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Processing at “Edge” instead of the “Cloud”

Communication Privacy Latency
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Computing Challenge for Self-Driving Cars

(Feb 2018)

Cameras and radar generate 
~6 gigabytes of data every 30 seconds. 

Generates wasted heat and some 
prototypes need water-cooling!

Self-driving car prototypes use 
approximately 2,500 Watts of 

computing power.
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Existing Processors Consume Too Much Power

< 1 Watt > 10 Watts
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Transistors are NOT Getting More Efficient
Slow down of Moore’s Law and Dennard Scaling 

General purpose microprocessors not getting faster or more efficient 

• Need specialized hardware for significant improvement in 
speed and energy efficiency

• Redesign computing hardware from the ground up!

Slowdown
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Energy-Efficient Computing with Cross-Layer Design

Architectures

Algorithms Systems

Circuits
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Power Dominated by Data Movement
Operation: Energy 

(pJ)

8b Add 0.03

16b Add 0.05

32b Add 0.1

16b FP Add 0.4

32b FP Add 0.9

8b Mult 0.2

32b Mult 3.1

16b FP Mult 1.1

32b FP Mult 3.7

32b SRAM Read (8KB) 5

32b DRAM Read 640

Area 
(µm2)

36

67

137

1360

4184

282

3495

1640

7700

N/A

N/A

[Horowitz, ISSCC 2014] 

Relative Energy Cost

1 10 102 103 104

Relative Area Cost

1 10 102 103

Memory access is orders of magnitude higher energy than compute
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Deep Neural Networks

Computer Vision Speech Recognition

Game Play Medical

Deep Neural Networks (DNNs) have become a cornerstone of AI
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DNNs for Understanding the Environment
Depth Estimation

State-of-the-art approaches 
use Deep Neural Networks, 
which require up to several 

hundred millions of 
operations and weights to 

compute!
>100x more complex than 

video compression

Semantic Segmentation
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Properties We Can Leverage
• Operations exhibit high parallelism

à high throughput possible

• Memory Access is the Bottleneck

ALU

Memory Read Memory WriteMAC*

* multiply-and-accumulate

filter weight
image pixel
partial sum updated 

partial sum

• Example: AlexNet has 724M MACs 
à 2896M DRAM accesses required

Worst Case: all memory R/W are DRAM accesses

200x 1x

DRAM DRAM

10



Properties We Can Leverage
• Operations exhibit high parallelism

à high throughput possible

• Input data reuse opportunities (up to 500x)

Convolutional
Reuse 

(pixels, weights)

Filter Image
…

…

…

…

… ……
…

…

Image
Reuse
(pixels)

… 

… 

… 

…

… … … 

… 

… 

… 

… 

2

1

Filters

Image

Filter
Reuse

(weights)

…

…

…
… … … 

… 

… … … 

…
Filter

Image

2

1
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Exploit Data Reuse at Low-Cost Memories

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 

Farther and larger memories consume more power

0.5 – 1.0 kB

Control

Reg File
Specialized 

hardware with 
small (< 1kB) 

low cost memory 
near compute
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Weight Stationary (WS)

• Minimize weight read energy consumption
− maximize convolutional and filter reuse of weights

• Examples:
[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014]
[Park, ISSCC 2015] [Origami, GLSVLSI 2015]

Global Buffer

W0 W1 W2 W3 W4 W5 W6 W7

Psum Pixel

PE
Weight
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• Minimize partial sum R/W energy consumption
− maximize local accumulation

• Examples:

Output Stationary (OS)

[Gupta, ICML 2015] [ShiDianNao, ISCA 2015]
[Peemen, ICCD 2013]

Global Buffer

P0 P1 P2 P3 P4 P5 P6 P7

Pixel Weight

PE
Psum
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Row Stationary Dataflow

• Maximize row 
convolutional reuse in RF
− Keep a filter row and fmap

sliding window in RF

• Maximize row psum
accumulation in RF

PE 1
Row 1 Row 1

Row 1

=*

*
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Row Stationary Dataflow

Optimize for overall energy efficiency instead 
for only a certain data type

PE 1
Row 1 Row 1

PE 2
Row 2 Row 2

PE 3
Row 3 Row 3

Row 1

=*

PE 4
Row 1 Row 2

PE 5
Row 2 Row 3

PE 6
Row 3 Row 4

Row 2

=*

PE 7
Row 1 Row 3

PE 8
Row 2 Row 4

PE 9
Row 3 Row 5

Row 3

=*

* * *

* * *

* * *
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• Weight Stationary
– Minimize movement of filter weights

• Output Stationary
– Minimize movement of partial sums

• No Local Reuse
– Don’t use any local PE storage. Maximize global buffer size.

• Row Stationary

Evaluate Reuse in Different Dataflows

Evaluation Setup
• Same Total Area
• AlexNet
• 256 PEs
• Batch size = 16

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×
6×

PE ALU 2×
1×
1× (Reference)

DRAM ALU

17



Dataflow Comparison: CONV Layers

RS uses 1.4× – 2.5× lower energy than other dataflows

Normalized
Energy/MAC

ALU
RF

NoC
buffer
DRAM

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS
CNN Dataflows

[Chen et al., ISCA 2016]
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Dataflow Comparison: CONV Layers

0

0.5

1

1.5

2

Normalized
Energy/MAC

WS OSA OSB OSC NLR RS

psums

weights
pixels

RS optimizes for the best overall energy efficiency

CNN Dataflows

[Chen et al., ISCA 2016]
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Exploit Sparsity

[Chen et al., ISSCC 2016]

== 0 Zero 
Buff 

  
  Scratch Pad   

Enable 

Zero Data Skipping 

Register File
No R/W No Switching

Method 1. Skip memory access and computation

Method 2. Compress data to reduce storage and data movement

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	

DR
AM

	Ac
ce
ss	

(M
B)	

AlexNet	Conv	Layer	

Uncompressed	 Compressed	

1 2 3 4 5
AlexNet Conv Layer

DRAM 
Access 
(MB) 

0

2

4

6
1.2×

1.4×
1.7×

1.8×
1.9×

Uncompressed
Fmaps + Weights

RLE Compressed
Fmaps + Weights

45% power reduction
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Eyeriss: Deep Neural Network Accelerator

On
-c

hip
 B

uff
er

Spatial 
PE Array

4mm

4m
m

[Chen et al., ISSCC 2016, ISCA 2016] 

[Joint work with Joel Emer]
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Results for AlexNet

Overall >10x energy reduction compared to a mobile GPU (Nvidia TK1)

[Chen et al., ISSCC 2016, ISCA 2016] 

Exploits data reuse for 100x reduction in memory accesses from global 
buffer and 1400x reduction in memory accesses from off-chip DRAM



Features: Energy vs. Accuracy 

0.1

1

10

100

1000

10000

0 20 40 60 80
Accuracy (Average Precision)

Energy/
Pixel (nJ)

VGG162

AlexNet2

HOG1

Measured in on VOC 2007 Dataset
1. DPM v5 [Girshick, 2012]
2. Fast R-CNN [Girshick, CVPR 2015] 

Exponential

Linear

Video 
Compression

[Suleiman et al., ISCAS 2017]

Measured in 65nm*

* Only feature extraction. Does 
not include data, classification 

energy, augmentation and 
ensemble, etc.

On
-c

hip
 B

uff
er Spatial 

PE Array

4mm

4m
m

4mm

4m
m

[Suleiman, VLSI 2016] [Chen, ISSCC 2016]1 2
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Energy-Efficient Processing of DNNs

V. Sze, Y.-H. Chen, 
T-J. Yang, J. Emer, 

“Efficient Processing of 
Deep Neural Networks: 
A Tutorial and Survey,” 
Proceedings of the IEEE, 

Dec. 2017

A significant amount of algorithm and hardware research 
on energy-efficient processing of DNNs

We identified various limitations to existing approaches

http://eyeriss.mit.edu/tutorial.html
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• Popular efficient DNN algorithm approaches 

Design of Efficient DNN Algorithms

pruning 
neurons

pruning 
synapses

after pruningbefore pruning

Network Pruning

C
1

1
S

R

1

R

S
C

Compact Network Architectures

Examples: SqueezeNet, MobileNet

... also reduced precision

• Focus on reducing number of MACs and weights
• Does it translate to energy savings?
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Data Movement is Expensive

Energy of weight depends on memory hierarchy and dataflow

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 
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Energy-Evaluation Methodology

DNN Shape Configuration
(# of channels, # of filters, etc.)

DNN Weights and Input Data
[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …]

DNN Energy Consumption 
L1 L2 L3

Energy

…

Memory 
Accesses

Optimization

# of MACs
Calculation

…

# acc. at mem. level 1
# acc. at mem. level 2

# acc. at mem. level n

# of MACs

Hardware Energy Costs of each 
MAC and Memory Access

Ecomp

Edata

Tool available at: https://energyestimation.mit.edu/

[Yang et al., CVPR 2017]
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• Number of weights alone is not a good metric for energy

• All data types should be considered 

Key Observations

Output Feature Map
43%

Input Feature Map
25%

Weights
22%

Computation
10%

Energy Consumption 
of GoogLeNet

[Yang et al., CVPR 2017]
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Directly target energy and 
incorporate it into the 

optimization of DNNs to 
provide greater energy savings

Energy-Aware Pruning

• Sort layers based on energy and 
prune layers that consume most 
energy first

• EAP reduces AlexNet energy by 
3.7x and outperforms the 
previous work that uses 
magnitude-based pruning by 1.7x

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 
4.5 

Ori. DC EAP 

Normalized Energy (AlexNet) 

2.1x 3.7x 

x109 

Magnitude 
Based Pruning 

Energy Aware 
Pruning 

Pruned models available at 
http://eyeriss.mit.edu/energy.html

[Yang et al., CVPR 2017]
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NetAdapt: Platform-Aware DNN Adaptation
• Automatically adapt DNN to a mobile platform to reach a 

target latency or energy budget
• Use empirical measurements to guide optimization (avoid 

modeling of tool chain or platform architecture) 

[Yang et al., ECCV 2018]

In collaboration with Google’s Mobile Vision Team

NetAdapt Measure

…

Network Proposals

Empirical Measurements
Metric Proposal A … Proposal Z

Latency 15.6 … 14.3

Energy 41 … 46

…… …

Pretrained
Network Metric Budget

Latency 3.8

Energy 10.5

Budget

Adapted
Network

… …

Platform

A B C D Z
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Problem Formulation

• Advantages
– Supports multiple resource budgets at the same time
– Guarantees that the budgets will be satisfied because the resource 

consumption decreases monotonically
– Generates a family of networks (from each iteration) with different resource 

versus accuracy trade-offs
– Intuitive and can easily set one additional hyperparameter (∆"#,%)

max
*+,

-../01.2 345 6/784.5 59 :469/0.4; 345 ≤ =/>?45;, 8 = 1,⋯ ,C

max
*+,D

-.. 345E 6/784.5 59 :46; 345E ≤ :46; 345EFG − ∆:E,;, 8 = 1,⋯ ,C

Break into a set of simpler problems and solve iteratively

*Acc: accuracy function, Res: resource evaluation function, 
ΔR: resource reduction, Bud: given budget

Budget incrementally tightens "IJ% KIL#FM − ∆"#,%
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[Yang et al., ECCV 2018]

Simplified Example of One Iteration

Latency: 100ms
Budget: 80ms

100ms 90ms 80ms

100ms 80ms

Selected

Selected

Layer 1

Layer 4

…

Acc: 60%

Acc: 40%

…

Selected

2. Meet Budget

Latency: 80ms
Budget: 60ms

1. Input 4. Output3. Maximize 
Accuracy

Network from 
Previous Iteration

Network for 
Next Iteration
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• NetAdapt boosts the real inference speed of MobileNet
by up to 1.7x with higher accuracy

Improved Latency vs. Accuracy Tradeoff

+0.3% accuracy
1.7x faster

+0.3% accuracy
1.6x faster

Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018

*Tested on the ImageNet dataset and a Google Pixel 1 CPU

[Yang et al., ECCV 2018]
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FastDepth: Fast Monocular Depth Estimation
Depth estimation from a single RGB image desirable, due to 

the relatively low cost and size of monocular cameras.
RGB Prediction

[Joint work with Sertac Karaman]

Auto Encoder DNN Architecture (Dense Output)

Reduction 
(similar to classification) Expansion
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FastDepth: Fast Monocular Depth Estimation
Apply NetAdapt, compact network design, and depth wise decomposition 

to decoder layer to enable depth estimation at high frame rates on an 
embedded platform while still maintaining accuracy

[Wofk*, Ma* et al., ICRA 2019]

Configuration: Batch size of one (32-bit float)

Models available at 
http://fastdepth.mit.edu

> 10x

34

http://fastdepth.mit.edu/


Many Efficient DNN Design Approaches

pruning 
neurons

pruning 
synapses

after pruningbefore pruning

Network Pruning Compact Network Architectures

10100101000000000101000000000100

01100110

Reduce Precision

32-bit float

8-bit fixed

Binary 0

No guarantee that DNN algorithm 
designer will use a given approach.

Need flexible hardware!

[Chen et al., SysML 2018]

C
1

1
S

R

1

R

S
C

G

Depth-Wise
Layer

Point-Wise
Layer

Convolutional
Layer

…
Channel
Groups
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• Specialized DNN hardware often rely on certain properties of 
DNN in order to achieve high energy-efficiency

• Example: Reduce memory access by amortizing across MAC array

Existing DNN Architectures

MAC arrayWeight
Memory

Activation
Memory

Weight 
reuse

Activation
reuse
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• Example: Reuse and array utilization depends on # of channels, 
feature map/batch size 
– Not efficient across all network architectures (e.g., compact DNNs)

Limitation of Existing DNN Architectures

MAC array
(spatial 

accumulation)

Number of filters
(output channels)

Number of
input channels

MAC array
(temporal

accumulation)

Number of filters
(output channels)

feature map
or batch size
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• Example: Reuse and array utilization depends on # of channels, 
feature map/batch size 
– Not efficient across all network architectures (e.g., compact DNNs)

Limitation of Existing DNN Architectures

MAC array
(spatial 

accumulation)

Number of filters
(output channels)

Number of
input channels

MAC array
(temporal

accumulation)

Number of filters
(output channels)

feature map
or batch size

C
1

1

S

R

1

Example mapping for 
depth wise layer
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• Example: Reuse and array utilization depends on # of channels, 
feature map/batch size 
– Not efficient across all network architectures (e.g., compact DNNs)
– Less efficient as array scales up in size
– Can be challenging to exploit sparsity

Limitation of Existing DNN Architectures

MAC array
(spatial 

accumulation)

Number of filters
(output channels)

Number of
input channels

MAC array
(temporal

accumulation)

Number of filters
(output channels)

feature map
or batch size
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Need Flexible Dataflow
• Use flexible dataflow (Row Stationary) to exploit reuse in any 

dimension of DNN to increase energy efficiency and array 
utilization

Example: Depth-wise layer

40



• When reuse available, need multicast to exploit spatial data 
reuse for energy efficiency and high array utilization

• When reuse not available, need unicast for high BW for weights 
for FC and weights & activations for high PE utilization

• An all-to-all satisfies above but too expensive and not scalable

Need Flexible NoC for Varying Reuse41
G
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l B
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fe
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PE PE PEPE

PE PE PEPE

PE PE PEPE

PEPE PE PE

G
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PE PE PEPE

PE PE PEPE

PE PE PEPE
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PE PE PEPE

PE PE PEPE

PE PE PEPE

G
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PE PE PEPE

PE PE PEPE

PE PE PEPE

PE PE PEPE

High Bandwidth, Low Spatial Reuse Low Bandwidth, High Spatial Reuse

Unicast Networks Broadcast Network1D Multicast Networks1D Systolic Networks

[Chen et al., JETCAS 2019]



Hierarchical Mesh42

GLB
Cluster

Router
Cluster

PE
Cluster

…

…

…

…

…… …

Mesh
Network

All-to-all
Network

(a) (b) (c) (d) (e)

GLB
Cluster

Router
Cluster

PE
Cluster

…

…

…

…

…… …

Mesh
Network

All-to-all
Network

(a) (b) (c) (d) (e)

High Bandwidth High Reuse Grouped Multicast Interleaved Multicast

[Chen et al., JETCAS 2019]

All-to-AllMesh



Eyeriss v2: Balancing Flexibility and Efficiency

[Chen et al., JETCAS 2019]
Over an order of magnitude faster and 
more energy efficient than Eyeriss v1

Speed up over Eyeriss v1 scales with number of PEs 

# of PEs 256 1024 16384

AlexNet 17.9x 71.5x 1086.7x

GoogLeNet 10.4x 37.8x 448.8x

MobileNet 15.7x 57.9x 873.0x

Efficiently supports
• Wide range of filter shapes 
– Large and Compact

• Different Layers 
– CONV, FC, depth wise, etc.

• Wide range of sparsity 
– Dense and Sparse

• Scalable architecture

[Joint work with Joel Emer]

5.6
10.9
12.6
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Energy-Efficient Autonomous Navigation44

Navion Chip 
Localization and Mapping at 2mW

(full integration on-chip)

[Zhang et al., RSS 2017], 
[Suleiman et al., VLSI 2018]

http://navion.mit.edu  

In collaboration with 
Sertac Karaman (AeroAstro)

Enable energy-efficient 
navigation for Search and Rescue



Visual-Inertial Localization

Visual-Inertial 
Odometry 

(VIO) 

Localization 

Mapping 

Image sequence 

IMU 
Inertial Measurement Unit 

… 

*Subset of SLAM algorithm 
(Simultaneous Localization And Mapping) Slide 28 

Determines location/orientation of robot from images and IMU
(also used by headset in Augmented Reality and Virtual Reality)

*
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[Joint work with Sertac Karaman (AeroAstro)]



Frontend: Processing Sensors Data

Camera

IMU

Vision 
Frontend 

(VFE)

IMU Frontend 
(IFE)

[Zhang et al., RSS 2017]
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Frontend: Processing Sensors Data

Camera

IMU

Vision 
Frontend 

(VFE)

IMU Frontend 
(IFE)

Feature 
Tracks

[Zhang et al., RSS 2017]
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Frontend: Processing Sensors Data

Camera

IMU

Vision 
Frontend 

(VFE)

IMU Frontend 
(IFE)

Gyro. & Acc. 
Measurements

Preintegration Preintegration

…

KF1 KF2 KF3

ΔR12, ΔT12 ΔR23, ΔT23

Feature 
Tracks

Estimated State
(Pose & Location)

[Zhang et al., RSS 2017]
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Backend: Reduce Inconsistency

Camera

IMU

Vision 
Frontend 

(VFE)

IMU Frontend 
(IFE)

Backend 
(BE)

Feature 
Tracks

Estimated State
(Pose & Location)

[Zhang et al., RSS 2017]

Update states (xi) to minimize inconsistencies 
between measurements across time 

x’1 
x’2 

x’3 

Lk 

t=1 

t=2 t=3 
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Backend: Factor Graph to Infer State of Drone

Camera

IMU

Vision 
Frontend 

(VFE)

IMU Frontend 
(IFE)

Backend 
(BE)

Feature 
Tracks

Estimated State
(Pose & Location)

IMU Factors Vision Factors Other Factors

[Zhang et al., RSS 2017]

Factor Graph

Non-linear least squares factor graph optimization

4000+ 
factors
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Backend: Factor Graph to Infer State of Drone

Camera

IMU

Vision 
Frontend 

(VFE)

IMU Frontend 
(IFE)

Backend 
(BE)

Feature 
Tracks

Estimated State
(Pose & Location)

[Zhang et al., RSS 2017]

Factor Graph

4000+ 
factors

Updated States (xi)
&

Sparse 3D Map

IMU Factors Vision Factors Other Factors

Non-linear least squares factor graph optimization
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Navion Chip Architecture

Backend Control

Data & Control Bus
Build 
Graph

Linear 
Solver

Linearize

Marginal

Retract

Graph
Linear 
Solver

Horizon 
States

Shared 
Memory

Floating 
Point 

Arithmetic

Matrix 
Operations

Cholesky

Back 
Substitute

Rodrigues 
Operations

Feature 
Tracking 

(FT)

Previous 
FrameLine Buffers

Feature 
Detection 

(FD)

Undistort 
& Rectify 

(UR)

Undistort 
& Rectify 

(UR)

Data & Control Bus

Sparse Stereo (SS)

Vision Frontend Control

RANSAC Fixed Point 
Arithmetic Point Cloud Pre-IntegrationFloating Point 

Arithmetic

IMU 
memory

Current 
Frame

Left 
Frame

Right 
Frame

Vision Frontend (VFE)

IMU Frontend (IFE)

Backend (BE)

Register 
File

Navion is a fully integrated system:  
No off-chip storage or processing

[Suleiman et al., VLSI 2018]
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Key Methods to Reduce Data Size

Backend Control

Data & Control Bus
Build 
Graph

Linear 
Solver

Linearize

Marginal

Retract

Graph
Linear 
Solver

Horizon 
States

Shared 
Memory

Floating 
Point 

Arithmetic

Matrix 
Operations

Cholesky

Back 
Substitute

Rodrigues 
Operations

Feature 
Tracking 

(FT)

Previous 
FrameLine Buffers

Feature 
Detection 

(FD)

Undistort 
& Rectify 

(UR)

Undistort 
& Rectify 

(UR)

Data & Control Bus

Sparse Stereo (SS)

Vision Frontend Control

RANSAC Fixed Point 
Arithmetic Point Cloud Pre-IntegrationFloating Point 

Arithmetic

IMU 
memory

Current 
Frame

Left 
Frame

Right 
Frame

Vision Frontend (VFE)

IMU Frontend (IFE)

Backend (BE)

Register 
File

Apply Low 
Cost 

Frame
Compression

Use compression and exploit sparsity to 
reduce memory down to 854kB

Exploit 
Sparsity in 
Graph and 

Linear Solver

Navion: Fully integrated system – no off-chip processing or storage 
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Frame Buffer Memory

8-bit/pixel	

5-bit	pixels	

Line	Buffer	
(1.4	kB)	

4x4	pixels	
example	

+
Min.	

Max.	 >>1	

≥
?

16	bits	

Original	Image	
(352.5	kB)	

Compressed	Image	
(79.4	kB)	

Frame	
Memory	
(78	kB)	

5	bits	

5	bits	
Thresh	

Thresh	

Min.	

1.625-bit/pixel	

Compress	

Decompress	

5	
bi
ts
	

5	
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ts
	

16
	b
its
	

Find	
Min.	&	Max.	

11	

4	

7	

0000010001111000	

7	(00111)	
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4.4x	reducHon	

00111	

00100	
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4	 4	 4	 4	
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4	 7	 7	 7	
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[Suleiman et al., VLSI 2018]

dense



Linear Solver and Hessian Memory

Non-zero	
Hessian	
(134	kB)	

Sparse-
based	
Control	

Row	

Column	

Physical	
Address	

Zero	

Non-zero	entry	Output	

Read/
Write	

Masked	
Read/Write	

Input	

Sparsity	paJern	in	both	H	&	L	
(Non-zero:	black)	

Cholesky	

Back-
subsMtute	

H	

Linear	
Solver	
Matrix	

L	
L	

Δx	

Linear	Solver:	HΔx=ε,	solve	for	Δx	
	

ε	

H	&	ε	

M
em

or
y	
si
ze
	

2x	
5.2x	

703	kB	 353	kB	 134	kB	

Full	 Sym	 Sym	+	
Sparse	

Pr
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ng
	M
m
e	

Full	 Sparse	

7.2x	

Back-
subsMtuMon	

Cholesky	

Memory	wrapper	Linearize	

48.2	ms	 6.7	ms	

H=LLT	
Calculate	L	

Lu=ε	
Solve	for	u	
LTΔx=u	
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sparse and structured



Factor Graph Memory56

[Suleiman et al., VLSI 2018]

sparse and unstructured

One Memory
(962 kB)

Two-stage Memory
(177 kB)

5.4x



Navion Evaluation

5.0 mm

4.
0 

m
m

Over 250 configurable parameters 
to adapt to different sensors and 

environments

• Peak Performance 
@ Maximum Configuration
– VFE: 28 – 171 fps (71 fps average)

– BE: 16 – 90 fps (19 fps average)
– Average Power Consumption: 24mW

– Trajectory Error: 0.28%

• Real-Time Performance 
@ Optimized Configuration
– VF: 20 fps
– BE: 5 fps

– Average Power Consumption: 2mW

– Trajectory Error: 0.27%

65nm CMOS Test Chip

Evaluated on EuRoC datasethttp://navion.mit.edu
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Navion System Demo

https://youtu.be/X5VZkPo_704
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Where to Go Next: Planning and Mapping

Select candidate 
scan locations

Compute Shannon MI and 
choose best location

Move to 
location 

and scan

Update 
Occupancy 

Map

Where to scan?

Occupancy map Mutual information map

Mutual Information Updated Map

Robot Exploration: Decide where to go by computing Shannon Mutual Information

Exploration with a mini 
race car using motion 
capture for localization

Occupancy map with 
planned path

MI surface
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Challenge is Data Delivery to All Cores
Process multiple beams in parallel

Core 1

Core 2

Core 3

Core N

Core N

Core 2

Core 1

Core N

Core 2

Core 1

Data delivery from memory is limited

Read Port 1

Read Port 2
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Specialized Memory Architecture
Break up map into separate memory banks and novel storage pattern to 

minimize read conflicts when processing different beams in parallel.

Compute the mutual information for an entire map of 20m x 20m at 0.1m resolution 
in under a second à a 100x speed up versus CPU for 1/10th of the power.

[Joint work with Sertac Karaman (AeroAstro)]

X
Y

X

Y

Memory Access Pattern

8 8 8

7 7 7

6 6 6

5 5 5

4 4 4 8

3 3 3 5 6 7

2 2 3 4

1 2 3 4 5 6 7 8

Diagonal Banking Pattern

X

Y

Bank 0

Bank 1

Bank 4

Bank 3

Bank 5

Bank 7

Bank 2

Bank 6

8 8 8

7 7 7

6 6 6

5 5 5

4 4 4 8

3 3 3 5 6 7

2 2 3 4

1 2 3 4 5 6 7 8
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• Pulsed Time of Flight: Measure distance using round trip time 

of laser light for each image pixel

– Illumination + Imager Power: 2.5 – 20 W for range from 1 - 8 m 

• Use computer vision techniques and passive images to 

estimate changes in depth without turning on laser

– CMOS Imaging Sensor Power: < 350 mW

Low Power 3D Time of Flight Imaging

Estimated Depth Maps
Real-time Performance on Embedded Processor

VGA @ 30 fps on Cortex-A7  (< 0.5W active power)

[Noraky et al., ICIP 2017]
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Results of Low Power Depth ToF Imaging

[Noraky et al., ICIP 2017]

RGB Image Depth Map
Ground Truth

Depth Map
Estimated

Mean Relative Error: 0.7%
Duty Cycle (on-time of laser): 11%
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Monitoring Neurodegenerative Disorders64

Dementia affects 50 million people worldwide today 
(75 million in 10 years) [World Alzheimer’s Report]

• Neuropsychological assessments are time 
consuming and require a trained specialist

• Repeat medical assessments are sparse, mostly 
qualitative, and suffer from high retest variability

Mini-Mental 
State Examination (MMSE)

Q1. What is the year? Season? Date?
Q2. Where are you now? State? Floor?
Q3. Could you count backward from 

100 by sevens? (93, 86, …)

Clock-drawing test

Agrell et al. 
Age and Ageing, 1998.

In collaboration with 
Thomas Heldt (IMES) 



Use Eye Movements for Quantitative Evaluation

High-speed camera

Phantom v25-11

Substantial head support

SR EYELINK 1000 PLUS

IR illumination

Reulen et al., Med. & Biol. Eng. & 
Comp, 1988.

Clinical measurements of saccade latency are done in constrained 
environments that rely on specialized, costly equipment.

Eye movements can be used to quantitatively evaluate severity, 
progression or regression of neurodegenerative diseases
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Measure Eye Movements Using Phone

[Saavedra Peña et al., EMBC 2018] [Lai et al., ICIP 2018]

Develop algorithm to measure eye 
movement using a consumer-grade 

camera rather than high-cost 
research-grade camera.

Enable low-cost in-home 
longitudinal measurements. 

Co
un

t

Eye movement 
feature

Eye movements
Smartphone

Phantom 
($100k)

iPhone 6 
(< $1k)

Reaction Time (milliseconds)
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• Data movement dominates energy consumption
– Use dataflow that maximizes data reuse for all data types

• Design considerations for co-design of algorithm and hardware
– Incorporate direct metrics into algorithm design for improved efficiency
– Diverse workloads requires a flexible dataflow and NoC to exploit data 

reuse in any dimension and increase core utilization for speed and 
scalability

• Diverse compact representations to reduce data storage  
– Adapt compression based on key properties (dense or sparse; structured 

or unstructured) to maximize compression efficiency and minimize 
overhead

• Limited memory BW affects speed of highly parallel algorithms
– Balance banking and arbitration cost to minimize energy and maximize 

core utilization

Summary of Key Insights

Today’s slides available at www.rle.mit.edu/eems For Updates
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• Energy-Efficient Hardware for Deep Neural Networks
– Project website: http://eyeriss.mit.edu

– Y.-H. Chen, T. Krishna, J. Emer, V. Sze, “Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep 
Convolutional Neural Networks,” IEEE Journal of Solid State Circuits (JSSC), ISSCC Special Issue, Vol. 52, 
No. 1, pp. 127-138, January 2017.
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• Co-Design of Algorithms and Hardware for Deep Neural Networks
– T.-J. Yang, Y.-H. Chen, V. Sze, “Designing Energy-Efficient Convolutional Neural Networks using Energy-

Aware Pruning,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 

– Energy estimation tool: http://eyeriss.mit.edu/energy.html
– T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, V. Sze, H. Adam, “NetAdapt: Platform-Aware Neural 

Network Adaptation for Mobile Applications,” European Conference on Computer Vision (ECCV), 2018.

– D. Wofk*, F. Ma*, T.-J. Yang, S. Karaman, V. Sze, “FastDepth: Fast Monocular Depth Estimation on 
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• Energy-Efficient Visual Inertial Localization  
– Project website: http://navion.mit.edu

– A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, “Navion: A Fully Integrated Energy-Efficient 
Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones,” IEEE Symposium on 
VLSI Circuits (VLSI-Circuits), June 2018. 

– Z. Zhang*, A. Suleiman*, L. Carlone, V. Sze, S. Karaman, “Visual-Inertial Odometry on Chip: An 
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State Circuits (JSSC), VLSI Symposia Special Issue, Vol. 54, No. 4, pp. 1106-1119, April 2019.

References70

http://eyeriss.mit.edu/energy.html
http://fastdepth.mit.edu/
http://navion.mit.edu/


• Fast Shannon Mutual Information for Robot Exploration
– Z. Zhang, T. Henderson, V. Sze, S. Karaman, “FSMI: Fast computation of Shannon Mutual Information for 
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Image Processing (ICIP), September 2017.

• Monitoring Neurodegenerative Disorders Using a Phone 
– H.-Y. Lai, G. Saavedra Peña, C. Sodini, T. Heldt, V. Sze, “Enabling Saccade Latency Measurements with 

Consumer-Grade Cameras,” IEEE International Conference on Image Processing (ICIP), October 2018.
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