Efficient Computing for Robotics and AI

Vivienne Sze

Massachusetts Institute of Technology

technology laboratories

Processing at "Edge" instead of the "Cloud"

Communication

Privacy

Latency

Computing Challenge for Self-Driving Cars

JACK STEWART TRANSPORTATION 02.06.18 08:00 AM

SELF-DRIVING CARS USE CRAZY AMOUNTS OF POWER, AND IT'S BECOMING A PROBLEM

Shelley, a self-driving Audi TT developed by Stanford University, uses the brains in the trunk to speed around a racetrack autonomously.

🔂 NIKKI KAHN/THE WASHINGTON POST/GETTY IMAGES

14112

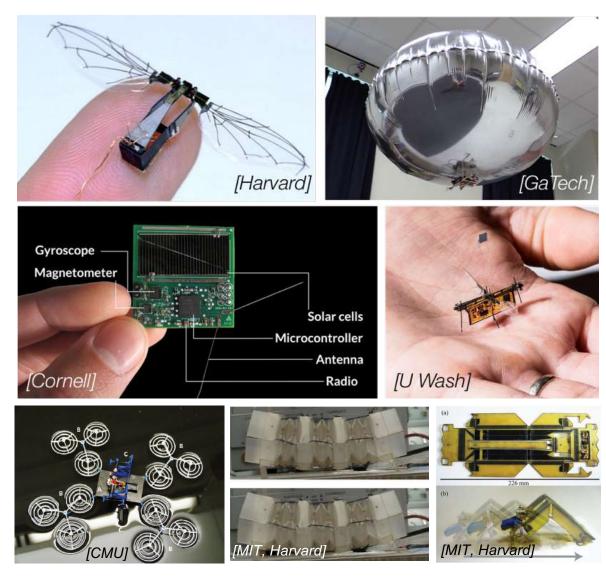
(Feb 2018)

Cameras and radar generate ~6 gigabytes of data every 30 seconds.

Self-driving car prototypes use approximately 2,500 Watts of computing power.

Generates wasted heat and some prototypes need water-cooling!

Robots Consuming < 1 Watt for Actuation</p>



Low Energy Robotics

- Miniature aerial vehicles
- Lighter than air vehicles
- Micro unmanned gliders
- Miniature satellites

Existing Processors Consume Too Much Power 5

< 1 Watt

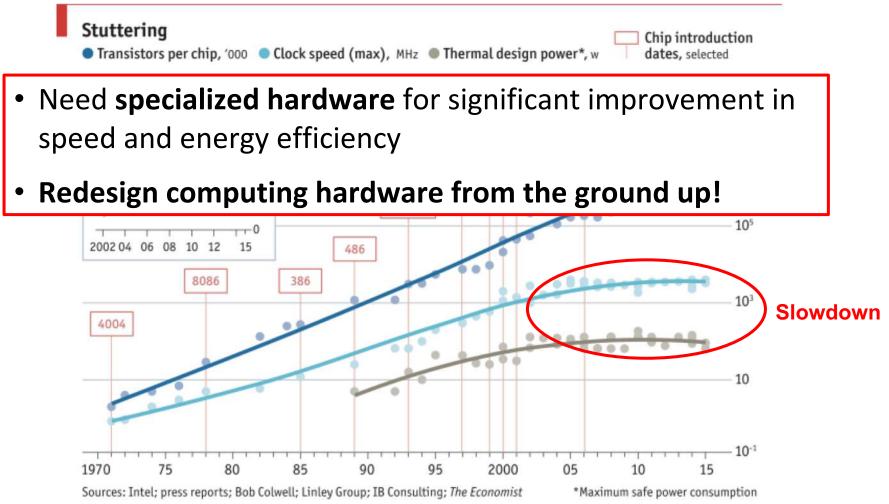
> 10 Watts

141i7

Transistors are NOT Getting More Efficient

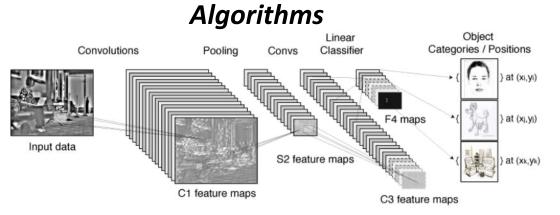
Slow down of Moore's Law and Dennard Scaling

General purpose microprocessors not getting faster or more efficient



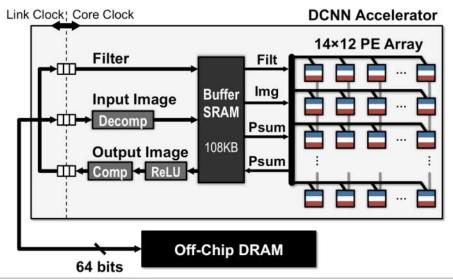
Plii

Energy-Efficient Computing with Cross-Layer Design



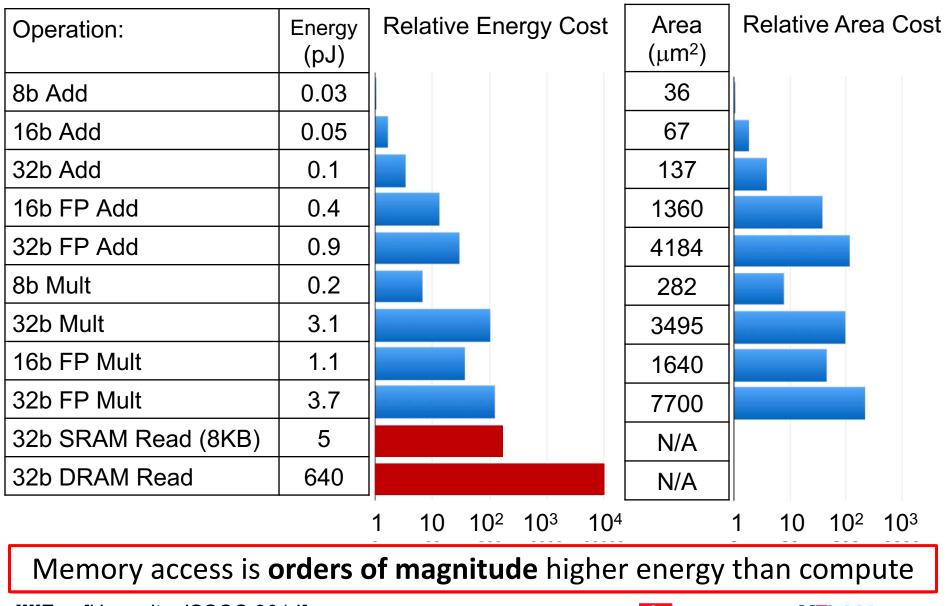
Systems

Architectures



Circuits

Power Dominated by Data Movement

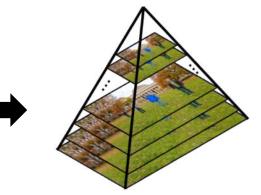


[Horowitz, ISSCC 2014]

Autonomous Navigation Uses a Lot of Data

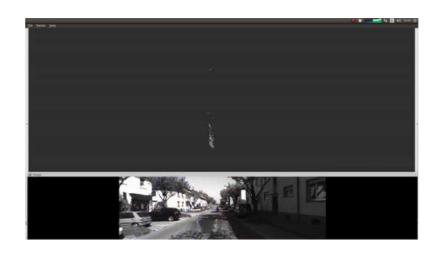
- Semantic Understanding
- High frame rate
- Large resolutions
- Data expansion

2 million pixels



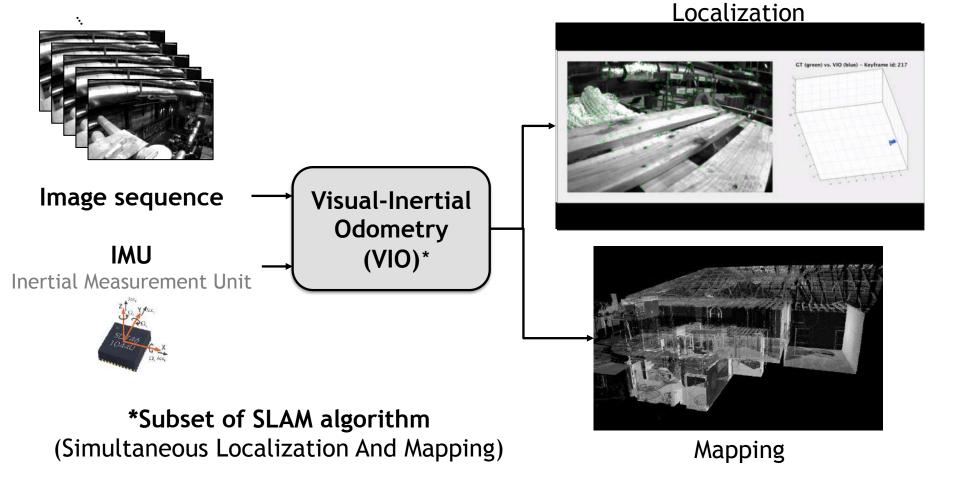
10x-100x more pixels

- Geometric Understanding
- Growing map size



10 Visual-Inertial Localization

Determines location/orientation of robot from images and IMU (also used by headset in Augmented Reality and Virtual Reality)

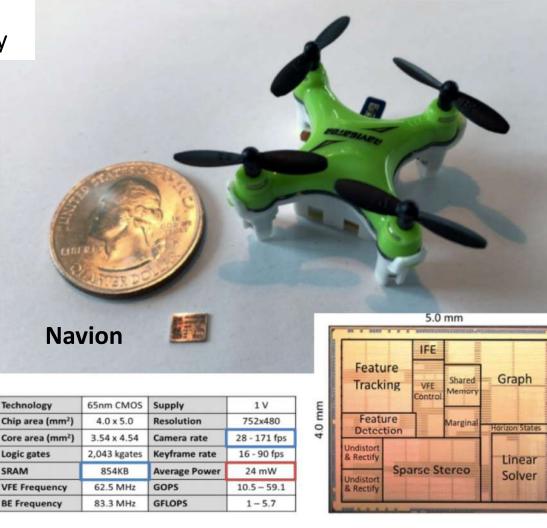


Localization at under 25 mW

First chip that performs *complete* Visual-Inertial Odometry

Front-End for camera (Feature detection, tracking, and outlier elimination) Front-End for IMU (pre-integration of accelerometer and gyroscope data) Back-End Optimization of Pose Graph

Consumes **684× and 1582×** less energy than mobile and desktop CPUs, respectively

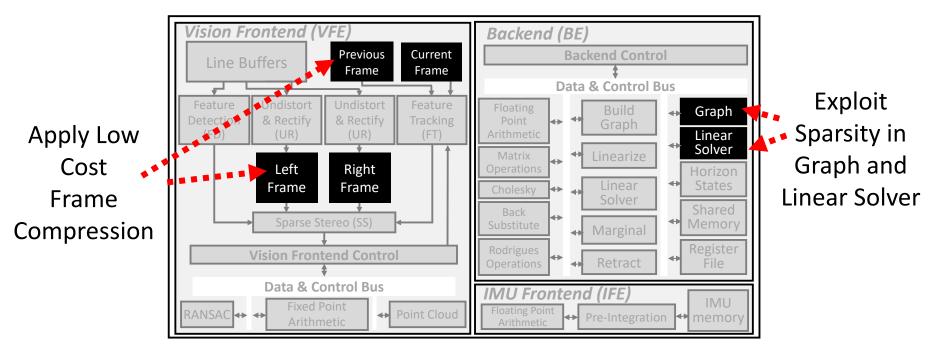


[Zhang, RSS 2017], [Suleiman, VLSI 2018]

[Joint work with Sertac Karaman (AeroAstro)]

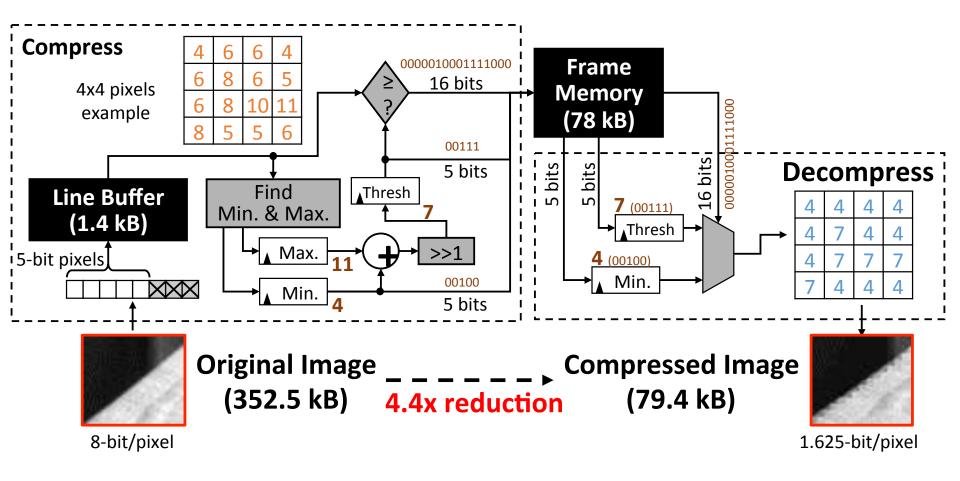
12 Key Methods to Reduce Data Size

Navion: Fully integrated system – no off-chip processing or storage



Use **compression** and **exploit sparsity** to reduce memory down to 854kB

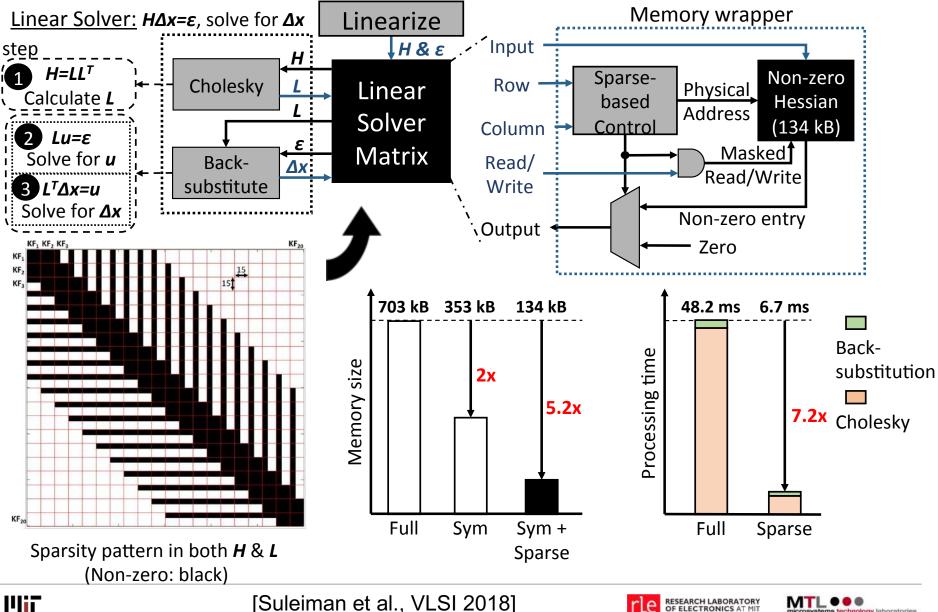
13 Frame Buffer Memory



sparse and structured

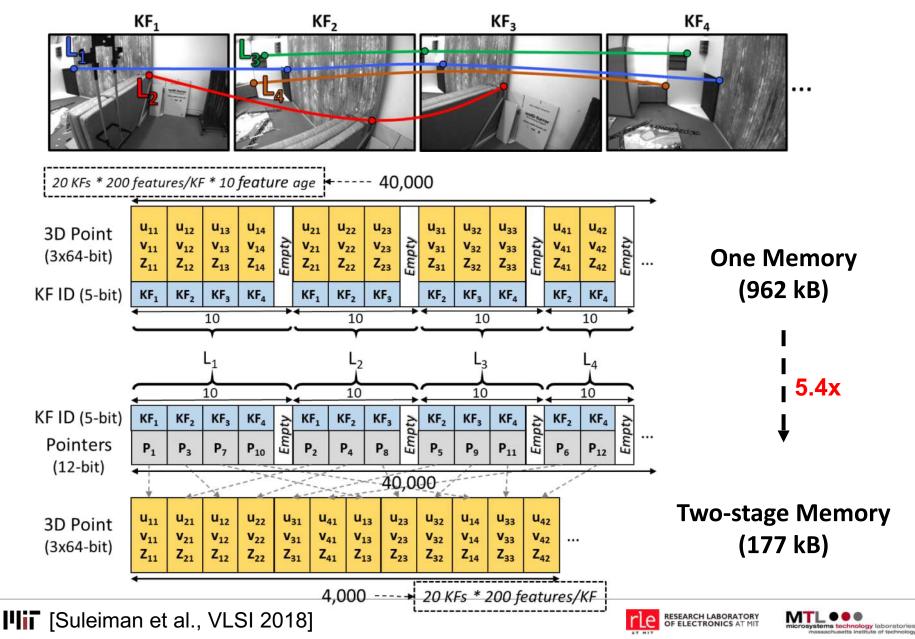
OF FLECTRONICS AT

Linear Solver and Hessian Memory

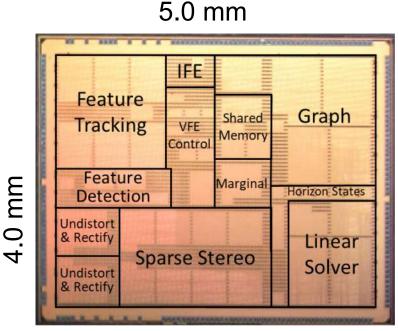


1411

Factor Graph Memory



¹⁶ Navion Evaluation



65nm CMOS Test Chip

Over 250 configurable parameters

to adapt to different sensors and environments

http://navion.mit.edu

Peak Performance @ Maximum Configuration

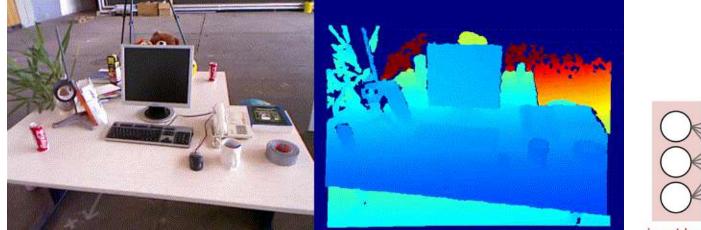
- VFE: 28 171 fps (71 fps average)
- BE: 16 90 fps (19 fps average)
- Average Power Consumption: 24mW
- Trajectory Error: 0.28%
- Real-Time Performance
 @ Optimized Configuration
 - VF: 20 fps
 - BE: 5 fps
 - Average Power Consumption: 2mW
 - Trajectory Error: 0.27%

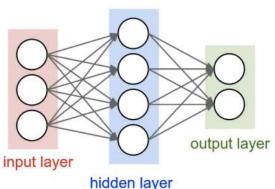
Evaluated on EuRoC dataset

[Suleiman et al., VLSI 2018]

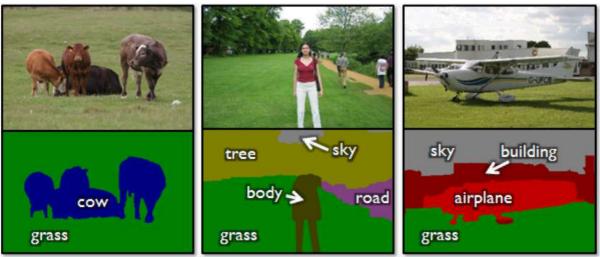
17 Understanding the Environment

Depth Estimation





Semantic Segmentation

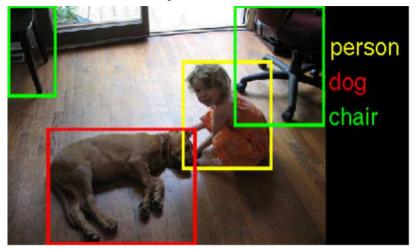


State-of-the-art approaches use Deep Neural Networks, which require up to several hundred millions of operations and weights to compute! >100x more complex than video compression

Deep Neural Networks

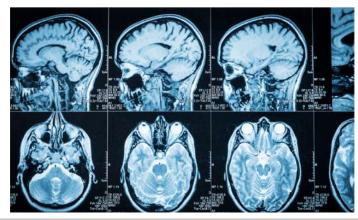
Deep Neural Networks (DNNs) have become a cornerstone of AI

Computer Vision



Game Play

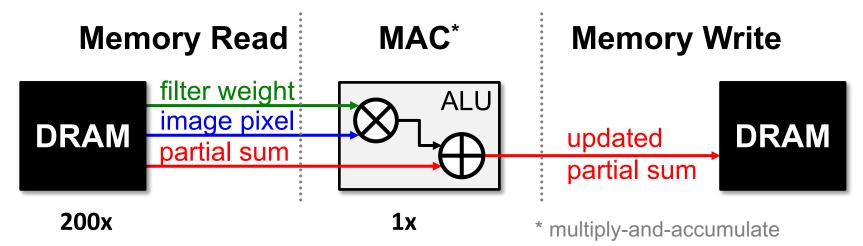
Medical



l'liiT

Properties We Can Leverage

- Operations exhibit high parallelism
 → high throughput possible
- Memory Access is the Bottleneck



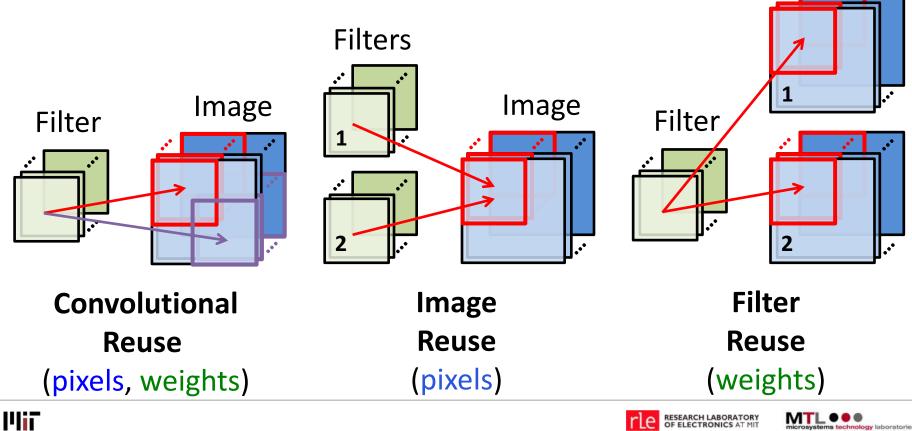
Worst Case: all memory R/W are **DRAM** accesses

• Example: AlexNet has **724M** MACs

→ 2896M DRAM accesses required

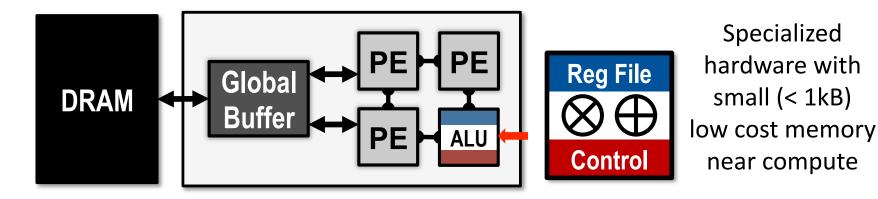
Properties We Can Leverage 20

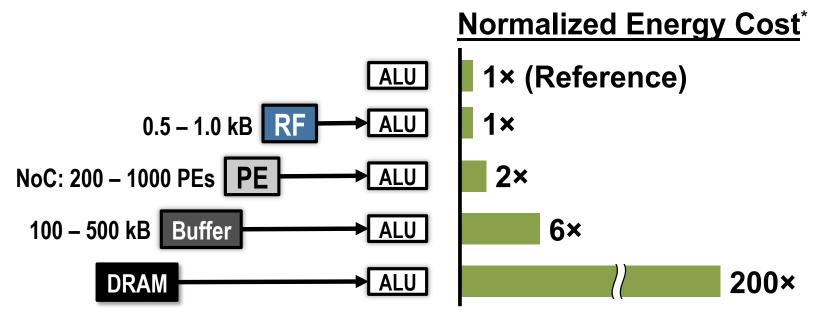
- Operations exhibit high parallelism → high throughput possible
- **Input data reuse** opportunities (**up to 500x**)



Image

Exploit Data Reuse at Low-Cost Memories



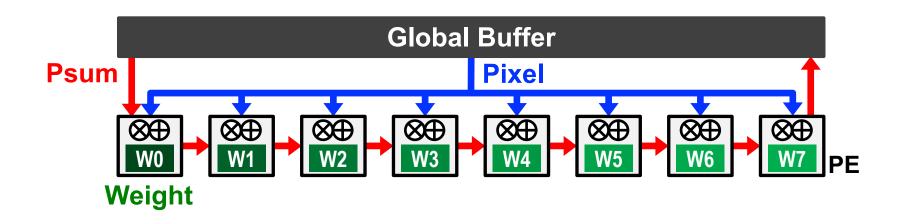


* measured from a commercial 65nm process

Farther and larger memories consume more power

I'lii

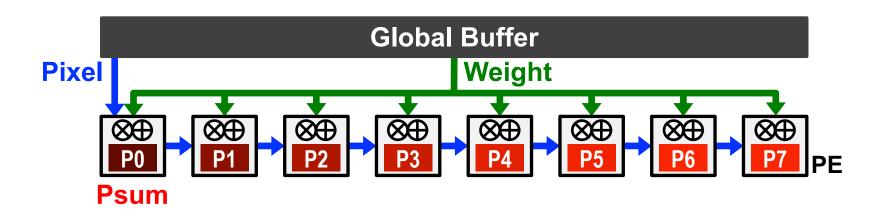
²² Weight Stationary (WS)



- Minimize weight read energy consumption
 - maximize convolutional and filter reuse of weights
- Examples:

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014] [Park, ISSCC 2015] [Origami, GLSVLSI 2015]

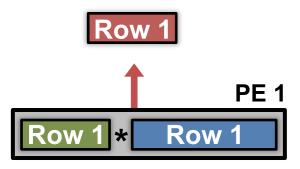
23 Output Stationary (OS)



- Minimize partial sum R/W energy consumption
 - maximize local accumulation
- Examples:

[Gupta, *ICML* 2015] [ShiDianNao, *ISCA* 2015] [Peemen, *ICCD* 2013]

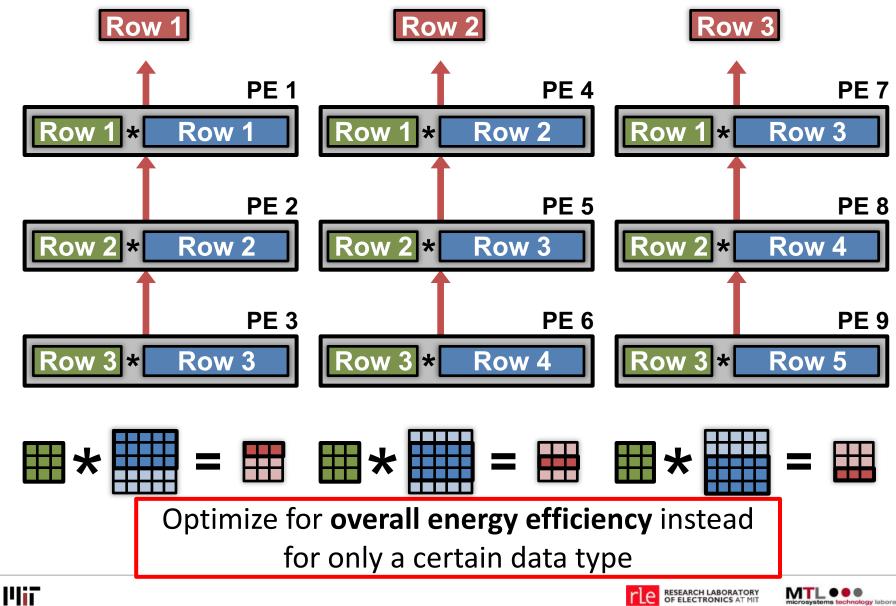
Row Stationary Dataflow



- Maximize row convolutional reuse in RF
 - Keep a filter row and fmap sliding window in RF
- Maximize row psum accumulation in RF

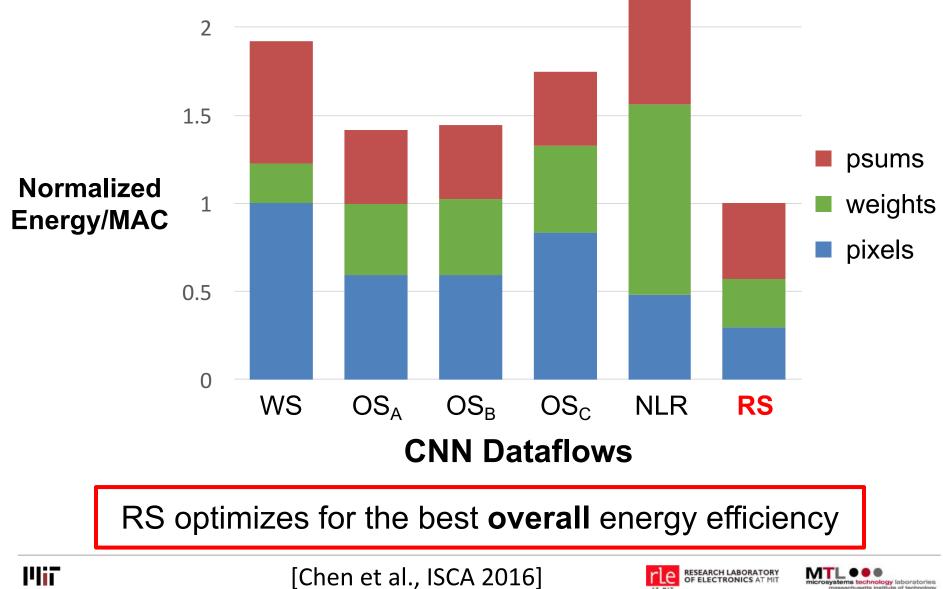
l'liiT

Row Stationary Dataflow



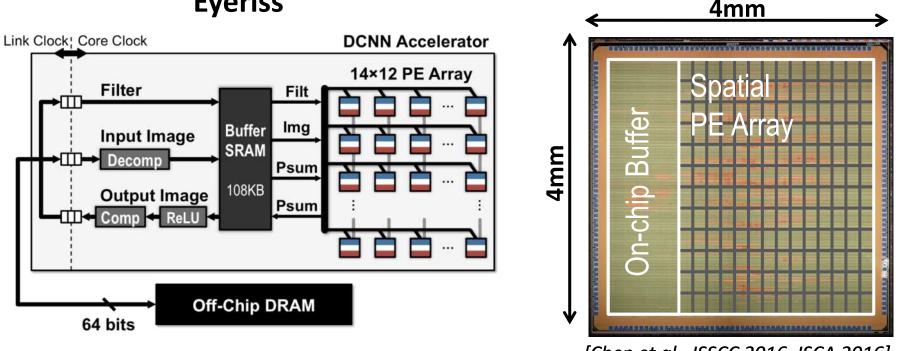
stems technology laboratories

Dataflow Comparison: CONV Layers 26



Deep Neural Networks at Under 0.3W 27

Eyeriss



[Chen et al., ISSCC 2016, ISCA 2016]

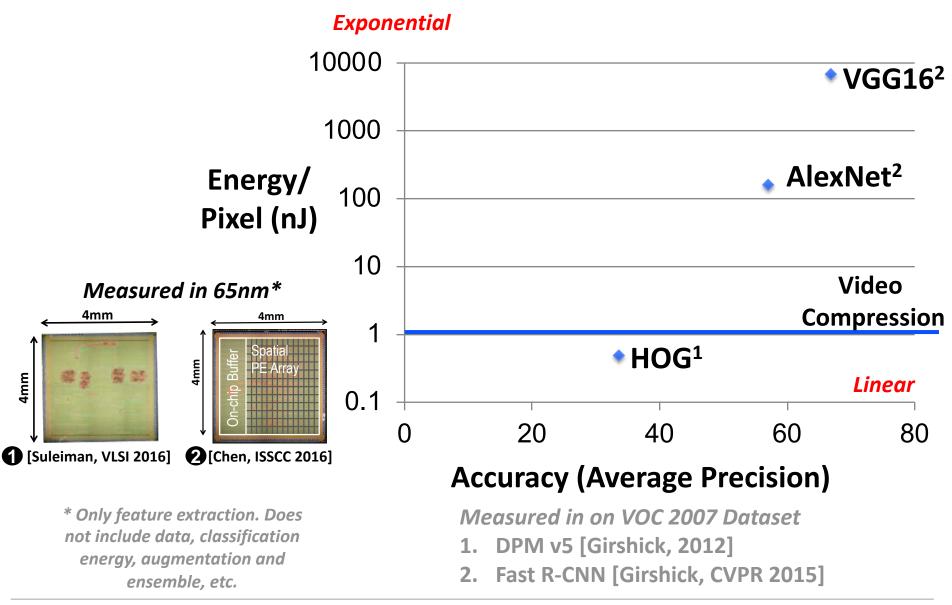
Exploits data reuse for 100x reduction in memory accesses from global buffer and 1400x reduction in memory accesses from off-chip DRAM

Overall >10x energy reduction compared to a mobile GPU (Nvidia TK1)

Results for AlexNet

[Joint work with Joel Emer] http://eyeriss.mit.edu

²⁸ Features: Energy vs. Accuracy

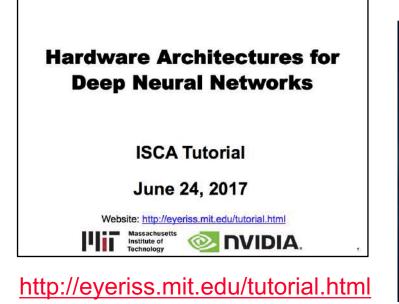


[Suleiman et al., ISCAS 2017]

I'lii

Energy-Efficient Processing of DNNs

A significant amount of algorithm and hardware research on energy-efficient processing of DNNs



Efficient Processing of Deep Neural Networks: A Tutorial and Survey System Scaling With Nanostructured Power and RF Components Nonorthogonal Multiple Access for 5G and Beyond Point of View: Beyond Smart Grid—A Cyber–Physical–Social System in Energy Future Scanning Our Past: Materials Science, Instrument Knowledge, and the Power Source Renaissance

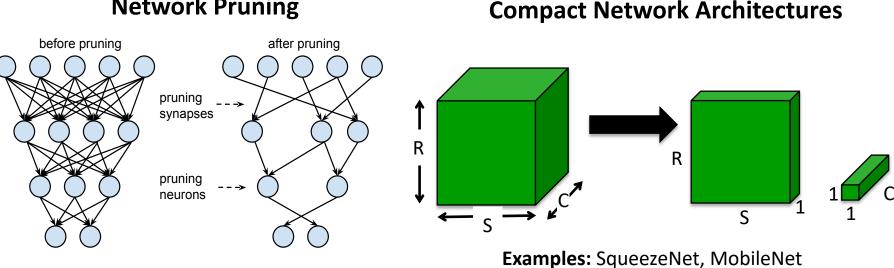
V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey," Proceedings of the IEEE, Dec. 2017

We identified various limitations to existing approaches

lilii.

Design of Efficient DNN Algorithms

Popular efficient DNN algorithm approaches



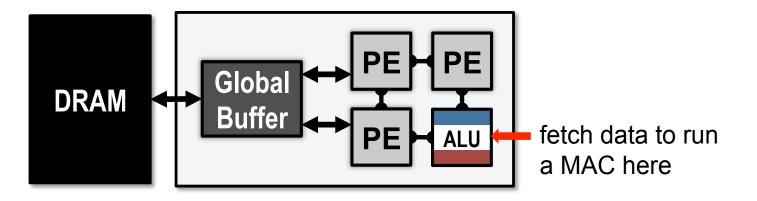
... also reduced precision

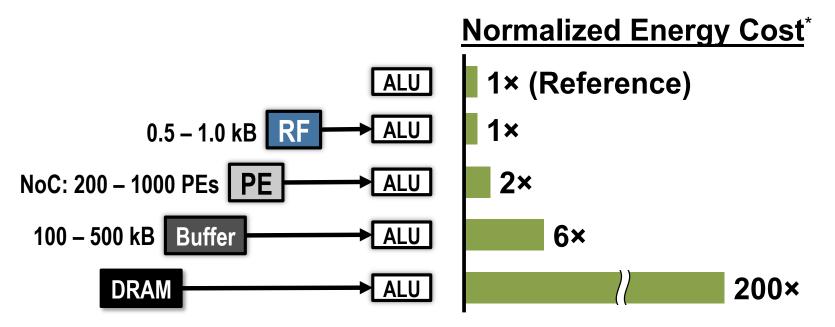
- Focus on reducing number of MACs and weights
- **Does it translate to energy savings?**

l'lii7

Network Pruning

Data Movement is Expensive

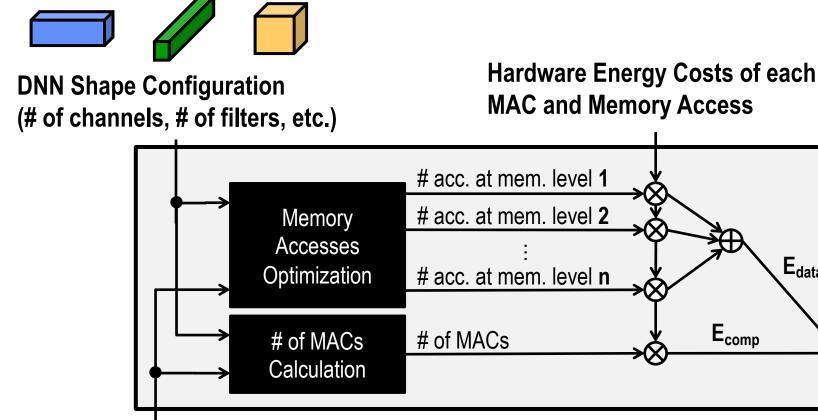




* measured from a commercial 65nm process

Energy of weight depends on **memory hierarchy** and **dataflow**

Energy-Evaluation Methodology 32



DNN Weights and Input Data

[0.3, 0, -0.4, 0.7, 0, 0, 0.1, ...]

Tool available at: https://energyestimation.mit.edu/

[Yang et al., CVPR 2017]

L1 L2 L3

DNN Energy Consumption

E_{data}

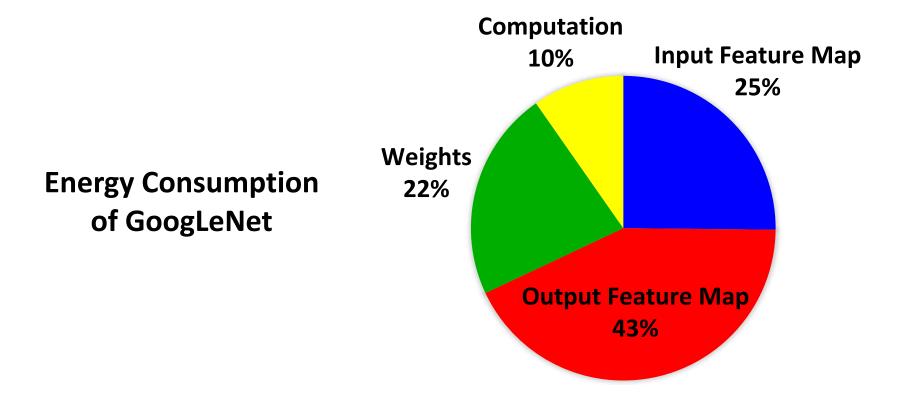
E_{comp}

Energy

Plii

Key Observations

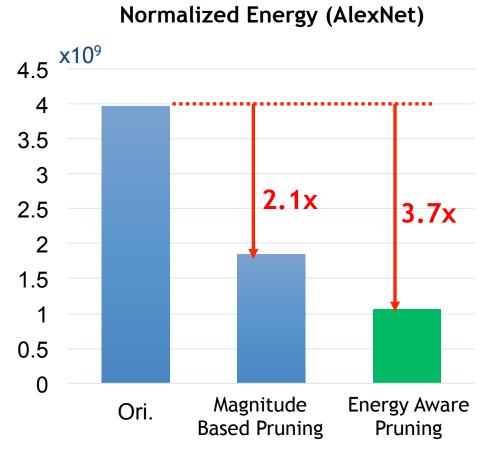
- Number of weights *alone* is not a good metric for energy
- All data types should be considered



34 Energy-Aware Pruning

Directly target energy and incorporate it into the optimization of DNNs to provide greater energy savings

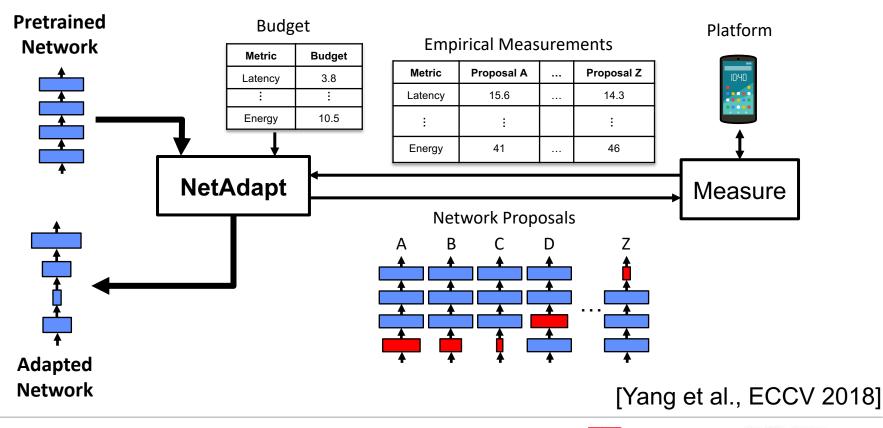
- Sort layers based on energy and prune layers that consume most energy first
- EAP reduces AlexNet energy by
 3.7x and outperforms the previous work that uses magnitude-based pruning by **1.7x**



Pruned models available at <u>http://eyeriss.mit.edu/energy.html</u>

NetAdapt: Platform-Aware DNN Adaptation

- Automatically adapt DNN to a mobile platform to reach a target latency or energy budget
- Use **empirical measurements** to guide optimization (avoid modeling of tool chain or platform architecture)



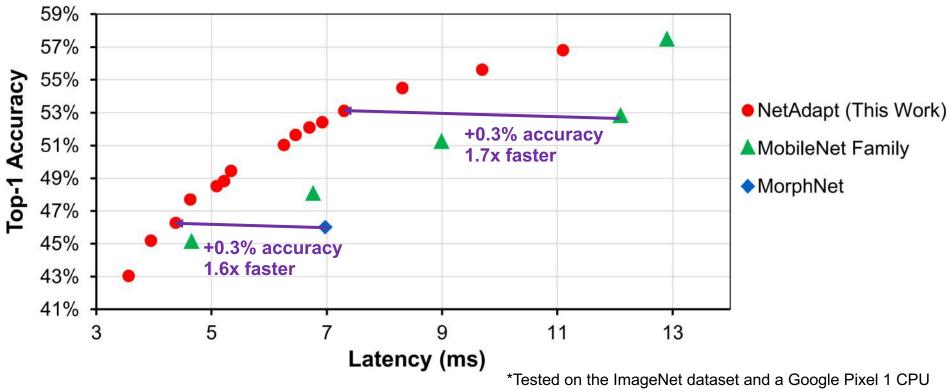
RESEARCH LABORATORY OF ELECTRONICS AT MIT

ns technology laboratories

IIII In collaboration with Google's Mobile Vision Team

Improved Latency vs. Accuracy Tradeoff

 NetAdapt boosts the real inference speed of MobileNet by up to 1.7x with higher accuracy



Reference:

MobileNet: Howard et al, "Mobilenets: Efficient convolutional neural networks for mobile vision applications", arXiv 2017 **MorphNet:** Gordon et al., "Morphnet: Fast & simple resource-constrained structure learning of deep networks", CVPR 2018

[Yang et al., ECCV 2018]

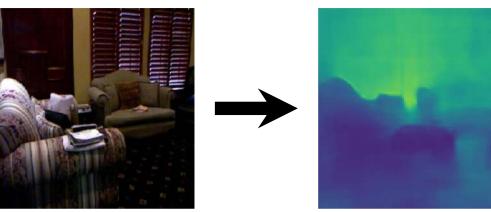
14116

FastDepth: Fast Monocular Depth Estimation

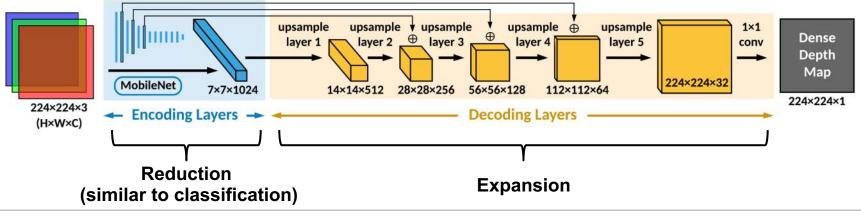
Depth estimation from a single RGB image desirable, due to the relatively low cost and size of monocular cameras.

RGB

Prediction



Auto Encoder DNN Architecture (Dense Output)

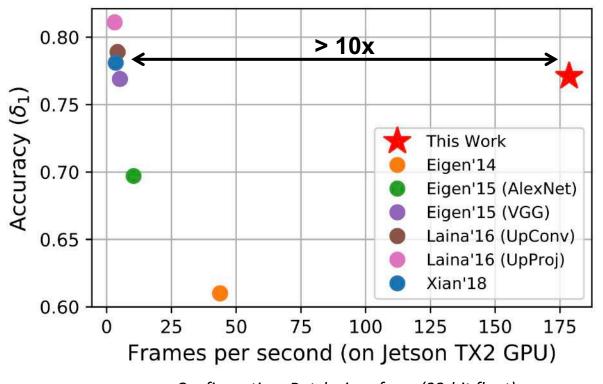


l'liī

[Joint work with Sertac Karaman]

FastDepth: Fast Monocular Depth Estimation

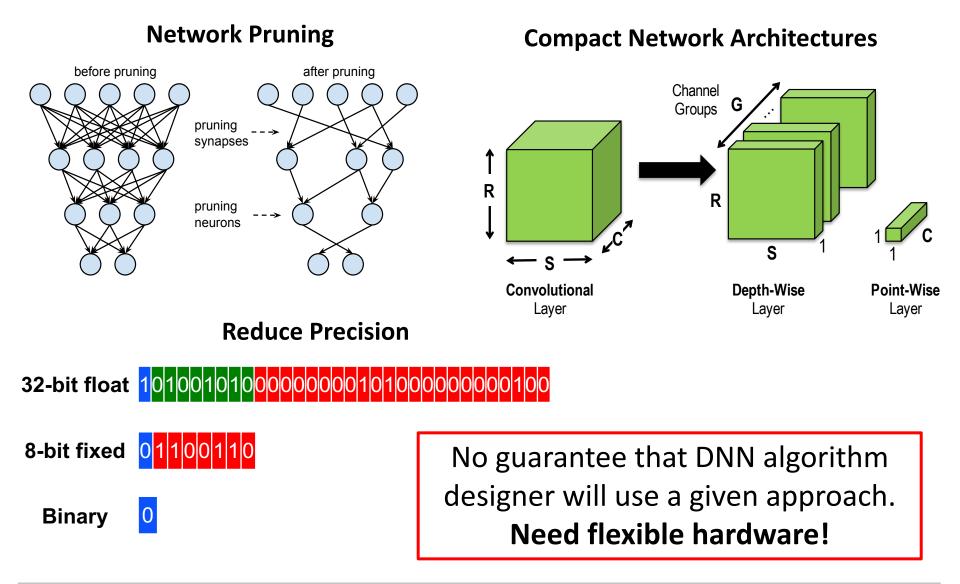
Apply NetAdapt, compact network design, and depth wise decomposition to decoder layer to enable depth estimation at **high frame rates on an embedded platform** while still maintaining accuracy



Configuration: Batch size of one (32-bit float)

[Wofk*, Ma* et al., ICRA 2019]

Many Efficient DNN Design Approaches



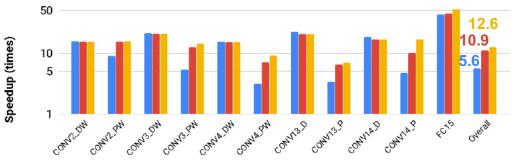
l'liī

Eyeriss v2: Balancing Flexibility and Efficiency

Efficiently supports

- Wide range of filter shapes
 - Large and Compact
- Different Layers
 - CONV, FC, depth wise, etc.
- Wide range of sparsity
 - Dense and Sparse
- Scalable architecture

🛚 v1.5 & MobileNet 🔎 v2 & MobileNet 📮 v2 & sparse MobileNet



Speed up over Eyeriss v1 scales with number of PEs

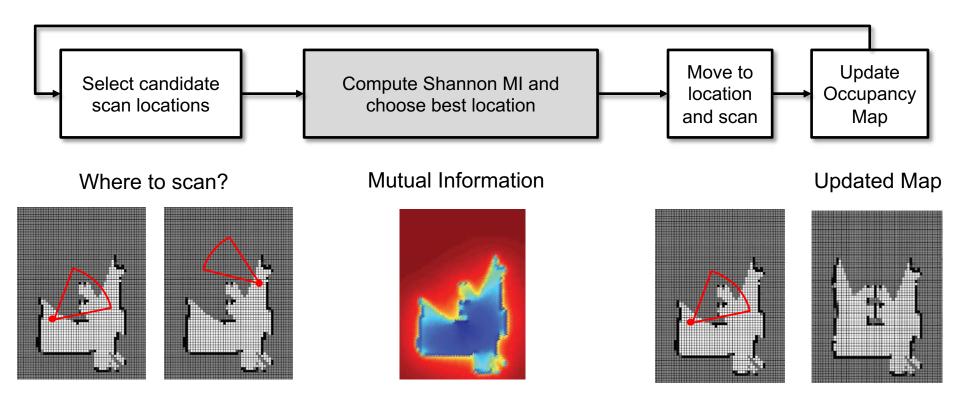
# of PEs	256	1024	16384	
AlexNet	17.9x	71.5x	1086.7x	
GoogLeNet	10.4x	37.8x	448.8x	
MobileNet	15.7x	57.9x	873.0x	

Over an order of magnitude faster and more energy efficient than Eyeriss v1

[Chen et al., JETCAS 2019]

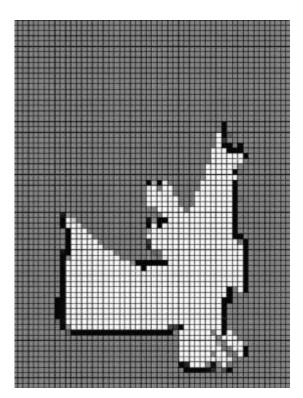
41 Where to Go Next: Planning and Mapping

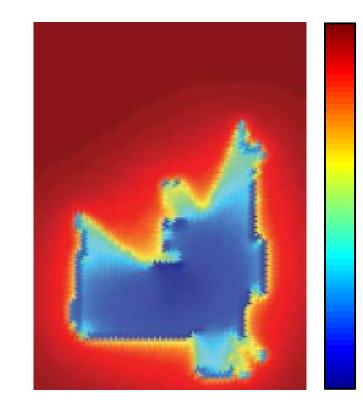
Robot Exploration: Decide where to go by computing Shannon Mutual Information



[Joint work with Sertac Karaman]

Information Theoretic Mapping





Occupancy grid map, M

Mutual information map, I(M; Z)

$$H(M|Z) =$$

Perspective updated map entropy

Current map entropy I(M;Z)

Mutual information

43 FSMI: Fast Shannon Mutual Information

Shannon Mutual Information (between beam Z and map M)

[Julian et al., IJRR 2014]

$$I(M;Z) = \sum_{i=1}^{n} \int_{Z \ge 0} P(z) f(\delta_i(z), r_i) dz$$

No closed form solution. Requires expensive numerical integration at resolution λ_z . $O(n^2 \lambda_z)$

FSMI: Fast Shannon Mutual Information

$$I(M;Z) = \sum_{j=1}^{n} \sum_{k=1}^{n} P(e_j) C_k G_{k,j}$$

Evaluate MI for all cells in entire beam altogether removes numerical integration. $O(n^2)$

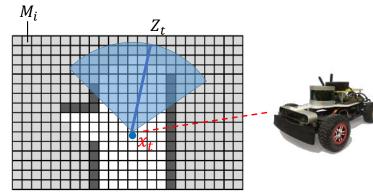
Approximate FSMI

$$V(M;Z) = \sum_{j=1}^{n} \sum_{k=j-\Delta}^{j+\Delta} P(e_j) C_k G_{k,j}$$

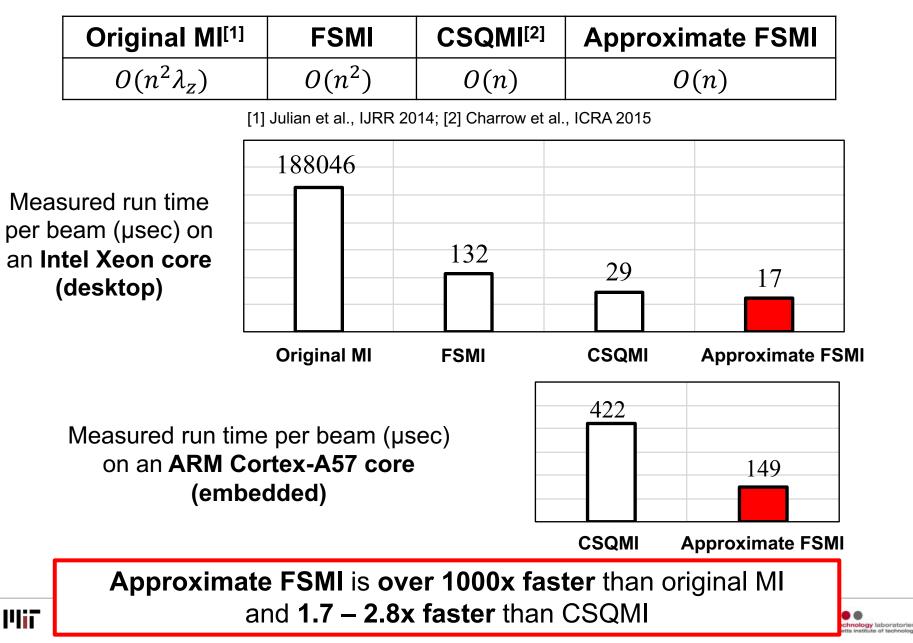
Approximate noise model of depth sensor with **truncated Gaussian***. **0**(**n**)

*Charrow et al., ICRA 2015

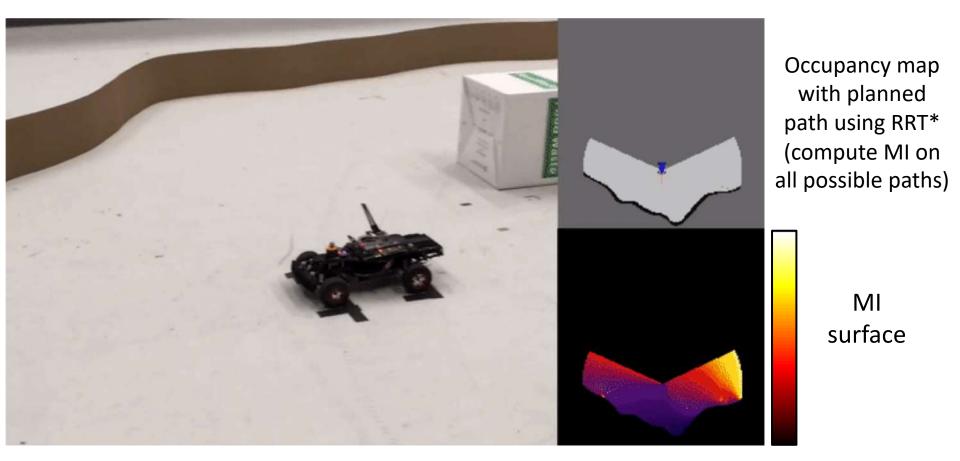
[Z. Zhang et al., ICRA 2019]



44 FSMI: Fast Shannon Mutual Information



45 Experimental Results (4x Real Time)



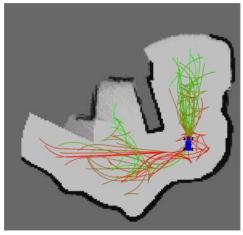
Exploration with a mini race car using motion capture for localization

[Zhang et al., ICRA 2019]

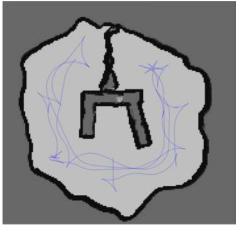
Quality of Result

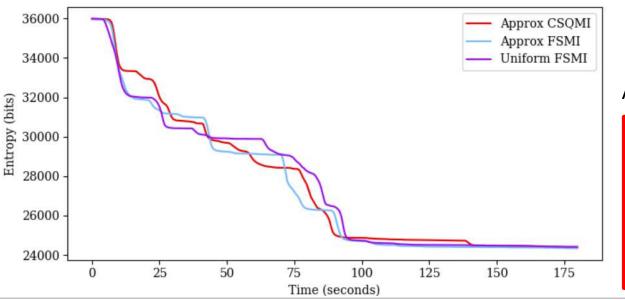
Experiment Environment

Paths with high MI per meter in green



Complete map and trajectory





[Zhang et al., ICRA 2019]

Compute time per beam CSQMI = 422.7 µsec Approximate FSMI = 111.4 µsec

Approximate FSMI reduces entropy of map at same rate as CSQMI while computing Shannon Mutual Information

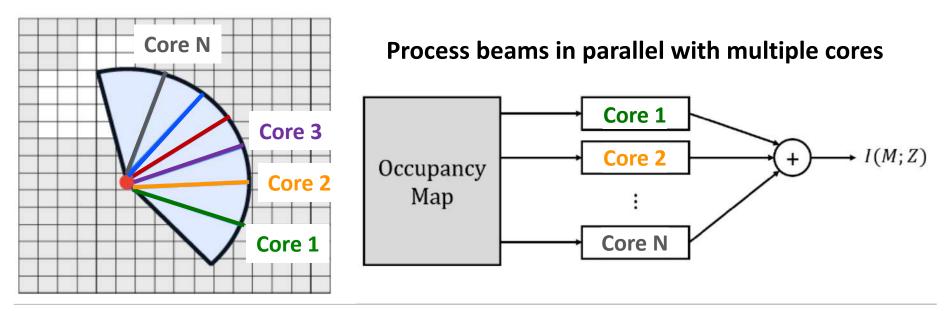
⁴⁷ Building Hardware to Compute MI

Motivation: Compute MI faster for faster exploration!

Approximate FSMI
$$I(M; Z) = \sum_{j=1}^{n} \sum_{k=j-\Delta}^{j+\Delta} P(e_j) C_k G_{k,j}$$

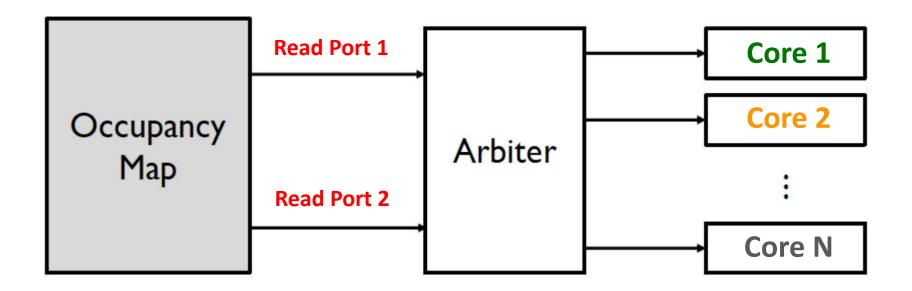
Algorithm is *embarrassingly* parallel!

High throughput *should* be possible with multiple cores.



Challenge is Data Delivery to All Cores

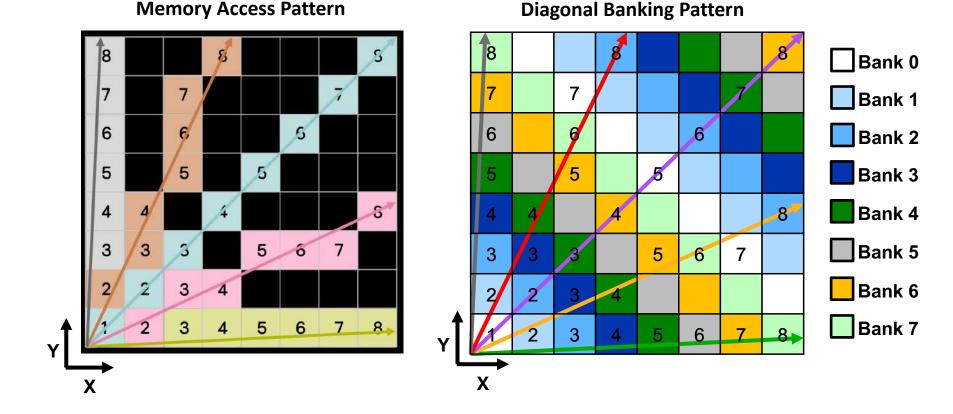
Power consumption of memory scales with number of ports. Low power SRAM limited to two-ports!



Data delivery, specifically memory bandwidth, limits the throughput (not compute)

Specialized Memory Architecture

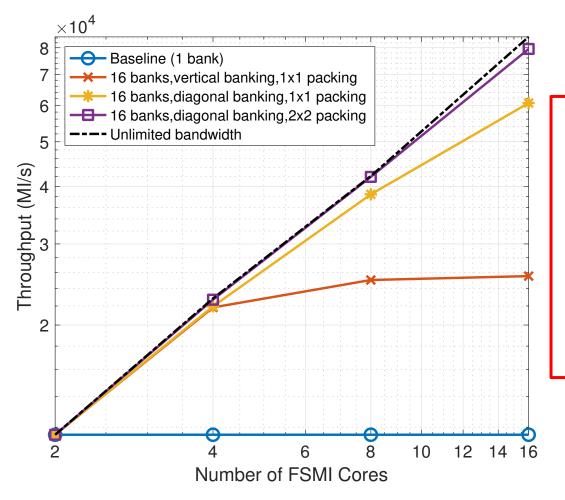
Break up map into **separate memory banks** and novel storage pattern to minimize read conflicts when processing different beams in parallel.



Experimental Results

50

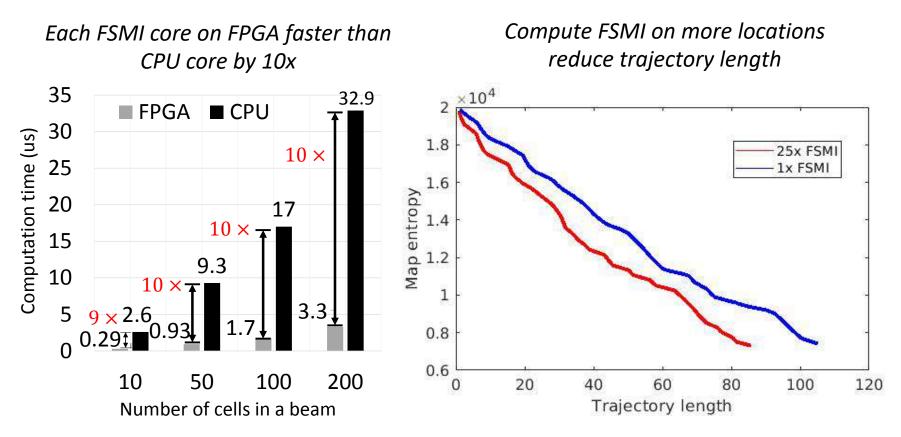
I'lii



Specialized banking, efficient memory arbiter and packing multiple values at each address results in throughput within 94% of theoretical limit (unlimited bandwidth)

[Li et al., RSS 2019]

Experimental Results

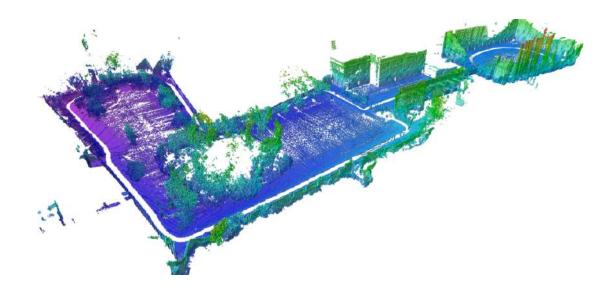


Compute the mutual information for an **entire map** of 20m x 20m at 0.1m resolution **in under a second while consuming under 2W on an FPGA***

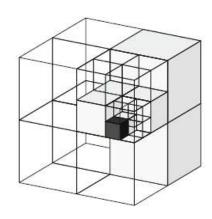
*estimate another order of magnitude reduction with ASIC

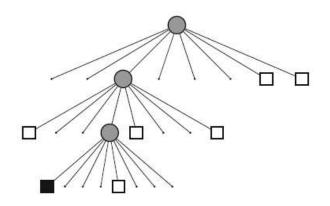
52 Extend FSMI to 3D Environments

Computing MI on a **3D map** requires significant amounts of storage and compute

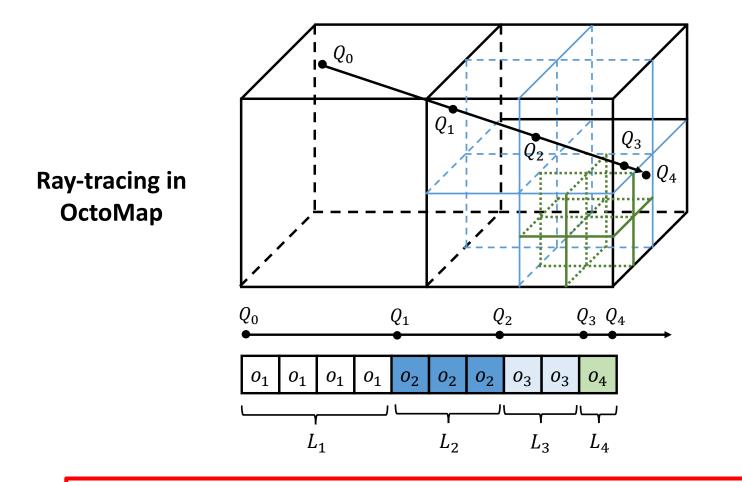


Compress map with OctoMap [Hornung, et al., Autonomous Robots, 2013]



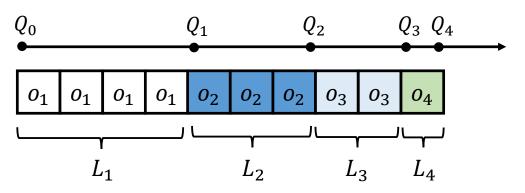


Compute FSMI on Compressed 3D 53



The 1D occupancy vector consists of multiple segments of repeated occupancy values

FSMI on Compressed Input



Uncompressed input format

Compressed format (Run Length Encoding)

 $(o_1, L_1), (o_2, L_2), (o_3, L_3), \dots, (o_{n_r}, L_{n_r})$

 n_r

Time complexity of Approx FSMI

 $\boldsymbol{O}(\boldsymbol{n})$

Goal: achieve the complexity of

 $O(n_r)$

 $n_r \ll n$, significant reduction if the constants are comparable

Complexity of 2D and 3D FSMI

	FSMI	Approximate FSMI
2D	$O(n^2)$	$O(n\Delta)$
3D	$O(n_r^2)$	$O(n_r\Delta)$
(compress with RLE)		

Measured speed up for a beam of 256 cells on an Intel Xeon CPU core for different degrees of compression (L)

	L = 1	L=2	L = 4	L = 8	L = 16	L = 32	L = 64	L = 128
Approx FSMI-RLE	240.9	79.4	31.5	12.3	7.6	4.9	3.4	2.3
Acceleration	0.2 imes	0.7 imes	$1.8 \times$	$4.6 \times$	7.4 imes	$11.2 \times$	$16.5 \times$	$24.4 \times$

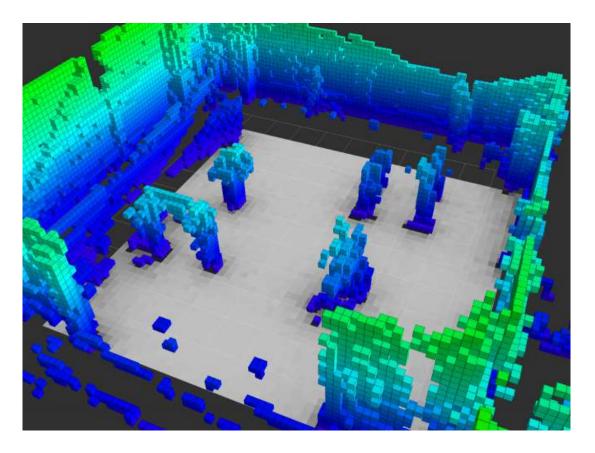
Baseline (Approx FSMI): 56µsec

Z. Zhang et al., FSMI: Fast computation of Shannon Mutual Information for information-theoretic mapping, *arXiv 2019 http://arxiv.org/abs/1905.02238*

56 Experiments of 3D FSMI (4x Real Time)

[Z. Zhang et al., arXiv 2019]

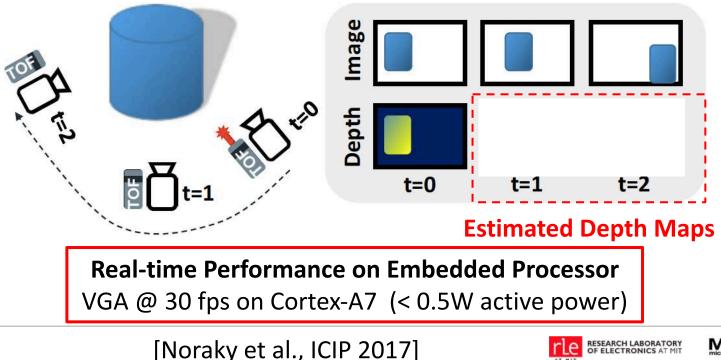
57 Experiments of 3D FSMI



We achieve an average compression ratio of around $18 \times$, with an acceleration ratio of $8 \times$

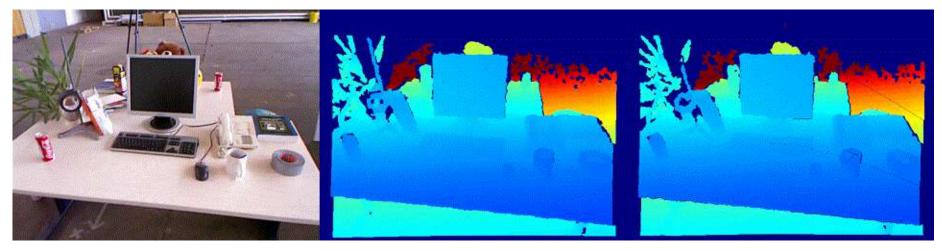
Low Power 3D Time of Flight Imaging

- Pulsed Time of Flight: Measure distance using round trip time of laser light for each image pixel
 - Illumination + Imager Power: 2.5 20 W for range from 1 8 m
- Use computer vision techniques and passive images to estimate changes in depth without turning on laser
 - CMOS Imaging Sensor Power: < 350 mW</p>



Plii

Results of Low Power Depth ToF Imaging



RGB Image

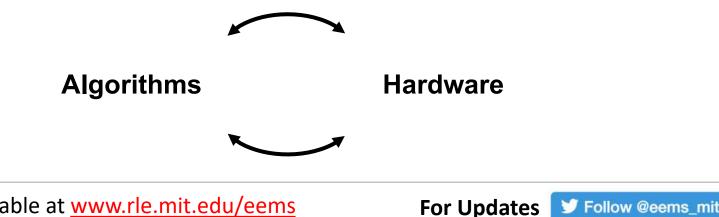
Depth Map Ground Truth Depth Map Estimated

Mean Relative Error: 0.7% Duty Cycle (on-time of laser): 11%

[Noraky et al., ICIP 2017]

Summary

- Efficient computing is critical for advancing the progress of autonomous robots, particularly at the smaller scales. \rightarrow Critical step to making autonomy ubiquitous!
- In order to meet computing demands in terms of power and speed, need to redesign computing hardware from the ground up → Focus on data movement!
- Specialized hardware opens up new opportunities for the codesign of algorithms and hardware \rightarrow **Innovation** opportunities for the future of robotics!



Today's slides available at www.rle.mit.edu/eems

61 Acknowledgements

Joel Emer

Sertac Karaman

Research conducted in the **MIT Energy-Efficient Multimedia Systems Group** would not be possible without the support of the following organizations:

62 References

Energy-Efficient Hardware for Deep Neural Networks

- Project website: <u>http://eyeriss.mit.edu</u>
- Y.-H. Chen, T. Krishna, J. Emer, V. Sze, "Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks," IEEE Journal of Solid State Circuits (JSSC), ISSCC Special Issue, Vol. 52, No. 1, pp. 127-138, January 2017.
- Y.-H. Chen, J. Emer, V. Sze, "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks," International Symposium on Computer Architecture (ISCA), pp. 367-379, June 2016.
- Y.-H. Chen, T.-J. Yang, J. Emer, V. Sze, "Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices," IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS), June 2019.
- Eyexam: <u>https://arxiv.org/abs/1807.07928</u>
- Limitations of Existing Efficient DNN Approaches
 - Y.-H. Chen*, T.-J. Yang*, J. Emer, V. Sze, "Understanding the Limitations of Existing Energy-Efficient Design Approaches for Deep Neural Networks," SysML Conference, February 2018.
 - V. Sze, Y.-H. Chen, T.-J. Yang, J. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey," Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, December 2017.
 - Hardware Architecture for Deep Neural Networks: <u>http://eyeriss.mit.edu/tutorial.html</u>

63 References

• Co-Design of Algorithms and Hardware for Deep Neural Networks

- T.-J. Yang, Y.-H. Chen, V. Sze, "Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
- Energy estimation tool: <u>http://eyeriss.mit.edu/energy.html</u>
- T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, V. Sze, H. Adam, "NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications," European Conference on Computer Vision (ECCV), 2018.
- D. Wofk*, F. Ma*, T.-J. Yang, S. Karaman, V. Sze, "FastDepth: Fast Monocular Depth Estimation on Embedded Systems," IEEE International Conference on Robotics and Automation (ICRA), May 2019. <u>http://fastdepth.mit.edu/</u>

• Energy-Efficient Visual Inertial Localization

- Project website: <u>http://navion.mit.edu</u>
- A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, "Navion: A Fully Integrated Energy-Efficient Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones," IEEE Symposium on VLSI Circuits (VLSI-Circuits), June 2018.
- Z. Zhang*, A. Suleiman*, L. Carlone, V. Sze, S. Karaman, "Visual-Inertial Odometry on Chip: An Algorithm-and-Hardware Co-design Approach," Robotics: Science and Systems (RSS), July 2017.
- A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, "Navion: A 2mW Fully Integrated Real-Time Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones," IEEE Journal of Solid State Circuits (JSSC), VLSI Symposia Special Issue, Vol. 54, No. 4, pp. 1106-1119, April 2019.

64 References

• Fast Shannon Mutual Information for Robot Exploration

- Z. Zhang, T. Henderson, V. Sze, S. Karaman, "FSMI: Fast computation of Shannon Mutual Information for information-theoretic mapping," IEEE International Conference on Robotics and Automation (ICRA), May 2019.
- P. Li*, Z. Zhang*, S. Karaman, V. Sze, "High-throughput Computation of Shannon Mutual Information on Chip," Robotics: Science and Systems (RSS), June 2019
- Z. Zhang, T. Henderson, S. Karaman, V. Sze, "FSMI: Fast computation of Shannon Mutual Information for information-theoretic mapping," extended preprint on arXiv, May 2019 <u>http://arxiv.org/abs/1905.02238</u>

• Low Power Time of Flight Imaging

- J. Noraky, V. Sze, "Low Power Depth Estimation of Rigid Objects for Time-of-Flight Imaging," IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), 2019.
- J. Noraky, C. Mathy, A. Cheng, V. Sze, "Low Power Adaptive Time-Of-Flight Imaging For Multiple Rigid Objects," IEEE International Conference on Image Processing (ICIP), September 2019.
- J. Noraky, V. Sze, "Depth Estimation of Non-Rigid Objects For Time-Of-Flight Imaging," IEEE International Conference on Image Processing (ICIP), October 2018.
- J. Noraky, V. Sze, "Low Power Depth Estimation for Time-of-Flight Imaging," IEEE International Conference on Image Processing (ICIP), September 2017.

