
Efficient Computing for Robotics and AI

Contact Info
email: sze@mit.edu
website: www.rle.mit.edu/eems

Vivienne Sze
Massachusetts Institute of Technology

In collaboration with Luca Carlone, Yu-Hsin Chen, Joel Emer,
Sertac Karaman, Tushar Krishna, Trevor Henderson, Peter Li,
Fangchang Ma, James Noraky, Amr Suleiman, Diana Wofk,

Tien-Ju Yang, Zhengdong Zhang

mailto:sze@mit.edu
http://www.rle.mit.edu/eems

Processing at “Edge” instead of the “Cloud”

Communication Privacy Latency

2

Computing Challenge for Self-Driving Cars

(Feb 2018)

Cameras and radar generate
~6 gigabytes of data every 30 seconds.

Generates wasted heat and some
prototypes need water-cooling!

Self-driving car prototypes use
approximately 2,500 Watts of

computing power.

3

Robots Consuming < 1 Watt for Actuation

scale, the power required for computing would be more than five times more than that required for sensing
and actuation! The differences are exacerbated as the size of the robot gets smaller. For example, pico-scale
aerial robotic vehicles are reported to require only 100 milliWatts of power to lift themselves [4]. Cameras
that run under 100 milliWatts can also be found. Hence, at the pico scale, the power for computation is more
than two order of magnitudes, when compared to that required for actuation and sensing.

studies to design and manufacture bio-inspired legged
robots to achieve power efficient, fast, silent and stable
legged locomotion on deep or very shallow water
surfaces. Hu et al. [13] proposed a mechanical water
strider powered by an elastic thread. Suhr et al. [17]
developed a controllable water strider robot utilizing
three piezoelectric unimorph actuators. Song et al. [18, 19]
studied the numerical modelling of supporting legs
by developing, respectively, a rigid-leg model and a
compliant-leg model, and built a non-tethered water
strider robot with two miniature DC motors and a lithium
polymer battery. Suzuki et al. [20] showed two water
strider robots with hydrophobic microstructures on the
surface of the supporting legs driven by a vibration motor
and a slider-crank mechanism, respectively. Shin et al.
[21] and Zhou et al. [22] developed a water-jumping robot
that was able to achieve a vertical jumping motion on the
water surface with a latch mechanism driven by a shape
memory alloy actuator.

In this work, to achieve efficient and fast legged
propulsion, a new improved water strider robot, called
STRIDE II, using a DC motor actuated four-bar elliptical
leg rotation mechanism for water propulsion is proposed.
This robot has concentric circular footpads that are
designed, analysed and manufactured using laser-cutting
to generate more lift force per unit area and greater
stability when compared to STRIDE [19]. Moreover, the
drag force model of the supporting structure and the
propulsion mechanism are investigated and explained in
detail. Finally, the robustness and the payload capacity of
the robot are improved by the new design while keeping
such features as the silent operation, slight subsurface
disturbance and manoeuvring capabilities in both deep
and shallow water of the older version, STRIDE [19].
This work is an extension and advanced version of our
previous conference paper [23].

2. Problem Statement

Water strider insect locomotion exemplifies robust and
efficient water surface walking because of the lift force
mechanism involved, the low drag force on the supporting
legs and the elliptical trajectory of the propelling legs.
Therefore, these three features should be captured in the
design of a water strider-inspired robot.

The lift force mechanism that a water strider insect
dominantly uses is the surface tension force of the
water, which is linearly proportional to the length of the
supporting legs. Since the weight of the insect scales
with its volume, if it is small in size, then the surface
tension force is used as the lift force mechanism instead
of buoyancy. To mimic the water strider insect, the robot
should use surface tension as the dominant part of the
lift force; therefore, the robot should have a relatively
low weight and small size, but long legs to support
itself on water. The water strider robot should also have
enough payload capacity to carry on-board electronics,
a power supply, actuators and sensors for control,
autonomous locomotion and potential future applications,
like monitoring water quality. On the other hand, for
a robot to have a high payload capacity using surface

tension, the required leg lengths might be unrealistically
long. Therefore, the supporting structures are designed
as concentric circular footpads, which increase the total
length subjected to lift force while keeping the total area
of the supporting structures relatively small. The lift
force mechanism and the results are explained in detail in
Section 3.

The drag forces that a water strider insect experiences
are relatively low at the supporting legs, enabling them
to move rapidly and efficiently on the water’s surface.
This is due to the lift force mechanism of a water strider,
which does not require the insect to break the water
surface to stay afloat. Therefore, in order to claim that the
designed robot is efficient for water surface locomotion,
the drag force model for the robot should be established,
as explained in detail in Section 4.

In addition to the problems concerning lift force generation
and drag force modelling, the propulsion mechanism of
the robot should be designed so that the drag forces on
the propelling legs, which are propulsion forces for the
robot due to the momentum transfer principle [15], move
the robot quickly. On the previous STRIDE, a miniature
DC motor-driven actuating mechanism that was capable
of creating sculling motions was used. The propelling
wire-leg was formed into a rectangular loop and connected
to the motor through a coupling. Therefore, the motion
of the propelling wire-leg had a circular trajectory [19].
However, a more desirable means of propulsion employs
an elliptical-like trajectory for the propelling wire-legs,
as longer contact between the water surface and the
propelling wire-legs is able to produce more propulsion
in every driving stroke. Therefore, a four-bar mechanism,
explained in Section 5.1.2, is designed which can create an
elliptical-like trajectory for the propelling legs to efficiently
increase the propulsion forces. The agility of the robot,
its complexity and the availability of parts that are used
in the propulsion mechanism should also be considered.
Within these considerations, the final design of STRIDE II
is shown in Figure 1.

Figure 1. Photo of STRIDE II: A: The robot body with a control
board, a battery and two four-bar actuators; B: Four sets of circular
concentric supporting footpads. C: Two propulsion legs with an
elliptical rotation trajectory, driven by two DC motors.

Int J Adv Robot Syst, 2014, 11:85 | doi: 10.5772/587012

436 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 18, NO. 2, APRIL 2013

Fig. 6. Peristaltic crawling locomotion of the robot is displayed in a sequence
of snapshots, from top to bottom. On the top, the initial relaxed state (with the
legs marked) is displayed. The three following images show the contraction of
each segment, which correspond to the control signal supplying current to their
embedded SMA coils in order. The bottom image is the final relaxed state.

snapshots in Fig. 6. The two legs protruding under the robot on
both ends can also be seen in this figure. As mentioned before,
the legs are folded in the same direction, creating a frictional
anisotropy to drive the robot forward. In future implementa-
tions, the legs themselves can be actively angled to drive the
robot backwards. Note that, while a tetherless implementation
using two miniature LiPoly batteries (3.7 V, 160 mAh, 2.3 g
each) is feasible (yielding an operation time of 74 min with the
parameters given in Table II), in these experiments, the robot is
powered by off-board power.

We designed and printed a family of origami robots and mech-
anisms in different shapes and sizes, as displayed in Fig. 7. The
robot shown in Fig. 6 is the latest one with feet incorporated.
The feet are manually angled and tested for friction in forward

Fig. 7. Collection of origami robots and mechanisms fabricated by the pro-
posed procedure. From left to right: the first column displays axial springs,
second column shows the negative Poisson’s ratio structures, and the rest are
robotic worm bodies in various shapes and sizes. The horizontal robot is the
final prototype used in experiments.

Fig. 8. Displacement of the origami worm robot over time.

and backward directions before experiments to make sure the
necessary anisotropy is formed. The robot crawled on flat wood
and paper surfaces on a tabletop, in a total of ten experiments,
with about 100 mm displacements.

To quantify the speed of the worm robot, we used image
processing techniques. Using a webcam, an initial image of the
background is taken first and the robot is placed. By driving
the robot over the known background, its position can be ac-
curately detected by simple background subtraction. We traced
the forward edge of the robot with this motion detection setup
and converted the pixel information to millimeters to achieve
the displacement curve shown in Fig. 8.

The robot crawls about 50 mm in 3 min at an approximately
linear rate for an average forward velocity of 18.5 mm/min,
which is about 77% of the expected result from (1). The oscil-
lations in the data coincide with the actuation of segments and
show the effectiveness of the motion detection.

The speed of the robot can be improved with a loss of safety
by increasing the input current and reducing the actuation period
correspondingly. Another improvement can be made by using
a longer robot with more segments to be able to reduce the
cooling period between actuations. Using an actuation current
Ion = 1 A and an actuation period of �on = 0.5 s, leaving all
other control parameters constant, the theoretical speed becomes
36.9 mm/min. Using these actuation parameters, we performed
experiments on the repeatability of speed on three surfaces in
Fig. 9.

In these experiments, the robot is placed on a flat surface
and the time it takes to traverse a defined distance of 50 mm is

����_+'''_+PYCTP8YIRP8K_$RPDCTCP>C_RP_2R;RYI>W_8PA_"[YRN8YIRP_�+$2"_
-8TKWT[GC�_)CTN8P]�_/8]_�����_����_

��	��� ���������	��� 	�� ��������� �� �������� ��
������ ��	���

37MZBJ_.�_ (BJXQO�_ .H=F7BJ_ 4�_ 4QJJB\�_ #7E@7V_ &�_ 0O7J�_ &7OHBJ7_1ZV�_ 7O@_1Q:BSX_ ,�_ 5QQ@_

(J^cZAc���������" 	��" �������" 	�" �	��" 	��" �� �����"
������" ���" ������!����" ����� " �	������" ����	���
�!" ��"
��" �������" ���"�����" �	��" ��"�����
������"��" ����"�����" ��"
������" 	�����	�����"���" ���	�"�	�����	����" ��" �����!�" ����"
	�" ������	���
�!�" �	��" �����������" 	��" ��	�" 	�����	������"
����" �	��" ������" 	" �����" ���" �����������" ��" ������"
��
���" ����"������������	�"�	���	��"
	��"��" ��	�"����!"
���!���" 	���	��"
!" ����" �	����" �����" �
���" ���������"
����" �����" �	�" �����" ��"
" �	�	
�" ��" ������	�" ��������"
	�������������"������" �����	����	
"	���
�!�"	��"�����	��"	��"
�	��!" ������" ��" ��������" ��
��" �	�" ������" ��" �������	�"
��" �����" ��" ����" ��������" ����" ��" 	�����	����" ��" �������"
�������" ��" ��
��"�	�" 	
�" ��" ����" ����" ���" ��������	�" ����"����"
����" 	���" ���	�����" ������" �� " �����" ����" ������" ��
��"
�������	��" ����������" 	�" 	" ���" ��" ���" ���������" ��"
������"

(�b (/520#7"5(0/b

1WLSY<=O@b WT=TYXb <W@b O<XXb TAb R<>KLS@Xb YK<Yb <W@b LS@]`
U@SXL[@
b @<X^b YTb ?@XLJSb <S?b R<SZA<>YZW@
b <S?b <R@S<=O@b YTb
W<UL?b UWTYTY^ULSJb :�;
b :�;�b 5K@X@b YW<LYXb <W@b <>KL@[@?b =^b YK@b
ZX@b TAb A<=WL><YLTSb R@YKT?Xb XZ>Kb <Xb O<X@W�R<>KLSLSJ
b OLYKTJ`
W<UK^
b <S?b UL>N�<S?�UO<>@b >LW>ZLYb <XX@R=O^�b $<>Kb TAb YK@X@b
R@YKT?Xb LXb STRLS<OO^b Y\T�?LR@SXLTS<O
b S@>@XXLY<YLSJb <b FS<Ob
YW<SXATWR<YLTSb AWTRb Y\Tb YTb YKW@@b ?LR@SXLTSX�b 5Tb YKLXb @S?
b
ATO?LSJbK<Xb=@@SbZYLOL_@?b<Xb<b[@WX<YLO@b<S?bLS@]U@SXL[@bY@>K`
SLVZ@b YTb >W@<Y@b >TRUO@]b YKW@@�?LR@SXLTS<Ob R<>KLS@Xb HTRb
Y\T�?LR@SXLTS<Ob XYWZ>YZW@X�b !^b U<YY@WSLSJb Y\T�?LR@SXLTS<Ob
R<Y@WL<OXb<S?bYK@Sb<XX@R=OLSJb[L<bATO?LSJ
b LS@]U@SXL[@bWT=TYXb
><Sb =@b W<UL?O^b ?@XLJS@?
b =ZLOY
b <S?b Y@XY@?�b
1W<>YL>@?b ATWb KZS?W@?Xb TAb ^@<WXb <Xb YK@b <WYb TAb TWLJ<RLb :�;
b

ATO?LSJb K<Xb <OW@<?^b =@@Sb XKT\Sb YTb =@b ><U<=O@b TAb <b \L?@b
[<WL@Y^b TAb J@TR@YWL@Xb :�;
b :�;
b LS>OZ?LSJb <S^b G<Yb UTO^JTS<Ob
W@JLTSb :�;b <S?b <S^b T=M@>Yb >TSXLXYLSJb TAb >Z=@Xb :�;�b !@><ZX@b
TAb YKLXb [@WX<YLOLY^b TAb ATWRb <S?b X><O@
b LYb K<Xb =@@Sb T=X@W[@?b
LSb =LTOTJ^b AWTRb YK@b TWJ<Sb YTb YK@b RTO@>ZO<Wb O@[@Ob :�;
b :�;
b
:��;�b%TO?LSJbK<Xb<OXTb=@@Sb?@RTSXYW<Y@?b YTbK<[@bR<S^bZX@Xb
LSb @SJLS@@WLSJ
b LS>OZ?LSJb U<U@Wb <>YZ<YTWXb :��;
b XUWLSJXb :��;
b
<S?b UWTJW<RR<=O@b XYWZ>YZW@Xb :��;�b (Sb <??LYLTSb YTb OT\b >TXY
b
ATO?LSJb K<Xb OTJLXYL><Ob =@S@FYX
b XLS>@b XYWZ>YZW@Xb <W@b @<XL@Wb YTb
XYTW@b<S?b YW<SXUTWYb LSb<bUO<S<Wb ATWR�b 5KLXb\TZO?b=@b [<OZ<=O@b
LSb XU<>@b <UUOL><YLTSXb :��;b <S?b >TRR@W>L<Ob XKLUULSJb :��;�b
"W@<YLSJb >TRUO@]bJ@TR@YWL@Xb <S?bR@>K<SLXRXb =^bR<SZ<Ob

ATO?LSJbW@VZLW@Xb<bXLJSLF><SYb<RTZSYbTAbYLR@b<S?b@AATWY�b4@OA`
ATO?LSJb LXb YK@W@ATW@b ?@XLW<=O@b YTb <XX@R=O@b YKW@@�?LR@SXLTS<Ob

�	J �	J �*6B=<�J �	J �	J �=66*G�J &<)J �	J �k #==)J &@*J E3B1J B1*J �(1==6J =+J
�<03<**@3<0J &<)J �>>63*)J �(3*<(*AJ &<)J B1*J #GAAJ �<AB3BCB*J +=@J 3=6=03I
(&66GJ �<A>3@*)J �<03<**@3<0�J �&@D&@)J !<3D*@A3BG�J �&8'@3)0*�J ��J ���� k
_;S%_F;_�K;Yf;YC�FCek

�	J �	J �<&6J &<)J �	J �CAJ &@*J E3B1J B1*J �=8>CB*@J �(3*<(*J &<)J �@B3-(3&6J
�<B*6630*<(*J �&'=@&B=@G�J �&AA&(1CA*BBAJ �<AB3BCB*J =+J�*(1<=6=0G�J�&8'@3)0*�J
��J����#�k!��J

!� ������������������������_^����_+'''_ ���_

�9�_

�30	J /�k �&�J �1*J BE=�)38*<A3=<&6J 3<(1E=@8J @='=B�J '*+=@*J 3BJ 1&AJ +=6)*)J 3<B=J
3BAJ +C<(B3=<&6J A1&>*	J �'�J �1*J +=6)*)J 3<(1E=@8�J &+B*@J B1*J A*@D=J &<)J '&BB*@GJ
1&AJ '**<J &))*)	J �13AJ @='=BJ E*301AJ �#k0�J &<)J 8=D*AJ &BJ &J @&B*J =+J �k8;A	J

XYWZ>YZW@Xb AWTRb Y\T�?LR@SXLTS<Ob R<Y@WL<OXb \LYKTZYb @]Y@WS<Ob
R<SLUZO<YLTS�b 4@OA�ATO?LSJb LXb [<OZ<=O@b \K@Sb YK@b TU@W<YLSJb
X><O@b LXb UWTKL=LYL[@O^b XR<OO
b TWb YK@b >TXYb TAb <>YZ<YLTSb LXb UWT`
KL=LYL[@O^b @]U@SXL[@b :��;
b <S?b K<Xb =@@Sb W@<OL_@?b LSb <b [<WL@Y^b
TAb \<^X�b .<JS@YL>b F@O?Xb K<[@b =@@Sb ZX@?b =^b @R=@??LSJb
R<JS@YL>bR<Y@WL<Ob LSYTb KLSJ@?bRL>WTXYWZ>YZW@Xb YTb X@O@>YL[@O^b
<>YZ<Y@b ATO?Xb :��;
b :��;�b b [<WL@Y^b TAbRL>WT� <S?b S<ST�X><O@b
XYWZ>YZW@XbK<[@b=@@Sb?@XLJS@?bYTbX@OA�<XX@R=O@bZS?@WbZSLATWRb
@S[LWTSR@SY<Ob >Z@Xb ?Z@b YTb UTO^R@Wb X\@OOLSJb :��;
b XZWA<>@b
Y@SXLTSb :��;
b TWb >K@RL><Ob YWLJJ@WXb :��;�b
4K<U@b R@RTW^b R<Y@WL<OXb �4..X�b <W@b <STYK@Wb <UUWT<>Kb

YTb KLSJ@b <>YZ<YLTSb YK<Yb K<[@b ?@RTSXYW<Y@?b X@OA�<XX@R=OLSJb
R@>K<SLXRXb LSb YKW@@b \<^Xb :��;
b :��;
b :��;�b 5K@b XLRUO@XYb
R@YKT?b LXb YTb UW@�UWTJW<Rb YK@b FS<Ob >TSATWR<YLTSb LSYTb YK@b
�R@RTW^�b TAb YK@b R<Y@WL<O�b YK@b 4..b \LOOb RTWUKb LSYTb YKLXb
>TSATWR<YLTSb ZS?@Wb ZSLATWRb K@<YLSJb :��;�b 5KLXbR@YKT?b XYLOOb
W@VZLW@Xb YKW@@�?LR@SXLTS<Ob A<=WL><YLTSb Y@>KSLVZ@Xb ?ZWLSJb YK@b
UWTJW<RRLSJ
b =ZYb ><Sb <OOT\b ATWb @<XL@Wb YW<SXUTWY<YLTSb <S?b
XYTW<J@�b 5K@b X@>TS?b LXb YTb ZX@b4..Xb<Xb KLSJ@Xb <YY<>K@?b YTb <b
U<XXL[@b\<OOb :��;
b :��;�b5K@X@b><Sb=@b<>YL[<Y@?b\LYKb<bOT><ObTWb
ZSLATWRb XYLRZOZX
b =ZYb YK@b A<=WL><YLTSb TAb YK@X@b >TRUTXLY@Xb LXb
RTW@b >TRUO@]�b YK@b KLSJ@XbRZXYb =@bR<SZA<>YZW@?b X@U<W<Y@O^
b
<S?b YK@Sb LSY@JW<Y@?b LSYTb YK@b U<XXL[@b >TRUTXLY@�b
%LS<OO^
b 4..Xb K<[@b =@@Sb ZX@?b YK<Yb ZS?@WJTb ZSLATWRb

Figure 4: A selection of robotics applications are shown. From left to right:
Robot water strider spends roughly 1 Watt of electrical power to move roughly
an inch per second on water [5], origami-inspired worm robot spends 0.96
Watts of electrical power to travel 1 inch in 100 seconds [6], an inchworm robot
that spends 0.9 Watts of electrical power to travel 7 inches in 100 seconds [7].

The application domain of
low-energy mobile robotic CPS

go far beyond the nano- and pico-
scale robots. Other robotics ap-
plications include robotic glid-
ers, robotic water striders, printed
robots, micro soft robots, and
many others. See Figure 4. In
these most of these applications,
even though the size of the robot
is relatively large, the energy con-
sumed by the robot is still fairly
low, e.g., around 1 Watt.

One might wishfully expect that, miniaturization in the consumer electronics industry will eventually
come to rescue with low-energy general-purpose computers that will run existing robotics algorithms and
software on very little energy budgets. Unfortunately, even the consumer electronics industry started rapidly
moving away from the utilization of general-purpose central processing units for compute-heavy tasks. In-
stead, specialized computing elements, such as Field Programmable Gate Arrays (FPGAs) and Application
Specific Integrated Circuits (ASICs), are now common, specifically for processing massive amounts of sens-
ing data, e.g., for camera images [8, 9]. This is primarily due to the fact the Moore’s law [10] and Dennard
scaling [11], which predict that transistors will shrink and be faster and more energy-efficient at an expo-
nential rate, respectively, have slowed down or ended over the past decade [12]. As a result, today’s mobile
phones require specialized hardware to perform tasks such as video compression, speech recognition, cryp-
tography, and more; thus, it is increasingly important to explore specialized hardware for robotics.

In almost all of these cases, implementation on specialized computing hardware, such as FPGAs and
ASICs, requires a careful rethinking of the algorithms themselves. To achieve substantial power savings,
most specialized hardware does not include complex floating-point arithmetic-logic units or massively-sized
memory [13, 14]. Instead, the hardware is specially designed for the algorithm that it implements. The al-
gorithm, in turn, is designed based on this computing hardware. In essence, the hardware and algorithm

components are co-designed to achieve the same performance, but at substantially low power. For instance,
specialized hardware can optimize the data processing order to leverage data reuse and reduce data move-
ment; the algorithms can be designed to exploit data reuse for reduced power consumption [15]. Orders
of magnitude power savings are reported using FPGA and ASIC implementations in the literature [16, 17],
particularly in applications that work with massive data, such as those obtained using cameras.

2 Research Description
In this section, we provide a thorough description of the research effort. In Section 2.1, we discuss the
intellectual merit of this proposal. In Section 2.2, we provide a short background on the hardware design
principles that guide the design of application-specific integrated circuits as well as the essentials of algo-
rithmic foundations of autonomy. In Section 2.3, we describe the specific research tasks in detail. We leave
evaluation/experimentation plan and the project management to Sections 3 and 4, respectively.
2.1 Intellectual Merit
The intellectual merit of this proposal is found in the development of novel algorithms and novel comput-
ing hardware for low-energy mobile robotic Cyber-Physical Systems. The proposed research will enable
low-energy computation for full autonomy by way of minimizing energy consumption during both design
time and run time. Our approach is to simultaneously design the computing hardware (integrated circuits)
and the autonomy algorithms to achieve low-energy performance that is orders of magnitude energy savings
when compared to existing solutions. Specifically, we propose to develop novel computing hardware and
algorithms for (i) visual-inertial state estimation, (ii) probabilistic mapping and mutual-information-based
map analysis, and (iii) energy-aware motion planning and decision making. In each case, the new methods

3

Example low-energy mobile robotic CPS. Each vehicle consumes
less than 1 Watt of electrical power for actuation.

• Miniature aerial vehicles

• Lighter than air vehicles

• Micro unmanned gliders

• Miniature satellites

Low Energy Robotics

4

[CMU] [MIT, Harvard] [MIT, Harvard]

Existing Processors Consume Too Much Power

< 1 Watt > 10 Watts

5

Transistors are NOT Getting More Efficient
Slow down of Moore’s Law and Dennard Scaling

General purpose microprocessors not getting faster or more efficient

• Need specialized hardware for significant improvement in
speed and energy efficiency

• Redesign computing hardware from the ground up!

Slowdown

6

Energy-Efficient Computing with Cross-Layer Design

Architectures

Algorithms Systems

Circuits

7

Power Dominated by Data Movement
Operation: Energy

(pJ)

8b Add 0.03

16b Add 0.05

32b Add 0.1

16b FP Add 0.4

32b FP Add 0.9

8b Mult 0.2

32b Mult 3.1

16b FP Mult 1.1

32b FP Mult 3.7

32b SRAM Read (8KB) 5

32b DRAM Read 640

Area
(µm2)

36

67

137

1360

4184

282

3495

1640

7700

N/A

N/A

[Horowitz, ISSCC 2014]

Relative Energy Cost

1 10 102 103 104

Relative Area Cost

1 10 102 103

Memory access is orders of magnitude higher energy than compute

8

Autonomous Navigation Uses a Lot of Data

• Geometric Understanding

- Growing map size

[Pire, RAS 2017]

2 million pixels 10x-100x more pixels

• Semantic Understanding

- High frame rate
- Large resolutions
- Data expansion

9

Visual-Inertial Localization

Visual-Inertial
Odometry

(VIO)

Localization

Mapping

Image sequence

IMU
Inertial Measurement Unit

…

*Subset of SLAM algorithm
(Simultaneous Localization And Mapping) Slide 28

Determines location/orientation of robot from images and IMU
(also used by headset in Augmented Reality and Virtual Reality)

*

10

Localization at under 25 mW

[Zhang, RSS 2017], [Suleiman, VLSI 2018]

Consumes 684× and 1582×
less energy than mobile and
desktop CPUs, respectively

First chip that performs
complete Visual-Inertial Odometry

[Joint work with Sertac Karaman (AeroAstro)]

Navion

11

Front-End for camera
(Feature detection, tracking, and

outlier elimination)
Front-End for IMU

(pre-integration of accelerometer
and gyroscope data)

Back-End Optimization of Pose
Graph

Key Methods to Reduce Data Size

Backend Control

Data & Control Bus
Build
Graph

Linear
Solver

Linearize

Marginal

Retract

Graph
Linear
Solver

Horizon
States

Shared
Memory

Floating
Point

Arithmetic

Matrix
Operations

Cholesky

Back
Substitute

Rodrigues
Operations

Feature
Tracking

(FT)

Previous
FrameLine Buffers

Feature
Detection

(FD)

Undistort
& Rectify

(UR)

Undistort
& Rectify

(UR)

Data & Control Bus

Sparse Stereo (SS)

Vision Frontend Control

RANSAC Fixed Point
Arithmetic Point Cloud Pre-IntegrationFloating Point

Arithmetic

IMU
memory

Current
Frame

Left
Frame

Right
Frame

Vision Frontend (VFE)

IMU Frontend (IFE)

Backend (BE)

Register
File

Apply Low
Cost

Frame
Compression

Use compression and exploit sparsity to
reduce memory down to 854kB

Exploit
Sparsity in
Graph and

Linear Solver

Navion: Fully integrated system – no off-chip processing or storage

12

[Suleiman et al., VLSI 2018]

Frame Buffer Memory

8-bit/pixel	

5-bit	pixels	

Line	Buffer	
(1.4	kB)	

4x4	pixels	
example	

+
Min.	

Max.	 >>1	

≥
?

16	bits	

Original	Image	
(352.5	kB)	

Compressed	Image	
(79.4	kB)	

Frame	
Memory	
(78	kB)	

5	bits	

5	bits	
Thresh	

Thresh	

Min.	

1.625-bit/pixel	

Compress	

Decompress	

5	
bi
ts
	

5	
bi
ts
	

16
	b
its
	

Find	
Min.	&	Max.	

11	

4	

7	

0000010001111000	

7	(00111)	

4	(00100)	

00
00
01
00
01
11
10
00
	

4.4x	reducHon	

00111	

00100	

4	 6	 6	 4	
6	 8	 6	 5	
6	 8	 10	11	
8	 5	 5	 6	

4	 4	 4	 4	
4	 7	 4	 4	
4	 7	 7	 7	
7	 4	 4	 4	

13

[Suleiman et al., VLSI 2018]

dense

Linear Solver and Hessian Memory

Non-zero	
Hessian	
(134	kB)	

Sparse-
based	
Control	

Row	

Column	

Physical	
Address	

Zero	

Non-zero	entry	Output	

Read/
Write	

Masked	
Read/Write	

Input	

Sparsity	paJern	in	both	H	&	L	
(Non-zero:	black)	

Cholesky	

Back-
subsMtute	

H	

Linear	
Solver	
Matrix	

L	
L	

Δx	

Linear	Solver:	HΔx=ε,	solve	for	Δx	
	

ε	

H	&	ε	

M
em

or
y	
si
ze
	

2x	
5.2x	

703	kB	 353	kB	 134	kB	

Full	 Sym	 Sym	+	
Sparse	

Pr
oc
es
si
ng
	M
m
e	

Full	 Sparse	

7.2x	

Back-
subsMtuMon	

Cholesky	

Memory	wrapper	Linearize	

48.2	ms	 6.7	ms	

H=LLT	
Calculate	L	

Lu=ε	
Solve	for	u	
LTΔx=u	

Solve	for	Δx	

1	

2	

3	

step	

14

[Suleiman et al., VLSI 2018]

sparse and structured

Factor Graph Memory15

[Suleiman et al., VLSI 2018]

sparse and unstructured

One Memory
(962 kB)

Two-stage Memory
(177 kB)

5.4x

Navion Evaluation

5.0 mm

4.
0

m
m

Over 250 configurable parameters
to adapt to different sensors and

environments

• Peak Performance
@ Maximum Configuration
– VFE: 28 – 171 fps (71 fps average)

– BE: 16 – 90 fps (19 fps average)
– Average Power Consumption: 24mW

– Trajectory Error: 0.28%

• Real-Time Performance
@ Optimized Configuration
– VF: 20 fps
– BE: 5 fps

– Average Power Consumption: 2mW

– Trajectory Error: 0.27%

65nm CMOS Test Chip

Evaluated on EuRoC datasethttp://navion.mit.edu

16

[Suleiman et al., VLSI 2018]

Understanding the Environment
Depth Estimation

State-of-the-art approaches
use Deep Neural Networks,
which require up to several

hundred millions of
operations and weights to

compute!
>100x more complex than

video compression

Semantic Segmentation

17

Deep Neural Networks

Computer Vision Speech Recognition

Game Play Medical

Deep Neural Networks (DNNs) have become a cornerstone of AI

18

Properties We Can Leverage
• Operations exhibit high parallelism

à high throughput possible

• Memory Access is the Bottleneck

ALU

Memory Read Memory WriteMAC*

* multiply-and-accumulate

filter weight
image pixel
partial sum updated

partial sum

• Example: AlexNet has 724M MACs
à 2896M DRAM accesses required

Worst Case: all memory R/W are DRAM accesses

200x 1x

DRAM DRAM

19

Properties We Can Leverage
• Operations exhibit high parallelism

à high throughput possible

• Input data reuse opportunities (up to 500x)

Convolutional
Reuse

(pixels, weights)

Filter Image
…

…

…

…

… ……
…

…

Image
Reuse
(pixels)

…

…

…

…

… … …

…

…

…

…

2

1

Filters

Image

Filter
Reuse

(weights)

…

…

…
… … …

…

… … …

…
Filter

Image

2

1

20

Exploit Data Reuse at Low-Cost Memories

DRAM Global
Buffer

PE

PE PE

ALU fetch data to run
a MAC here

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×

6×

PE ALU 2×

1×
1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

NoC: 200 – 1000 PEs

* measured from a commercial 65nm process

Farther and larger memories consume more power

0.5 – 1.0 kB

Control

Reg File
Specialized

hardware with
small (< 1kB)

low cost memory
near compute

21

Weight Stationary (WS)

• Minimize weight read energy consumption
− maximize convolutional and filter reuse of weights

• Examples:
[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014]
[Park, ISSCC 2015] [Origami, GLSVLSI 2015]

Global Buffer

W0 W1 W2 W3 W4 W5 W6 W7

Psum Pixel

PE
Weight

22

• Minimize partial sum R/W energy consumption
− maximize local accumulation

• Examples:

Output Stationary (OS)

[Gupta, ICML 2015] [ShiDianNao, ISCA 2015]
[Peemen, ICCD 2013]

Global Buffer

P0 P1 P2 P3 P4 P5 P6 P7

Pixel Weight

PE
Psum

23

Row Stationary Dataflow

• Maximize row
convolutional reuse in RF
− Keep a filter row and fmap

sliding window in RF

• Maximize row psum
accumulation in RF

PE 1
Row 1 Row 1

Row 1

=*

*

24

Row Stationary Dataflow

Optimize for overall energy efficiency instead
for only a certain data type

PE 1
Row 1 Row 1

PE 2
Row 2 Row 2

PE 3
Row 3 Row 3

Row 1

=*

PE 4
Row 1 Row 2

PE 5
Row 2 Row 3

PE 6
Row 3 Row 4

Row 2

=*

PE 7
Row 1 Row 3

PE 8
Row 2 Row 4

PE 9
Row 3 Row 5

Row 3

=*

* * *

* * *

* * *

25

Dataflow Comparison: CONV Layers

0

0.5

1

1.5

2

Normalized
Energy/MAC

WS OSA OSB OSC NLR RS

psums

weights
pixels

RS optimizes for the best overall energy efficiency

CNN Dataflows

[Chen et al., ISCA 2016]

26

Deep Neural Networks at Under 0.3W

On
-c

hip
 B

uff
er

Spatial
PE Array

4mm

4m
m

[Chen et al., ISSCC 2016, ISCA 2016]

[Joint work with Joel Emer]

27

Results for AlexNet

Overall >10x energy reduction compared to a mobile GPU (Nvidia TK1)

[Chen et al., ISSCC 2016, ISCA 2016]

Exploits data reuse for 100x reduction in memory accesses from global
buffer and 1400x reduction in memory accesses from off-chip DRAM

Eyeriss

http://eyeriss.mit.edu

http://eyeriss.mit.edu/

Features: Energy vs. Accuracy

0.1

1

10

100

1000

10000

0 20 40 60 80
Accuracy (Average Precision)

Energy/
Pixel (nJ)

VGG162

AlexNet2

HOG1

Measured in on VOC 2007 Dataset
1. DPM v5 [Girshick, 2012]
2. Fast R-CNN [Girshick, CVPR 2015]

Exponential

Linear

Video
Compression

[Suleiman et al., ISCAS 2017]

Measured in 65nm*

* Only feature extraction. Does
not include data, classification

energy, augmentation and
ensemble, etc.

On
-c

hip
 B

uff
er Spatial

PE Array

4mm

4m
m

4mm

4m
m

[Suleiman, VLSI 2016] [Chen, ISSCC 2016]1 2

28

Energy-Efficient Processing of DNNs

V. Sze, Y.-H. Chen,
T-J. Yang, J. Emer,

“Efficient Processing of
Deep Neural Networks:
A Tutorial and Survey,”
Proceedings of the IEEE,

Dec. 2017

A significant amount of algorithm and hardware research
on energy-efficient processing of DNNs

We identified various limitations to existing approaches

http://eyeriss.mit.edu/tutorial.html

29

http://eyeriss.mit.edu/tutorial.html

• Popular efficient DNN algorithm approaches

Design of Efficient DNN Algorithms

pruning
neurons

pruning
synapses

after pruningbefore pruning

Network Pruning

C
1

1
S

R

1

R

S
C

Compact Network Architectures

Examples: SqueezeNet, MobileNet

... also reduced precision

• Focus on reducing number of MACs and weights
• Does it translate to energy savings?

30

Data Movement is Expensive

Energy of weight depends on memory hierarchy and dataflow

DRAM Global
Buffer

PE

PE PE

ALU fetch data to run
a MAC here

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×

6×

PE ALU 2×

1×
1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

NoC: 200 – 1000 PEs

* measured from a commercial 65nm process

31

Energy-Evaluation Methodology

DNN Shape Configuration
(# of channels, # of filters, etc.)

DNN Weights and Input Data
[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …]

DNN Energy Consumption
L1 L2 L3

Energy

…

Memory
Accesses

Optimization

of MACs
Calculation

…

acc. at mem. level 1
acc. at mem. level 2

acc. at mem. level n

of MACs

Hardware Energy Costs of each
MAC and Memory Access

Ecomp

Edata

Tool available at: https://energyestimation.mit.edu/

[Yang et al., CVPR 2017]

32

https://energyestimation.mit.edu/

• Number of weights alone is not a good metric for energy

• All data types should be considered

Key Observations

Output Feature Map
43%

Input Feature Map
25%

Weights
22%

Computation
10%

Energy Consumption
of GoogLeNet

[Yang et al., CVPR 2017]

33

Directly target energy and
incorporate it into the

optimization of DNNs to
provide greater energy savings

Energy-Aware Pruning

• Sort layers based on energy and
prune layers that consume most
energy first

• EAP reduces AlexNet energy by
3.7x and outperforms the
previous work that uses
magnitude-based pruning by 1.7x

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Ori. DC EAP

Normalized Energy (AlexNet)

2.1x 3.7x

x109

Magnitude
Based Pruning

Energy Aware
Pruning

Pruned models available at
http://eyeriss.mit.edu/energy.html

[Yang et al., CVPR 2017]

34

http://eyeriss.mit.edu/energy.html

NetAdapt: Platform-Aware DNN Adaptation
• Automatically adapt DNN to a mobile platform to reach a

target latency or energy budget
• Use empirical measurements to guide optimization (avoid

modeling of tool chain or platform architecture)

[Yang et al., ECCV 2018]

In collaboration with Google’s Mobile Vision Team

NetAdapt Measure

…

Network Proposals

Empirical Measurements
Metric Proposal A … Proposal Z

Latency 15.6 … 14.3

Energy 41 … 46

…… …

Pretrained
Network Metric Budget

Latency 3.8

Energy 10.5

Budget

Adapted
Network

… …

Platform

A B C D Z

35

• NetAdapt boosts the real inference speed of MobileNet
by up to 1.7x with higher accuracy

Improved Latency vs. Accuracy Tradeoff

+0.3% accuracy
1.7x faster

+0.3% accuracy
1.6x faster

Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018

*Tested on the ImageNet dataset and a Google Pixel 1 CPU

[Yang et al., ECCV 2018]

36

FastDepth: Fast Monocular Depth Estimation
Depth estimation from a single RGB image desirable, due to

the relatively low cost and size of monocular cameras.
RGB Prediction

[Joint work with Sertac Karaman]

Auto Encoder DNN Architecture (Dense Output)

Reduction
(similar to classification) Expansion

37

FastDepth: Fast Monocular Depth Estimation
Apply NetAdapt, compact network design, and depth wise decomposition

to decoder layer to enable depth estimation at high frame rates on an
embedded platform while still maintaining accuracy

[Wofk*, Ma* et al., ICRA 2019]

Configuration: Batch size of one (32-bit float)

Models available at
http://fastdepth.mit.edu

> 10x

38

http://fastdepth.mit.edu/

Many Efficient DNN Design Approaches

pruning
neurons

pruning
synapses

after pruningbefore pruning

Network Pruning Compact Network Architectures

10100101000000000101000000000100

01100110

Reduce Precision

32-bit float

8-bit fixed

Binary 0

No guarantee that DNN algorithm
designer will use a given approach.

Need flexible hardware!

[Chen et al., SysML 2018]

C
1

1
S

R

1

R

S
C

G

Depth-Wise
Layer

Point-Wise
Layer

Convolutional
Layer

…
Channel
Groups

39

Eyeriss v2: Balancing Flexibility and Efficiency

[Chen et al., JETCAS 2019]
Over an order of magnitude faster and
more energy efficient than Eyeriss v1

Speed up over Eyeriss v1 scales with number of PEs

of PEs 256 1024 16384

AlexNet 17.9x 71.5x 1086.7x

GoogLeNet 10.4x 37.8x 448.8x

MobileNet 15.7x 57.9x 873.0x

Efficiently supports
• Wide range of filter shapes
– Large and Compact

• Different Layers
– CONV, FC, depth wise, etc.

• Wide range of sparsity
– Dense and Sparse

• Scalable architecture

[Joint work with Joel Emer]

5.6
10.9
12.6

40

Where to Go Next: Planning and Mapping

Select candidate
scan locations

Compute Shannon MI and
choose best location

Move to
location

and scan

Update
Occupancy

Map

Where to scan?

Occupancy map Mutual information map

Mutual Information Updated Map

Robot Exploration: Decide where to go by computing
Shannon Mutual Information

41

[Joint work with Sertac Karaman]

Information Theoretic Mapping42

Occupancy grid map, !

" ! # = " ! − &(!; #)
Perspective updated

map entropy
Mutual

information
Current map

entropy

Mutual information map, &(!; #)

FSMI: Fast Shannon Mutual Information43

Shannon Mutual Information
(between beam Z and map M)

[Julian et al., IJRR 2014]

! "; $ =&
'()

*
+
,-.
/ 0 1 2' 0 , 4' 50

No closed form solution. Requires expensive
numerical integration at resolution 6,. 7(9:;<)

! "; $ =&
>()

*
&
?()

*
/ @> A?B?,>

FSMI: Fast Shannon Mutual Information

Evaluate MI for all cells in entire beam altogether
removes numerical integration. 7(9:)

Approximate FSMI

Approximate noise model of depth sensor
with truncated Gaussian*. 7(9)

! "; $ =&
>()

*
&

?(>CD

>ED
/ @> A?B?,>

[Z. Zhang et al., ICRA 2019]

𝑥𝑡

𝑍𝑡
𝑀𝑖

*Charrow et al., ICRA 2015

FSMI: Fast Shannon Mutual Information44

Original MI[1] FSMI CSQMI[2] Approximate FSMI
!(#$%&) !(#$) !(#) !(#)

188046

132
29 17

Measured run time
per beam (µsec) on
an Intel Xeon core

(desktop)

Original MI FSMI CSQMI Approximate FSMI

422

149

CSQMI Approximate FSMI

Measured run time per beam (µsec)
on an ARM Cortex-A57 core

(embedded)

Approximate FSMI is over 1000x faster than original MI
and 1.7 – 2.8x faster than CSQMI

[1] Julian et al., IJRR 2014; [2] Charrow et al., ICRA 2015

Experimental Results (4x Real Time)45

Occupancy map
with planned

path using RRT*
(compute MI on

all possible paths)

MI
surface

Exploration with a mini race car using motion capture for localization

[Zhang et al., ICRA 2019]

Quality of Result46

Experiment Environment Paths with high MI per
meter in green

Complete map and
trajectory

Approximate FSMI
reduces entropy of map
at same rate as CSQMI

while computing Shannon
Mutual Information

Compute time per beam
CSQMI = 422.7 µsec

Approximate FSMI = 111.4 µsec

[Zhang et al., ICRA 2019]

Building Hardware to Compute MI47

Approximate FSMI ! "; $ =&
'()

*
&

+(',-

'.-
/ 0' 1+2+,'

Algorithm is embarrassingly parallel!
High throughput should be possible with multiple cores.

Motivation: Compute MI faster for faster exploration!

Core 1

Core 2

Core 3

Core N

Core N

Core 2

Core 1

Process beams in parallel with multiple cores

Challenge is Data Delivery to All Cores

Core N

Core 2

Core 1Read Port 1

Read Port 2

48

Power consumption of memory scales with number of ports.
Low power SRAM limited to two-ports!

Data delivery, specifically memory bandwidth,
limits the throughput (not compute)

Specialized Memory Architecture

Break up map into separate memory banks and novel storage pattern
to minimize read conflicts when processing different beams in parallel.

[Li et al., RSS 2019]

X
Y

X

Y

Memory Access Pattern

8 8 8

7 7 7

6 6 6

5 5 5

4 4 4 8

3 3 3 5 6 7

2 2 3 4

1 2 3 4 5 6 7 8

Diagonal Banking Pattern

X

Y

Bank 0

Bank 1

Bank 4

Bank 3

Bank 5

Bank 7

Bank 2

Bank 6

8 8 8

7 7 7

6 6 6

5 5 5

4 4 4 8

3 3 3 5 6 7

2 2 3 4

1 2 3 4 5 6 7 8

49

2 4 6 8 10 12 14 16

Number of FSMI Cores

2

3

4

5

6

7

8

T
h

ro
u

g
h

p
u

t
(M

I/
s)

104

Baseline (1 bank)

16 banks,vertical banking,1x1 packing

16 banks,diagonal banking,1x1 packing

16 banks,diagonal banking,2x2 packing

Unlimited bandwidth

Experimental Results50

Specialized banking,
efficient memory arbiter

and packing multiple values
at each address results in
throughput within 94% of

theoretical limit
(unlimited bandwidth)

[Li et al., RSS 2019]

Experimental Results51

Compute the mutual information for an entire map of
20m x 20m at 0.1m resolution in under a second while

consuming under 2W on an FPGA*

0.29 0.93 1.7
3.32.6

9.3

17

32.9

0
5

10
15
20
25
30
35

10 50 100 200

FPGA CPU

10 ×

10 ×

10 ×
9 ×

Number of cells in a beam

Co
m

pu
ta

tio
n

tim
e

(u
s)

*estimate another order of magnitude reduction with ASIC

Each FSMI core on FPGA faster than
CPU core by 10x

Compute FSMI on more locations
reduce trajectory length

[Li et al., RSS 2019]

Extend FSMI to 3D Environments52

Computing MI on a
3D map requires

significant amounts of
storage and compute

Compress map
with OctoMap

[Hornung, et al., Autonomous
Robots, 2013]

Compute FSMI on Compressed 3D53

The 1D occupancy vector consists of multiple segments
of repeated occupancy values

𝑄0

𝑄1
𝑄2

𝑄3
𝑄4

𝑞0 𝑞1 𝑞2 𝑞3 𝑞4

𝑜1 𝑜2 𝑜3 𝑜4

𝑄0

𝑄1
𝑄2

𝑄3
𝑄4

𝑄0 𝑄1 𝑄2 𝑄3 𝑄4

𝑜1 𝑜1 𝑜1 𝑜1 𝑜2 𝑜2 𝑜2 𝑜3 𝑜3 𝑜4

𝐿1 𝐿2 𝐿3 𝐿4

Ray-tracing in
OctoMap

FSMI on Compressed Input54

Uncompressed input format
!", !", … , !", !%, … , !%, !&, … , !&, … , !'(, … , !')

*" *% *& *')+ + + = -

.(0)

Compressed format (Run Length Encoding)

(!", *"), (!%, *%), !&, *& , … , (!'), *'))

-(

.(02)

Time complexity of Approx FSMI

Goal: achieve the complexity of

02 ≪ 0, significant reduction if the constants are comparable

𝑄0

𝑄1
𝑄2

𝑄3
𝑄4

𝑄0 𝑄1 𝑄2 𝑄3 𝑄4

𝑜1 𝑜1 𝑜1 𝑜1 𝑜2 𝑜2 𝑜2 𝑜3 𝑜3 𝑜4

𝐿1 𝐿2 𝐿3 𝐿4

Complexity of 2D and 3D FSMI55

FSMI Approximate FSMI
2D !(#$) !(#Δ)
3D

(compress with RLE)
!(#'$) !(#'Δ)

Z. Zhang et al., FSMI: Fast computation of Shannon Mutual
Information for information-theoretic mapping, arXiv 2019

http://arxiv.org/abs/1905.02238

Baseline (Approx FSMI): 56µsec

Measured speed up for a beam of 256 cells on an Intel Xeon CPU
core for different degrees of compression (L)

http://arxiv.org/abs/1905.02238

Experiments of 3D FSMI (4x Real Time)56

[Z. Zhang et al., arXiv 2019]

Experiments of 3D FSMI57

We achieve an average compression ratio of around 18×,
with an acceleration ratio of 8×

• Pulsed Time of Flight: Measure distance using round trip time

of laser light for each image pixel

– Illumination + Imager Power: 2.5 – 20 W for range from 1 - 8 m

• Use computer vision techniques and passive images to

estimate changes in depth without turning on laser

– CMOS Imaging Sensor Power: < 350 mW

Low Power 3D Time of Flight Imaging

Estimated Depth Maps
Real-time Performance on Embedded Processor

VGA @ 30 fps on Cortex-A7 (< 0.5W active power)

[Noraky et al., ICIP 2017]

58

Results of Low Power Depth ToF Imaging

[Noraky et al., ICIP 2017]

RGB Image Depth Map
Ground Truth

Depth Map
Estimated

Mean Relative Error: 0.7%
Duty Cycle (on-time of laser): 11%

59

• Efficient computing is critical for advancing the progress of
autonomous robots, particularly at the smaller scales. à
Critical step to making autonomy ubiquitous!

• In order to meet computing demands in terms of power and
speed, need to redesign computing hardware from the ground
up à Focus on data movement!

• Specialized hardware opens up new opportunities for the co-
design of algorithms and hardware à Innovation
opportunities for the future of robotics!

Summary60

Algorithms Hardware

Today’s slides available at www.rle.mit.edu/eems For Updates

Acknowledgements

Research conducted in the MIT Energy-Efficient Multimedia Systems Group would not
be possible without the support of the following organizations:

For updates on our research

61

Joel Emer

Sertac Karaman

• Energy-Efficient Hardware for Deep Neural Networks
– Project website: http://eyeriss.mit.edu

– Y.-H. Chen, T. Krishna, J. Emer, V. Sze, “Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep
Convolutional Neural Networks,” IEEE Journal of Solid State Circuits (JSSC), ISSCC Special Issue, Vol. 52,
No. 1, pp. 127-138, January 2017.

– Y.-H. Chen, J. Emer, V. Sze, “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for
Convolutional Neural Networks,” International Symposium on Computer Architecture (ISCA), pp. 367-
379, June 2016.

– Y.-H. Chen, T.-J. Yang, J. Emer, V. Sze, “Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural
Networks on Mobile Devices,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems
(JETCAS), June 2019.

– Eyexam: https://arxiv.org/abs/1807.07928

• Limitations of Existing Efficient DNN Approaches
– Y.-H. Chen*, T.-J. Yang*, J. Emer, V. Sze, “Understanding the Limitations of Existing Energy-Efficient

Design Approaches for Deep Neural Networks,” SysML Conference, February 2018.

– V. Sze, Y.-H. Chen, T.-J. Yang, J. Emer, “Efficient Processing of Deep Neural Networks: A Tutorial and
Survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, December 2017.

– Hardware Architecture for Deep Neural Networks: http://eyeriss.mit.edu/tutorial.html

References62

http://eyeriss.mit.edu/
https://arxiv.org/abs/1807.07928
http://eyeriss.mit.edu/tutorial.html

• Co-Design of Algorithms and Hardware for Deep Neural Networks
– T.-J. Yang, Y.-H. Chen, V. Sze, “Designing Energy-Efficient Convolutional Neural Networks using Energy-

Aware Pruning,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

– Energy estimation tool: http://eyeriss.mit.edu/energy.html
– T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, V. Sze, H. Adam, “NetAdapt: Platform-Aware Neural

Network Adaptation for Mobile Applications,” European Conference on Computer Vision (ECCV), 2018.

– D. Wofk*, F. Ma*, T.-J. Yang, S. Karaman, V. Sze, “FastDepth: Fast Monocular Depth Estimation on
Embedded Systems,” IEEE International Conference on Robotics and Automation (ICRA), May 2019.
http://fastdepth.mit.edu/

• Energy-Efficient Visual Inertial Localization
– Project website: http://navion.mit.edu

– A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, “Navion: A Fully Integrated Energy-Efficient
Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones,” IEEE Symposium on
VLSI Circuits (VLSI-Circuits), June 2018.

– Z. Zhang*, A. Suleiman*, L. Carlone, V. Sze, S. Karaman, “Visual-Inertial Odometry on Chip: An
Algorithm-and-Hardware Co-design Approach,” Robotics: Science and Systems (RSS), July 2017.

– A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, “Navion: A 2mW Fully Integrated Real-Time
Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones,” IEEE Journal of Solid
State Circuits (JSSC), VLSI Symposia Special Issue, Vol. 54, No. 4, pp. 1106-1119, April 2019.

References63

http://eyeriss.mit.edu/energy.html
http://fastdepth.mit.edu/
http://navion.mit.edu/

• Fast Shannon Mutual Information for Robot Exploration
– Z. Zhang, T. Henderson, V. Sze, S. Karaman, “FSMI: Fast computation of Shannon Mutual Information for

information-theoretic mapping,” IEEE International Conference on Robotics and Automation (ICRA), May 2019.
– P. Li*, Z. Zhang*, S. Karaman, V. Sze, “High-throughput Computation of Shannon Mutual Information on Chip,”

Robotics: Science and Systems (RSS), June 2019

– Z. Zhang, T. Henderson, S. Karaman, V. Sze, “FSMI: Fast computation of Shannon Mutual Information for
information-theoretic mapping,” extended preprint on arXiv, May 2019 http://arxiv.org/abs/1905.02238

• Low Power Time of Flight Imaging
– J. Noraky, V. Sze, “Low Power Depth Estimation of Rigid Objects for Time-of-Flight Imaging,” IEEE Transactions

on Circuits and Systems for Video Technology (TCSVT), 2019.

– J. Noraky, C. Mathy, A. Cheng, V. Sze, “Low Power Adaptive Time-Of-Flight Imaging For Multiple Rigid Objects,”
IEEE International Conference on Image Processing (ICIP), September 2019.

– J. Noraky, V. Sze, “Depth Estimation of Non-Rigid Objects For Time-Of-Flight Imaging,” IEEE International
Conference on Image Processing (ICIP), October 2018.

– J. Noraky, V. Sze, “Low Power Depth Estimation for Time-of-Flight Imaging,” IEEE International Conference on
Image Processing (ICIP), September 2017.

References64

http://arxiv.org/abs/1905.02238

