Depth Estimation of Non-Rigid Objects for Time-of-Flight Imaging
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Motivation

« Time-of-flight (TOF) cameras are useful for many applications
« Due to system power constraints or multi-camera inference,
TOF cameras cannot always acquire depth
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Our algorithm extends our work in [1] to estimate the depth for
non-rigid objects by assuming that they are locally rigid

Rigidity Assumption

From Frame 1 to 2, the
patch undergoes rotation,
R, and translation, T
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Images are formed by perspective projection:
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Approximate R with angular velocity, «, because the time
between frames is small:
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Exploit collinearity: | X, x(X; + wxX; +T) =0

The pixel wise motion of a locally rigid patch must follow the
rigidity assumption

Non-Rigid Depth Estimation Algorithm
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Use the rigidity assumption along with RANSAC to identify
rigid regions

Constrained Motion Estimation: Estimate the pose of each

rigid region
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Solve least squares formulation that minimizes the rigidity
assumption while maintaining the consistency constraint

Obtaining Depth: Reproject each point and interpolate

COP

Simplify depth estimation for non-rigid objects by using
previous depth measurements

Algorithm Evaluation

« Sequentially estimate depth for our synthetic sequences and
those in [2]; Evaluate with percent mean relative error (MRE)

Frame
Sequence 2 3 4 Mean
syn_bend 0.27 0.25 0.24 0.26
Syn_crease 0.27 0.27 0.27 0.27

kinect_paper[2] 0.19 0.43 0.23 0.28
kinect_tshirt[2] 0.35 0.52 1.16 0.68
Mean 0.27 0.37 0.47 0.37

Fig. 1: kinect_paper

* Achieves MRE of 0.48% for [2], outperforming NRSFM
approaches surveyed in [3] (MRE of 3.71%)

« Run time on standard laptop: 0.06 seconds vs minutes for
techniques in [3]
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Fig. 2: Using RANSAC to partition points preserves the
structure in the depth map of syn_crease

Key Contribution: Estimate depth maps with a mean relative
error of 0.37% (0.48% for sequences in [2])
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