!



Approximation of Noise Model 
for Depth Sensor33

Normal distribution

Truncate to 0 Truncate to 0

Δ Δ

" #; % ='
()*

+
'

,)(-.

(/.
0 1( 2,3,,(

"(#; %) can be computed approximately in 7 8

Δ is as small as 3 or 5

Charrow et al., Information-theoretic mapping using cauchy-schwarz
quadratic mutual information, ICRA 2015



Comparison against Alternative 
Metrics34

Cauchy Schwarz Quadratic Mutual Information (CSQMI)

!"# $; & = log +
,-.

/

0,1(0, 267)

+ :;< =
>

/

;>7 + 1 − ;> 7 +
A-.

/

+
,-.

/

B CA B C, 1 D, − DA, 267

−2 log +
A-.

/

+
,-.

/

B CA 0,1 D, − DA, 267

! $; & =+
A-E

/

+
F-E

/

B CA GFHF,A

Two double for-loop

One double for-loopFSMI



Evaluation on 1D Synthetic Beam35

Sensor

188046

132
17 29

1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07

Original
MI

Exact
FSMI

Approx
FSMI

Approx
CSQMI

Average running time (us)
on an Intel CPU

149

422

0.E+00
1.E+02
2.E+02
3.E+02
4.E+02
5.E+02
6.E+02

Approx FSMI Approx
CSQMI

Average running time (us)
on an ARM CPU 

1.7× acceleration on an Intel CPU. 
2.8× acceleration on an ARM CPU



Synthetic 2D experiment36

Map and Trajectory

107.2 105.3
131.4

0
20
40
60
80
100
120
140
160

Approx
CSQMI

Approx
FSMI

Nearest
Frontier

Average Trajectory Length

Acceleration with no penalty on trajectory length



Real Experiments (4×Realtime)

Occupancy map 
with planned path

MI surface

33

In collaboration with Trevor Henderson



Real Experiments (4×Realtime)

Exploration with a mini race car using 
motion capture for localization

Occupancy map 
with planned path

MI surface

34

In collaboration with Trevor Henderson



Summary of Contributions
• FSMI algorithm: New formula that avoids numerical integration and 

computes the exact Shannon MI in !(#$)
• Approx FSMI algorithm: Approximate the sensor noise model to 

compute Shannon MI in !(#) with negligible accuracy loss
• Tested in real system: 2D mapping in the motion capture room with 

mini racecar

(Alternative Metric) Approx CSQMI [2]
alternative information metric, !(#)

FSMI is around 1.7 − 2.8× faster
(measured results)

Original Shannon MI from [1]
!(#$-.)

FSMI is more than /000× faster
(measured results)

Compared with

[1] Julian, et. al, “On mutual information based control of range sensing robots for mapping applications,” IJRS, 2014
[2] Charrow et al., Information-theoretic mapping using cauchy-schwarz quadratic mutual information, ICRA 2015

35

Published: Zhang, et. al, “FSMI: Fast computation of Shannon Mutual Information for Information 
Theoretic Mapping”. ICRA, 2019



Overview of Thesis Defense40

! "#$ "% → ! "#

Preliminaries and notations FSMI: Fast computation of 
Shannon Mutual Information

FSMI on compressed occupancy map 
for 3D mapping

Dedicated hardware for FSMI



Extension from 2D to 3D41

The size of the memory grows more than !"×

2D Occupancy Map 3D Voxel Map



OctoMap for Compression42

Adaptive 3D representation supporting multiple scales

Representation at different scales

Hornung, et al.,  OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees, Autonomous 
Robots, 2013



Ray-tracing on the OctoMap43

Sensor 
scan 

location

!" !" !" !" !# !# !# !$ !$ !%

The 1D occupancy vector consists of multiple segments 
of repeated occupancy values



FSMI on Compressed Input44

Uncompressed input format

!", !", … , !", !%, … , !%, !&, … , !&, … , !'(, … , !')

*" *% *& *')+ + + = -

.(0)

Compressed format (Run Length Encoding)

(!", *"), (!%, *%), !&, *& , … , (!'), *'))

-(

.(02)

Time complexity of Approx FSMI

Goal: achieve the complexity of

02 ≪ 0, significant reduction if the constants are comparable

!" !" !" !" !% !% !% !& !& !4



FSMI on Compressed Input45

! "; $ = &
'()

*+
&
,()

*+
&
-()

./
&
0()

.1
2 34/5- 6715087/5-,7150

All the computation between two 
groups of cells of length :' and :,.

! "; $ =&
-()

*
&
0()

*
2 3- 6080,-FSMI:



FSMI on Compressed Input46

!" # $ − &' ()* +" v + . ⋅ 0 1234, 67
+0 1899, 67

1
; exp − ? − . + @ A

2CA

D E; ; = H
*IJ

KL
H
7IJ

KL
H
MIJ

NO
H
PIJ

NQ
! RSOTM UVQTPWVOTM,VQTP

@ = X* − X7, 
relative distance of the two blocks



FSMI on Compressed Input47

!
"#$

%&
!
'#$

%(
) ⋅ +" exp − 0 − ) + 2 3

253

If the summation is evaluable in 6 7 , the exact FSMI 
can be evaluated in 6(9:;), and the approx. FSMI can 

be evaluated in 6(9:)



!
"#$

%&
!
'#$

%(
) ⋅ +" exp − 0 − ) + 2 3

253

Analytical Solution48

66) ⋅ +" exp − 0 − ) + 2 3

253 70 7)

Approximation

There is a closed-form solution!



Analytical solution49

8 different erf() evaluations, 10 evaluations of non-trivial 
terms, about 60 multiplications to combine them



Tabulation based Solution50

! "#, "%, &, ' =)
*+,

-.

)
/+,

-0

1 ⋅ &* 3&4 −
6 − 1 + ' 8

2:8

Size of the table: ;< = , where |?| is the number of 
possible quantization levels of occupancy value @A

When ; = 256, = = 100, the size of the table is F. HIGB



Reducing the Table Size via 
Decomposition51

! "#, "%, &, ' =)
*+,

-.

)
/+,

-0

1 ⋅ &* 3&4 −
6 − 1 + ' 8

2:8

Remove a dimension for ;
from the tabulation

When ' > 1, ! "#, "%, &, ' = &>? @ &, "# + ', "% − @[&, ', "%]

@ "#, "%, & =)
*+,

-.

)
/+,

-0

1 ⋅ &* 3&4 −
6 − 1 8

2:8

Size of the table is reduced from CD|F| to CG F
Reconstruct an entry in H[] from entries in I[]:

Compute the entries of a big table with multiple 
accesses to a smaller table



Gaussian Truncation52

Gaussian Truncation: exp − %&' (

)*( ≈ 0, when - − . > Δ

This bounds 12, 14, 5 by Δ instead of 6. 
This reduces the table size 2Δ )|9|

When 6 = 256, Δ = 5, 9 = 100, the size of the table is reduced from >. @GB to ABCD

Normal distribution

Truncate to 0 Truncate to 0

Δ Δ

Δ is as small as 3 or 5



Acceleration on 1D Synthetic Data53

Baseline (Approx FSMI): 56us
Average Completion Time (us) on a Beam of 256 cells

Measured on an Intel Xeon CPU

# = 1

# = 2

# = 4



Experiments54

In collaboration with Trevor HendersonMotion capture room of size 10m x 10m x 5m,
at 0.05m,  with 200x200x100 = 4M cells



Experiments55

We record an average compression ratio of around 18×, 
with an acceleration ratio of 8×



Summary of Contributions56

FSMI-RLE Algorithm that computes directly on a compressed format by run-length 
encoding, yielding 8× acceleration for 3D mapping with OctoMap

($%, '%), ($), ')), $*, '* , … , ($,-, ',-)

./
Gaussian truncation, and table decomposition to reduce size of the look-up table by 
162, 500×, in practice this reduces a table of size 6.5 GB to 40 KB
Tested on real platforms and integrated into a real system of racecar in 
motion capture room of 10m x 10m x 5m

In preparation for submission



Overview of Thesis Defense57

! "#$ "% → ! "#

Preliminaries and notations FSMI: Fast computation of 
Shannon Mutual Information

FSMI on compressed occupancy map 
for 3D mapping

Dedicated hardware for FSMI



NVIDIA Jetson TX2

System Overview58

Motion Planning for 
Candidate Paths

Compute Shannon 
MI and choose the 

best path

Move to the 
Location

Sensor 
Scan

Update 
Occupancy 

Map

Map and candidate 
scan locations

Shannon MI at the 
input locations

FPGA

In collaboration with Peter Li



FSMI Algorithm is Parallelizable59

! "; $ =&
'()

*
&

+(',-

'.-
/ 0' 1+2+,'FSMI Algorithm on a beam

FSMI can run in parallel among different beams of a scan

Core 1
Core 2

Core 3
Core 4

…



High-level Architecture60

Challenge: provide enough memory bandwidth to 
keep all the FSMI cores busy

10× faster than an Intel Xeon Core



Memory Bandwidth on FPGA61

Occupancy 
Map

Read Port 1

Read Port 2

Arbiter

FSMI

FSMI

FSMI

⋮

On FPGA, an SRAM only has at most two read ports



Solution: Banking62

Bank 1

Arbiter

FSMI

FSMI

FSMI

⋮

Bank 2
Bank 3
⋮

Bank N

Challenge: How to break up the memory to reduce the 
chance for multiple FSMI cores to visit the same bank?



Special Memory Access Pattern63

Bresenham’s Ray-tracing Algorithm Naïve Ray-tracing Algorithm

Along the major axis, only one cell per step



Special Memory Access Pattern64

Cells with the same numbers are accessed at the same time. 
Ideally they should be stored in different banks. Otherwise 

there would be read conflicts and some cores will stall.



Simple Banking does NOT Work65

Different beams always collide

Row-based Column-based



Proposed Banking Pattern66

If there are ! banks, no collision up to the !-th column/row.

Bank 0 Bank 1

Bank 2 Bank 3

Bank 0 Bank 1

Bank 2 Bank 3



Further Improvement on Bandwidth67

Increase the bandwidth by packing more values in one address.



• Xilinx Zynq-7000(XC7Z045) FPGA

• 16 FSMI cores

• 512x512 Occupancy Map

• Baseline: Intel Xeon E5-4627 CPU

FPGA Implementation68



Experimental Results69

With 16 cores, the system is over 100x faster than an Intel Xeon core.
Can compute MI for a complete 200×200 map at 2Hz.

Beam length



Experimental Results70

The final design is only 6.25% slower than the ideal case with 
unlimited bandwidth.

No packing No packing Pack 2x2



FPGA Profile72

Less than 10% of the CPU power, despite more than 100x faster.



Impact of Acceleration73

Being able to evaluate 25x more FSMI leads to 19% shorter 
exploration path in a synthetic 2D exploration task.



• Optimization on memory design to provide !. #× more 
memory bandwidth for 16 FSMI cores to run in parallel

• Diagonal stripe banking pattern for the special memory 
access pattern introduced by the Bresenham’s algorithm

• Packing multiple occupancy values into one cell to 
increase the memory bandwidth

• More than %&&× faster than an Intel CPU core while 
consuming less than 10% of power

• 200x200 MI map at 2 Hz

• In submission

Summary Of Contributions74



• FSMI Algorithm that computes Shannon Mutual Information in 
! " , three orders of magnitude faster

• FSMI-RLE Algorithm that computes FSMI on Compressed 
Input from OctoMap, around 8x faster

• Novel architecture on FPGA to run FSMI 100x faster than 
CPU while consuming 10% power.

Summary of Contributions 
Presented in the Defense75

! #$% #& → ! #$



• Three orders of magnitude faster than the original 
algorithm to Compute Shannon MI between perspective range 
measurements and map [1]

• 2-3 times faster than less well-understood, alternative 
metric CSQMI [2]

• First work to study the computation of mutual information 
on OctoMap for 3D mapping

• First work to build dedicated accelerator for the 
computation of mutual information

Comparison with Previous Works76

[1] Julian, et. al, “On mutual informationbased control of range sensing robots for mapping applications,” IJRS, 2014
[2] Charrow et al., Information-theoretic mapping using cauchy-schwarz quadratic mutual information, ICRA 2015



• Algorithm-hardware co-design can improve the overall 
energy efficiency and throughput of the system more than 
what could be achieved from optimization each individually

• Compressing the data and directly performing computation 
on the compressed data structure enables significant 
acceleration

• Even if the algorithm is parallelizable, it is critical to design a 
memory architecture that can provide enough memory 
bandwidth such that the cores can be fully utilized to deliver 
higher throughput

Conclusion of the Thesis77
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