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Rigidity Assumption

Images are formed by perspective projection:

Approximate 𝑅 with angular velocity, 𝜔, because the time 
between frames is small:

Exploit  collinearity: 

Algorithm Evaluation

Sequence 2 3 4 Mean
syn_bend 0.27 0.25 0.24 0.26
syn_crease 0.27 0.27 0.27 0.27
kinect_paper [2] 0.19 0.43 0.23 0.28
kinect_tshirt [2] 0.35 0.52 1.16 0.68
Mean 0.27 0.37 0.47 0.37

• Sequentially estimate depth for our synthetic sequences and 
those in [2]; Evaluate with percent mean relative error (MRE)

Non-Rigid Depth Estimation AlgorithmMotivation
• Time-of-flight (TOF) cameras are useful for many applications
• Due to system power constraints or multi-camera inference, 

TOF cameras cannot always acquire depth

3D Point Partitioning: Group all rigid points together

Use the rigidity assumption along with RANSAC to identify 
rigid regions

Constrained Motion Estimation: Estimate the pose of each 
rigid region 

Solve least squares formulation that minimizes the rigidity 
assumption while maintaining the consistency constraint 

Obtaining Depth: Reproject each point and interpolate
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Key Contribution: Estimate depth maps with a mean relative 
error of 0.37% (0.48% for sequences in [2])
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Our algorithm extends our work in [1] to estimate the depth for 
non-rigid objects by assuming that they are locally rigid
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From Frame 1 to 2, the 
patch undergoes rotation, 
𝑅, and translation, 𝑇
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Region 2
(𝜔', 𝑇') Consistency Constraint

𝑓
COP

𝑋%

𝑋&%

𝑓
COP

𝑓
COP

Simplify depth estimation for non-rigid objects by using 
previous depth measurements
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Fig. 1: kinect_paper

• Achieves MRE of 0.48% for [2], outperforming NRSFM 
approaches surveyed in [3] (MRE of 3.71%)

• Run time on standard laptop: 0.06 seconds vs minutes for 
techniques in [3]

Without RANSAC in
3D Point Partitioning With RANSAC Ground Truth

Fig. 2: Using RANSAC to partition points preserves the 
structure in the depth map of syn_crease
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The pixel wise motion of a locally rigid patch must follow the 
rigidity assumption 
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