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1. Motivation

4. Experiments

Real-time low-power depth sensing is critical for 
successful navigation of small robotic vehicles.

2. Contribution

5. Visualization & Phone Demo

Existing Work:
✓ High Accuracy
✗ High Complexity
✗ High Latency
✗ High Energy Cost

►We use a lightweight encoder-decoder architecture:

Our work is an order 
of magnitude faster 
than prior work, with 
near state-of-the-art 
accuracy on the NYU 
Depth v2 dataset.

3. Methodology

Our encoder is based on a 
computationally-simple 

and efficient image 
classification network.

Additive skip connections result in improved accuracy.
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Each upsample layer performs 
5x5 depthwise separable convolution 
with nearest-neighbors interpolation.
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Model Metrics

# weights [106]
# MACs [109]

1.34
0.37

Accuracy (δ1 [%])
RMSE [cm]

77.1
60.4
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Jetson Runtime Power

TX2 GPU
5.6 ms

(178 fps)
12.2 W 

(3.4 W idle)

TX2 CPU
37 ms

(27 fps)
10.5 W 

(3.4 W idle)

Project
Webpage

►We perform hardware-specific compilation (TVM) to lower 
inference runtime on the target embedded platform.

►We apply resource-aware network adaptation (NetAdapt) to 
automatically simplify our model to further lower runtime.

Runtime reduction achieved with our methodology: Visualized results on NYU Depth v2:

40 fps on 
iPhone X

Live Demo:

Our Work:
✓ High Accuracy
✓ Low Complexity
✓ Low Latency
✓ Low Energy Cost

Depthwise Separable Convolution

Used in both the encoder and decoder.

farther closer

Depth Estimation 
DNNRGB Image

Dense Depth

Dec: 39.3%
Enc: 60.7%

Dec: 90.4%
Enc: 9.6%

Dec: 36.6%
Enc: 63.4%

Dec: 54.2%
Enc: 45.8%

Dec: 75.1%
Enc: 24.9%

With decomposition:
► reduced complexity
► reduced runtime

10x speedup


