
LOW POWER ADAPTIVE TIME-OF-FLIGHT IMAGING FOR MULTIPLE RIGID OBJECTS

James Noraky1 , Charles Mathy2, Alan Cheng1, Vivienne Sze1

1 Massachusetts Institute of Technology, 2 Analog Devices

ABSTRACT

Time-of-flight (TOF) cameras are becoming increasingly
popular for many mobile applications. To obtain accurate
depth maps, TOF cameras must emit many pulses of light,
which consumes a lot of power and lowers the battery life of
mobile devices. However, lowering the number of emitted
pulses results in noisy depth maps. To obtain accurate depth
maps while reducing the overall number of emitted pulses,
we propose an algorithm that adaptively varies the number of
pulses to infrequently obtain high power depth maps and uses
them to help estimate subsequent low power ones. To esti-
mate these depth maps, our technique uses the previous frame
by accounting for the 3D motion in the scene. We assume
that the scene contains independently moving rigid objects
and show that we can efficiently estimate the motions using
just the data from a TOF camera. The resulting algorithm
estimates 640 × 480 depth maps at 30 frames per second on
an embedded processor. We evaluate our approach on data
collected with a pulsed TOF camera and show that we can
reduce the mean relative error of the low power depth maps
by up to 64% and the number of emitted pulses by up to 81%.

Index Terms— time-of-flight cameras, shot noise, depth
estimation, motion estimation, low power

1. INTRODUCTION

Time-of-flight (TOF) cameras are becoming increasingly
popular for mobile applications. These depth sensors are ap-
pealing because they obtain dense depth maps with minimal
latency [1]. For mobile devices, one drawback of a TOF
camera is that its illumination source can be power hungry.
This is apparent for an application like augmented reality
(AR), which requires the TOF camera to emit many pulses of
light to obtain accurate depth maps in real time (30 frames
per second) and limits the battery life of the underlying de-
vice. While reducing the number of pulses would extend the
battery life, it would also result in inaccurate depth maps.

To lower the power required to estimate accurate depth
maps, we propose an intermediate approach, depicted in Fig-
ure 1, where we adaptively vary the number of pulses to infre-
quently obtain high power depth maps and use them to help
estimate subsequent low power ones. Our work is similar in

We thank Analog Devices for funding this work.

Fig. 1: Adaptive Depth Estimation: We adaptively vary the
number of pulses a TOF camera emits. For low power depth
maps, our depth estimation algorithm uses data from the pre-
vious frame along with the current one.

spirit to previous approaches [2, 3, 4, 5], but differs in that
these approaches are focused on reducing the noise for a fixed
pulse count and adapt different settings such as pulse timing.

In order to use the data from the previous high power
depth map, our algorithm must account for the 3D motion
between frames. This is difficult because this motion needs to
be estimated for every pixel in real time. One common way
to reduce this complexity is to assume that the environment
around the TOF camera is rigid [6]. We further relax this and
allow independently moving rigid objects. Our assumption
allows us to efficiently estimate the 3D motion using the op-
tical flow, or the apparent pixel-wise motion, of consecutive
infrared (IR) images that a TOF camera simultaneously ob-
tains in the process of estimating depth. Unlike our previous
work [7, 8], which required RGB images to estimate motion,
this approach uses only the data from a TOF camera. We
present the following contributions:

• An algorithm that estimates the motion of independent
rigid objects using just the data from a TOF camera.

• A depth estimation algorithm that combines the previous
depth map with the current low power one, decreasing its
mean relative error by up to 64%.

• A method to determine when a high power depth map
should be obtained, reducing the number of emitted pulses
by up to 81%.

The resulting algorithm is computationally efficient, and we
highlight our design choices that enable our approach to es-

timate depth maps at 30 frames per second on the ODROID
XU-3 [9] embedded platform.

2. TOF CAMERA NOISE ANALYSIS

To quantify the impact of power on the quality of the depth
map estimated by a TOF camera, we first examine how a
pulsed TOF camera estimates depth. These sensors obtain
depth by emitting light and estimating its roundtrip time. To
estimate the roundtrip time, the reflected light is integrated by
the sensor, where the light is first converted into electrons and
then quantized by an analog-to-digital converter.

Fig. 2: Pulsed TOF Camera: x0 and x1 correspond to the
shaded regions, which represent the integrated light.

In Figure 2, we show how the roundtrip time, ∆, is es-
timated for a single pulse. In this figure, we denote d as
the depth, x0 and x1 as the integrated “light”, τ as the pulse
width, and c as the speed of light. We assume that any con-
tribution from the background is subtracted from x0 and x1.
This process is repeated for every pixel, and in addition to ob-
taining a depth map (d), we also obtain an IR image (x0+x1).

However, x0 and x1 are affected by Poisson noise, or shot
noise, due to the discrete nature of electrons. Shot noise is
always present in TOF cameras, and we also assume that it is
the dominant noise source [10]. We can then model x0 and
x1 as scaled and independent Poisson random variables, i.e.
x0/α and x1/α are Poisson distributed for some constant α.
With this assumption, we can derive the depth variance, σ2

d,
by applying error propagation to d:

σ2
d = d

(cτ
2
− d
) α

x0 + x1
(1)

From Eq. (1), we see that σ2
d is inversely proportional to the

intensity of the reflected light, or x0 + x1. This inverse re-
lationship means that the variance is especially high for low
intensities and highlights the challenges of obtaining accurate
depth maps with low power. One way to increase the inten-
sity is to increase the number of emitted pulses, but as we
previously mentioned, this would limit battery life.

3. LOW POWER DEPTH ESTIMATION

To estimate low power depth maps, our algorithm (Figure 3)
uses the previous depth map and IR image pair as well as the
current one. Our approach estimates the motion between the
frames and uses it to obtain the final depth map.

Fig. 3: Algorithm Pipeline: We apply our algorithm to esti-
mate low power depth maps.

3.1. Estimating Rigid Motions

Our approach assumes that the scene contains independently
moving rigid objects. One conceptually straightforward way
to estimate these motions is to segment the IR image into rigid
regions and estimate the motion for each region. However,
many segmentation algorithms are computationally expensive
[11], and thus, we propose an alternative approach.

If a set of n pixels in the previous depth map, P =
{(x1, y1), . . . , (xn, yn)} ⊂ Ω, have the same rigid motion,
represented by the pose composed of a rotation, R, and a
translation, T , then the following holds for each pixel:∥∥∥∥∥∥
Rzi

f

xi − xcyi − yc
f

+ T

×
xi + ui − xc
yi + vi − yc

f

∥∥∥∥∥∥
2

2

= 0 (2)

where zi and (ui, vi) are the depth and optical flow of the ith

pixel and f and (xc, yc) are the focal length and the principal
point of the TOF camera. In practice, Eq. (2) is not satis-
fied exactly, but we can still use it to group pixels that have
the same rigid motion. To do so, we extend our previous ap-
proach [7] by modifying RANSAC to estimate the pose with
the largest inlier set. We assume that this pose corresponds
to the motion of the largest rigid region in the image. We re-
peat this process after removing the pixels of the inlier set,
i.e. Ω\P, to find the pose for the next largest rigid region and
continue until the size of the inlier set falls below a threshold
(Ni). By following this procedure, we estimate the indepen-
dent rigid motions in the scene.

We also further reduce computation by only considering
the pixels on a sparse and uniformly spaced grid. This min-
imizes computation because we do not need to localize key-
points or compute a dense optical flow field. In our implemen-
tation, we estimate optical flow using block matching with
normalized correlation. We perform block matching using
15 × 15 blocks centered on the pixels of a 20 × 20 grid and
search a 45× 45 region. We also set Ni = 20.

3.2. Combined Depth Estimation

In the previous section, we obtain the pose of the indepen-
dently moving rigid objects in the scene. Here, we describe
how we use the estimated pose to obtain the final depth map.

Fig. 4: Depth Map Reprojection Pipeline: We apply the
poses in order of its inlier set size and use the current depth
map to help assign the correct pose to each pixel.

3.2.1. Depth Map Reprojection
We update the previous depth map by reprojecting it, where
we first obtain the new 3D position of each pixel using the es-
timated pose and then project its updated depth to an image.
Because we can have many candidate poses, we need to as-
sign the right one to each pixel. One straightforward approach
is to reproject the previous depth map using each pose, which
results in many candidate depth maps. To determine the final
reprojected depth map, for each pixel, we choose the candi-
date depth that is closest to that in the current depth map.
However, this adds a significant overhead because we need to
reproject the entire depth map for each pose.

We take a different approach as shown in Figure 4. We
first use the pose that has the largest inlier set to reproject the
previous depth map. As described in the previous section, we
assume that this pose corresponds to the largest rigid region in
the image. To determine the pixels of this region, we compare
the reprojection to the current depth map and apply a thresh-
old (T) to the absolute difference. We save the reprojected
pixels whose difference are within the threshold and repeat
this process with the remaining pixels using the poses in or-
der of the inlier set sizes. Because we proceed in this order,
we reduce the total computation for reprojection. In Section
4.2, we show that this pose assignment is consistent with the
underlying rigid motion.

3.2.2. Depth Map Fusion

To obtain the final depth map, we combine the reprojected
depth map with the current one using a weighted average. It
can be shown that choosing the weights based on the vari-
ances of the depth lowers the expected mean squared error.
Denoting σ2

i,t as the variance of the ith pixel in the current
depth map and σ2

i,t−1 as that in the reprojected one, we ob-
tain the final depth as follows:

ẑi,t =
σ2
i,t

σ2
i,t + σ2

i,t−1
zi,t−1 +

σ2
i,t−1

σ2
i,t + σ2

i,t−1
zi,t (3)

where ẑi,t is the final depth for the ith pixel, zi,t−1 is the re-
projected depth, and zi,t is the current one.

These variances must be computed for every pixel using
Eq. (1) and also updated as it is reprojected. To reduce the

computation, we approximate the weights as follows:

σ2
i,t−1

σ2
i,t−1 + σ2

i,t

≈ 1

M + 1
(4)

where M is the ratio of the number of emitted pulses for a
high power depth map to that of a low power one. This ap-
proximation shows that more weight is given to the repro-
jected depth, which makes sense because it contains informa-
tion from the last high power depth map. Furthermore, in our
experiments, we find that this approximation had a negligible
impact on the mean relative error (as defined in Section 4.1)
of our final depth maps.

3.3. Adaptive Control

As shown in Figure 3, we obtain a high power depth map
when the motion cannot be estimated. This occurs when ac-
curate optical flow cannot be obtained due to issues like the
lack of features in the IR images.

4. ALGORITHM EVALUATION

4.1. Results

Datasets To evaluate our algorithm, we capture 640 × 480
IR image and depth map pairs using the Pico Zense TOF cam-
era [12]. In our experiments, the high power depth maps are
obtained with 10× as many pulses as the low power ones. We
obtain two datasets shown in Figure 5:

1. Indoor Sequences: This synthetic dataset is obtained by
moving the TOF camera around different indoor environ-
ments. We use the captured data as ground truth and sim-
ulate high and low power depth maps by adding shot noise
to the measurements.

2. Rail Sequence: This dataset is collected using a rail that
moves a calibration target away from the TOF camera. We
move the target in 5 cm increments and capture 300 depth
maps. We use a single depth map to represent a low power
depth map, average 10 for a high power one, and average
all 300 for the ground truth.

The rail sequence also tests the performance of our algorithm
for scenes with multiple rigid objects since the calibration tar-
get moves while its surroundings does not. We examine other
cases of multiple rigid objects in Section 4.2.

Fig. 5: Datasets: Select indoor and rail sequences shown.

Implementation We implement our depth estimation algo-
rithm on the ODROID XU-3 board [9], which is an embedded
platform with an Exynos 5422 processor (used in Samsung
Galaxy S5 [13]). It outputs depth maps in real time for the
data we evaluate on, and the processing time is spent equally
between estimating the rigid motions and the combined depth
estimation.

Methodology We apply our algorithm to our sequences
and use the high power depth maps when it is required. For
each depth map, we compute the percent mean relative er-
ror (MRE) over the N pixels we estimate. This is equal to
100
N

∑N
i=1

|ẑi−zi|
zi

, where zi and ẑi are the ground truth and
estimated depth, respectively. We also note the percentage of
high power depth maps we obtain.

We summarize the performance of our algorithm in Table
1, where we average the MRE across all of the depth maps.
We see that the MRE of our depth maps are 64% and 63%
lower than that of the low power ones for the indoor and rail
sequences, respectively. Our algorithm also only obtains high
power depth maps for 10% and 18% of these frames for the
respective sequences. This means that we reduce the overall
number of emitted pulses by up to 81%. An example of an
estimated depth map (This Work) is shown in Figure 6, where
it is compared against the low (Low Power) and high (High
Power) power depth maps. We see that our depth map is less
noisy and visually sharper than the low power one.

Configuration Indoor Rail

This Work 3.2% 4.3%
High Power 2.6% 3.7%
Low Power 8.8% 11.5%

This Work+Bilateral Filter 2.3% 3.4%
Low Power+Bilateral Filter 6.3% 11.0%
Equivalent Power 6.2% 6.8%

Table 1: Mean Relative Error: Our adaptive algorithm only
obtains high power depth maps for 10% and 18% of the
frames for the indoor and rail sequences, respectively.

Fig. 6: Example Depth Maps: Our estimated depth map is
less noisy than the low power one.

4.2. Discussion

Comparison To Denoising Methods Even though our ap-
proach is focused on estimating accurate depth maps, we
compare our depth maps to denoised low power ones. A
common denoising filter is the bilateral filter [14], and it has
been shown to give competitive results [15]. To compare our

approach, we apply a 5 × 5 bilateral filter to the low power
depth maps and compute its MRE (Low Power+Bilateral Fil-
ter). As shown in Table 1, our techniques still estimates depth
with a lower MRE. We can also apply the bilateral filter to
our depth maps (This Work+Bilateral Filter), which further
reduces the MRE.

Comparison to Equivalent Power Because our algorithm
adaptively switches between obtaining high power depth
maps and low power ones, we also compare our depth maps
to those obtained with a constant pulse count of equivalent
power. We can simulate these depth maps by adding the ap-
propriate noise and combining the proper number of frames
for the indoor and rail sequences. If these depth maps have
a lower MRE, then using the equivalent pulse count is more
desirable because standard depth estimation is computation-
ally simple. As shown in the Table 1, this (Equivalent Power)
is not the case, and our approach has a lower MRE.

Estimating Multiple Rigid Motions Another feature of
our approach that distinguishes us from [7, 8] is that we can
estimate independent rigid motions in the scene without prior
segmentation. We illustrate this in Figure 7, where we ap-
ply our algorithm to scenes that have multiple rigid objects.
In the third column of this figure, we color code each pixel
according to its assigned pose as described in Section 3.2.1.
We see that the pose assignment is consistent with the rigid
objects that have different motions. This qualitatively shows
that our approach estimates and assigns the correct motion.

Fig. 7: Assigning Pose: Examples showing that the assigned
pose is consistent with the rigid object motion in the scene.

5. CONCLUSION

In this work, we propose a technique to lower the total num-
ber of pulses a TOF camera emits to obtain accurate depth
maps. Our algorithm adaptively varies the number of pulses
to infrequently obtain high power depth maps and uses them
to enhance low power ones. To do so, we efficiently estimate
the 3D motion between frames using only the data from a
TOF camera. Our algorithm estimates depth maps in real time
on an embedded processor and reduces the MRE of the low
power depth maps by 64% and the overall number of pulses
by 81%.

6. REFERENCES

[1] Miles Hansard, Seungkyu Lee, Ouk Choi, and Radu Ho-
raud, Time-of-Flight Cameras, SpringerBriefs in Com-
puter Science. Springer London, London, 2013.

[2] Stefan May, Bjorn Werner, Hartmut Surmann, and
Kai Pervolz, “3D Time-of-Flight Cameras for Mobile
Robotics,” in International Conference on Intelligent
Robots and Systems. oct 2006, pp. 790–795, IEEE.

[3] Pablo Gil, Jorge Pomares, and Fernando Torres, “Analy-
sis and Adaptation of Integration Time in PMD Camera
for Visual Servoing,” in International Conference on
Pattern Recognition. aug 2010, pp. 311–315, IEEE.

[4] Thomas Hoegg, Christian Baiz, and Andreas Kolb, “On-
line Improvement of Time-of-Flight Camera Accuracy
By Automatic Integration Time Adaption,” in Interna-
tional Symposium on Signal Processing and Information
Technology. dec 2015, pp. 613–618, IEEE.

[5] Michael Schober, Amit Adam, Omer Yair, Shai Mazor,
and Sebastian Nowozin, “Dynamic Time-of-Flight,” in
Conference on Computer Vision and Pattern Recogni-
tion. jul 2017, pp. 170–179, IEEE.

[6] Juan-Antonio Fernández-Madrigal and José Luis
Blanco Claraco, Simultaneous Localization and Map-
ping for Mobile Robots, Advances in Computational
Intelligence and Robotics. IGI Global, 2013.

[7] James Noraky and Vivienne Sze, “Low Power Depth Es-
timation for Time-of-Flight Imaging,” in International
Conference on Image Processing. sep 2017, pp. 2114–
2118, IEEE.

[8] James Noraky and Vivienne Sze, “Depth Estimation of
Non-Rigid Objects for Time-Of-Flight Imaging,” in In-
ternational Conference on Image Processing. oct 2018,
pp. 2925–2929, IEEE.

[9] HardKernel, “ODROID-XU3,” www.hardkernel.
com/main/products/prdt_info.php?g_
code=g140448267127, Accessed: 2018-07-24.

[10] Julio Illade-Quinteiro, Vı́ctor Brea, Paula López, Diego
Cabello, and Gines Doménech-Asensi, “Distance Mea-
surement Error in Time-of-Flight Sensors Due to Shot
Noise,” Sensors, vol. 15, no. 3, pp. 4624–4642, feb
2015.

[11] Roberto Tron and Rene Vidal, “A Benchmark for the
Comparison of 3-D Motion Segmentation Algorithms,”
in Conference on Computer Vision and Pattern Recog-
nition. jun 2007, pp. 1–8, IEEE.

[12] “Pico Zense DCAM100,” picozense.picovr.
com/, Accessed: 2018-07-24.

[13] Samsung, “Exynos 5422,” www.samsung.
com/semiconductor/minisite/
exynos/products/mobileprocessor/
exynos-5-octa-5422/, Accessed: 2018-07-
24.

[14] Alexander Seitel, Thiago R. dos Santos, Sven Mers-
mann, Jochen Penne, Anja Groch, Kwong Yung, Ralf
Tetzlaff, Hans-Peter Meinzer, and Lena Maier-Hein,
“Adaptive Bilateral Filter for Image Denoising and Its
Application to In-Vitro Time-of-Flight Data,” mar 2011,
p. 796423.

[15] Frank Lenzen, Kwang In Kim, Henrik Schäfer, Rahul
Nair, Stephan Meister, Florian Becker, and Christoph S
Garbe, “Denoising Strategies for Time-of-Flight Data,”
in Time-of-Flight and Depth Imaging: Sensors, Algo-
rithms, and Applications, Marcin Grzegorzek, Christian
Theobalt, Andreas Kolb, Christian Theobalt, and Rein-
hard Koch, Eds., vol. 8200, pp. 25–45. Springer, 2013.

