Problem Statement

Robotic Exploration Problem: Where should the robot move
next to learn most about the map?

Theoretically Proven
Approach: Move to the
location that maximizes the
expected information gain
(mutual information) between
prospective range
measurements and the map.

Occupancy Grid  Mutual Information

H(M|Z) = H(M) — I(M; Z)
Prospective updated Current map Mutual
map entropy entropy information

Challenge: Existing algorithms for computing the mutual
information I(M;Z) between prospective range measurements Z
and the occupancy map M have high computational complexity.

Assumptions and Definitions

- The map M is an occupancy grid consisting of cells with
occupancy probabilities 0, updated using a Bayesian filter. The
occupancy probabilities are assumed to be independent.

- The range measurement Z has Gaussian noise.

- The inverse sensor model:

The mutual Information I(M;2)
between range measurement Zand map M M

[Julian et al., IJRR 2014]
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The integral has no closed form solution. Requires
expensive numerical integration at resolution 1,

The existing algorithm for computing the mutual information
I(M;Z2) of a range measurement of length n runs in time O(n?A,)

Main Result: The FSMI Algorithm
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where

Key Insight: The mutual information is evaluated along an
entire beam rather than summed over individual cells.
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Closed form solution

Approximation Techniques

With truncation®,
Truncateto O Truncateto O I(M;Z) can be
l 2 l computed in O(n)

*also explored in Charrow et al., ICRA 2015

Truncate the Normal Distribution

A can be as small
as3orb

If the sensor noise is uniform, /(M;Z) can be
computed exactly in O(n).

Experimental Results Extending FSMI to 3D Environments

Exploration using FSMI demonstrated

Original M1l FSMI cSQMIi2l Approx FSMI with a mini race car using motion
0 (nz,l ) 0 (le) 0(n) 0(n) capture for localization
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[1] Julian et al., JRR 2014; [2] Charrow et al., ICRA 2015
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FSMI on a chip: An FPGA implementation of FSMI can compute the per pixel mutual information of an
entire 200 x 200 pixel map in under a second while consuming under 2W (to appear at RSS 2019!3])

Computing Ml on a 3D map Compute FSMI on the Compressed 3D Map

requires a significant amount of
storage and computation

A 3D environment

featuring an arch,

a giant cat, a box
and a tree

|
Ray-tracing | |
in OétoMap <

Qo
®

01101

\

. ' ' 3D OctoMap where
Compress the 3D map with OctoMap b color indicates the

[Hornung, et al., Autonomous Robots, 2013] Uncompressed input format height of a voxel
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Compressed format (Run Length Encoding)
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Computing FSMI directly on a 3D OctoMap
achieves an acceleration ratio of 8 X
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Z. Zhang et al., FSMI: Fast computation of
Shannon Mutual Information for information-
theoretic mapping, arXiv 2019

constants are comparable 0(n)> 0(n,) http://arxiv.orq/abs/1905.02238

n, < n, significant reduction if the
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