
SUPPLEMENTARY MATERIAL

We devote the supplementary material section to a more
detailed description of the arbiter, which was summarized in
Section 3.D.

Given a list of 16 memory access requests generated by the
cores, the role of the arbiter is to determine whether multiple
cores request data from different addresses of the same bank.
There are a few properties that we want the arbiter to satisfy:
• Fairness: The arbiter does not always prefer granting the

memory access request of one core over another when
collisions happen between them so that all FSMI cores
can be equally active.

• One-cycle: The arbiter must complete all collision check-
ing and memory association in one clock cycle. This
constraint ensures that the arbiter does not introduce
additional delay for memory access, which reduces the
memory bandwidth from the occupancy grid map to the
FSMI cores.

Maximizing memory sharing between two read ports for
each memory bank complicates the design of the arbiter
protocol, introduces significant increase in the critical path
of the digital logic, and does not lead to much bandwidth
improvement. Thus, we break the arbiter into two identical
smaller arbiters called Port 0 and Port 1 Arbiter as shown in
Figure 1. Port 0 Arbiter handles memory requests from cores
0 to 7 and service these requests using port 0 of every memory
bank. Similarly, Port 1 Arbiter handles memory requests from
cores 8 to 15 and service these requests using port 1 of every
memory bank. Hence, the complexity of the overall arbiter
decreases because each arbiter only needs to handle memory
requests from half of the cores and uses only one read port
from every memory bank.

The arbiter uses a round robin scheme by keeping track
of a priority pointer to ensure fairness among cores which
helps to balance the cycles per core and the resulting overall
throughput. Figure 2 illustrates this with 3 stages. In stage 1
and 2, the arbiter is constructing a continuous window con-
taining groups of memory requests (from consecutive cores)
that can be granted at every cycle. This window always starts
at the core with the priority index (core 1). If a memory
access collision occurs (core 6 and core 2 try to access the
same memory bank with different addresses), memory access
priority is given to the core that is closest to the priority index
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Fig. 1: Overview of the top-level architecture.
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Fig. 2: Overview of the arbiter operation
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Fig. 3: Step 1 of the arbiter

(core 2). Thus, the window ends at the core before the collision
(core 5). Since all memory requests within the window is
serviced, the next set of memory requests from all cores within
the window replaces the current ones, and the priority index
is updated to the core where collision happens (core 6). In all,
the process from stage 1 to 3 is repeated every clock cycle
until request from all cores are serviced.

One naive approach for determining the location of the
memory collision in stage 1 is to check the memory requests
one core at a time starting from the priority index. Since stage
1 to 3 has to be completed within a single clock cycle, the
critical path of the entire arbiter design scales linearly with
the number of cores which lowers the maximum operating
clock frequency for the hardware and in turn reduces memory
bandwidth to FSMI cores. Thus, an alternative 4-step arbiter
architecture is proposed to achieve the same functionality as
the arbiter in Figure 2 but with a critical path that logarith-
mically scales with the number of cores and the number of
memory banks.

In step 1 (Figure 3), the arbiter performs a circular shift so
that the core with the priority index always occurs at the top
of the array. Using the resulting array from step 1, the arbiter
then reorganizes the memory access requests by banks in step
2 (Figure 4).

Since each arbiter processes the memory requests from 8
cores and service them using 1 port from every bank, it or-
ganizes the memory request into 16 groups. Since each group
only contains memory access information for its corresponding
banks, a tree architecture used to determine the window size
for each bank is shown in step 3 (Figure 6). Each element
of the tree consists of five fields: valid (V), address (A),
window start (ST), window end (END), and lowest index
(L). The field V indicates whether the memory request and
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Fig. 4: Step 2 of the arbiter
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Fig. 5: Tree structure to determine start and end of service
window in arbiter for each bank.

address (A) of its corresponding core is valid for a specific
bank. The ST and END fields indicate the start and end
boundaries of the window. The L field tracks the location of
the valid request with the lowest index in its corresponding
window. At leafs of the tree, the window size of each element
is 1 (ST = END). As the tree converges, the elements and
their corresponding windows merge using the the hardware
architecture in Figure 6. The final element of tree contains the
window size for each bank. An example of the step 3 tree
operation for bank 5 is shown in Figure 5.

V0 A0 ST0 END0 L0

Va
lid

Ad
dr
es
s

W
in
do
w

St
ar
t

W
in
do
w

En
d

Lo
w
es
t

In
de
x

Va
lid

Ad
dr
es
s

W
in
do
w

St
ar
t

W
in
do
w

En
d

Lo
w
es
t

In
de
x

V1 A1 ST1 END1 L1
Vf Af STf ENDf Lf

V0

V1
Vf STfST0

0
1

V0

A0

A1
Af 0

1

~V0 & V1

L1

L0
Lf

0
1

(V0 & V1) && (A0 !=A0) 

L1-1
END1

ENDf0
1

END0

END0+1 ==  ST1

Fig. 6: VLSI architecture for step 3 of the arbiter

Due to the circular shift, the final window size of each
bank all starts at the priority index (0 offset) but end at
different core index. In step 4, another tree structure is used to
determine the end the of the overall window over all banks by
finding the smallest offset index. This tree structure with its
hardware architecture is shown in Figure 7(a) and Figure 7(b),
respectively. In all, the final window size of the proposed
arbiter architecture shown in Figure 7(a) matches the expected
window size of the naive arbiter in Figure 2 and contains a
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Fig. 7: Operation and hardware architecture for step 4 of the
arbiter

critical path that scales logarithmically with the number of
banks and cores.


