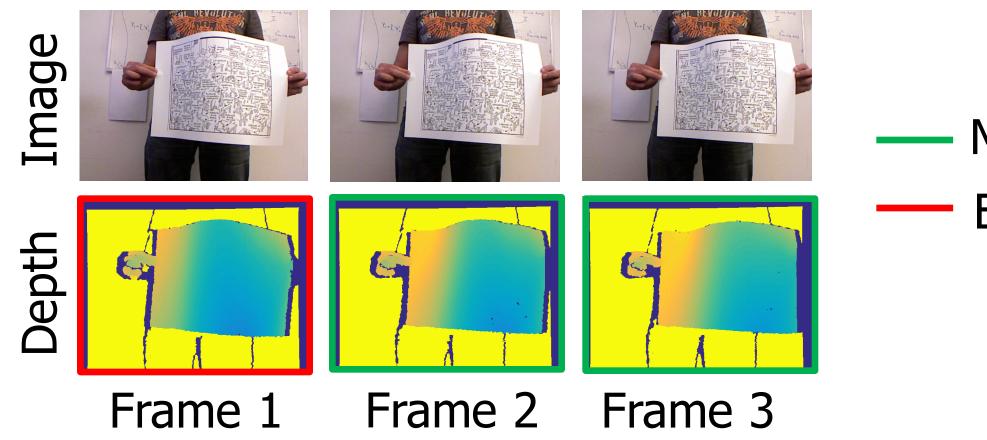
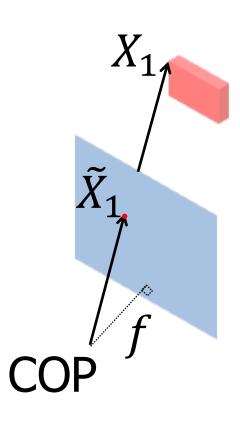
Depth Estimation of Non-Rigid Objects for Time-of-Flight Imaging James Noraky, Vivienne Sze Massachusetts Institute of Technology **Non-Rigid Depth Estimation Algorithm Algorithm Evaluation** Motivation Time-of-flight (TOF) cameras are useful for many applications Sequentially estimate depth for our synthetic sequences and Constrained Obtaining **3D Point** those in [2]; Evaluate with percent mean relative error (MRE) Motion • Due to system power constraints or multi-camera inference, Depth Partitioning **Estimation** TOF cameras cannot always acquire depth Image New 3D Positions Rigid Regions Measured Estimated **<u>3D Point Partitioning</u>**: Group all rigid points together Depth Frame 2 Frame 3 Frame 1 Fig. 1: kinect_paper

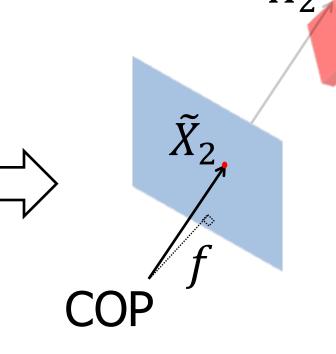


Our algorithm extends our work in [1] to estimate the depth for **non-rigid objects** by assuming that they are locally rigid

Rigidity Assumption

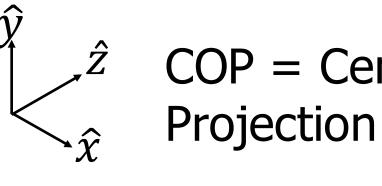


Frame 1



Frame 2

From Frame 1 to 2, the patch undergoes rotation, *R*, and translation, *T*



Images are formed by **perspective projection**:

$$\tilde{X}_1 = \frac{f}{\hat{z} \cdot X_1} X_1 \qquad \qquad \tilde{X}_2 = \frac{f}{\hat{z} \cdot X_2} X_2 = \frac{f}{\hat{z} \cdot X_2} (RX_2)$$

Approximate R with angular velocity, ω , because the time between frames is small:

$$\tilde{X}_2 = \frac{f}{\hat{z} \cdot X_2} (RX_1 + T) \approx \frac{f}{\hat{z} \cdot X_2} (X_1 + \omega \times X_1)$$

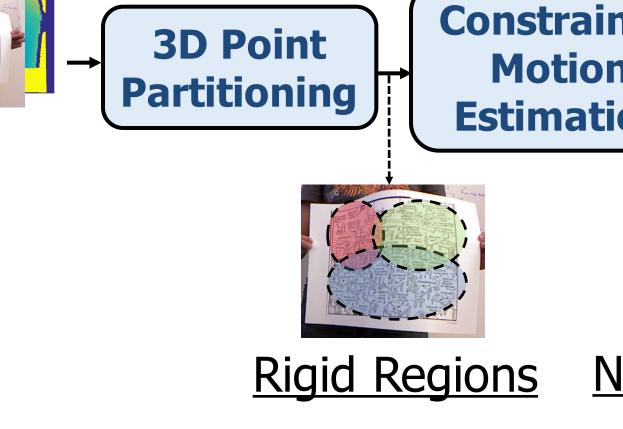
Exploit collinearity: $\tilde{X}_2 \times (X_1 + \omega \times X_1 + T) = 0$

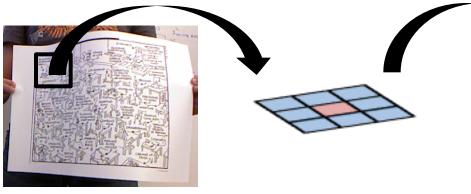
The pixel wise motion of a locally rigid patch must follow the rigidity assumption

COP = Center of

 $X_1 + T$

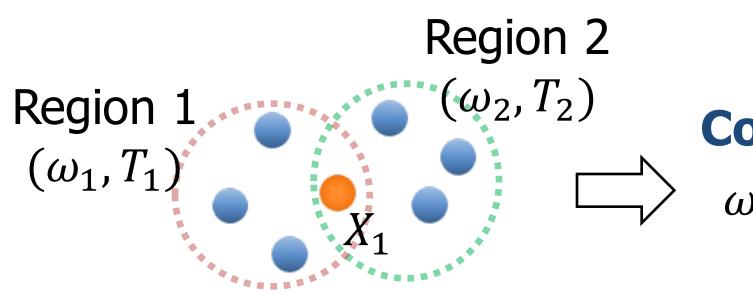
+T)





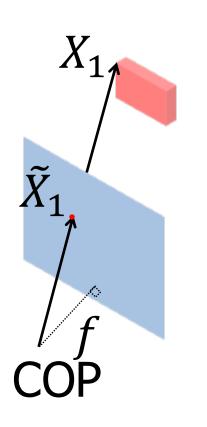
Use the **rigidity assumption** along with RANSAC to identify rigid regions

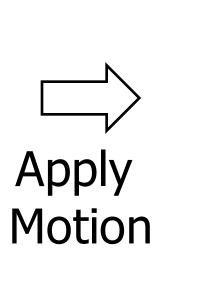
Constrained Motion Estimation: Estimate the pose of each rigid region



Solve **least squares** formulation that minimizes the rigidity assumption while maintaining the consistency constraint

Obtaining Depth: Reproject each point and interpolate

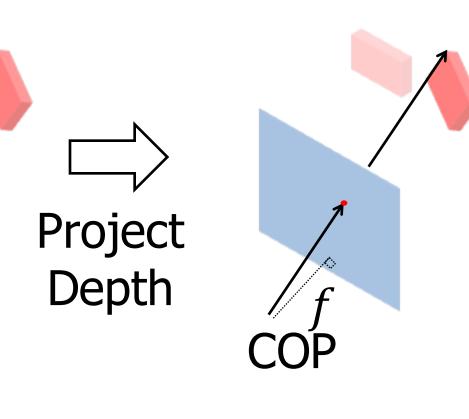




Simplify depth estimation for non-rigid objects by using previous depth measurements

Energy-Efficient Multimedia Systems Group (www.rle.mit.edu/eems)

Consistency Constraint $\omega_1 \times X_1 + T_1 = \omega_2 \times X_1 + T_2$



Without RANSAC in **3D Point Partitioning**

techniques in [3]

Fig. 2: Using RANSAC to partition points preserves the structure in the depth map of syn_crease

Key Contribution: Estimate depth maps with a mean relative error of 0.37% (0.48% for sequences in [2])

[1] James Noraky and Vivienne Sze, "Low power depth estimation for time-of-flight imaging," in 2017 IEEE International Conference on Image Processing, 2017, pp. 2114–2118. [2] Aydin Varol, Mathieu Salzmann, Pascal Fua, and Raquel Urtasun, "A constrained latent variable model," in Conference on Computer Vision and Pattern Recognition, 2012, pp. 2248–2255. [3] Suryansh Kumar, Yuchao Dai, and Hongdong Li, "Monocular Dense 3D Reconstruction of a Complex Dynamic Scene from Two Perspective Frames," in International Conference on Computer Vision, 2017, pp. 4649– 4657.

	Frame			
Sequence	2	3	4	Mean
syn_bend	0.27	0.25	0.24	0.26
syn_crease	0.27	0.27	0.27	0.27
<i>kinect_paper</i> [2]	0.19	0.43	0.23	0.28
<i>kinect_tshirt</i> [2]	0.35	0.52	1.16	0.68
Mean	0.27	0.37	0.47	0.37

Achieves MRE of 0.48% for [2], outperforming NRSFM approaches surveyed in [3] (MRE of 3.71%) Run time on standard laptop: **0.06 seconds** vs minutes for

References

We thank Analog Devices for funding this work

