

I. Motivation

- Current diagnoses of neurodegenerative diseases (e.g. Alzheimer's Disease) rely on subjective questionnaires and expensive brain imaging.
- Eye movement patterns are correlated with disease progression [1].
- They were measured using high-cost specialized equipment (high-speed highquality camera, head rest, IR light).

Can we make these clinical measurements more accessible?

We developed a pipeline to measure saccade latencies from smartphone cameras as an unobtrusive and quantitative method to track disease progression.

II. Visual Stimulus and Saccade Latency

Subjects were recorded with a smartphone camera while performing a visual fixation/stimulus task displayed on a laptop.

[1] H.W. Heuer et al. Neuro 81(14), 2013.; [2] D. Li et al. IEEE CVPR- Workshops, 2005.; [3] K. Krafka et al. IEEE CVPR, 2016.; [4] G. Saavedra-Peña et al. IEEE EMBC, 2018.

ENABLING SACCADE LATENCY MEASUREMENTS WITH CONSUMER-GRADE CAMERAS Hsin-Yu Lai, Gladynel Saavedra-Peña, Charles Sodini, Thomas Heldt, Vivienne Sze

IV. Eye Tracking Algorithms

Clear boundary

Our algorithm, Starburst-phone, works under natural light by

(i) Iris contour detection that avoids the upper eyelid.

30 fps We propose iTracker-face (which removes the eye-related CNN) to aim for smoother traces that present clearer onsets.

(clear onsets) by visual inspection

Eye Tracking Algorithm	Glasses (out of 200)		Ext. Illumination (out of 40)		
	No	Yes	No	Low	Max
Starburst-phone	136	22	17	38	35
iTracker	153	100	29	37	35
iTracker-face	177	181	36	39	35

Goal: Find a robust eye tracking algorithm that can present clear saccade onsets from recordings under natural light condition.

Starburst [2] was developed for a head-mounted IR-based system.

(ii) Iris model fitting using RANSAC.

iTracker [3] is a convolutional-neural-network (CNN)-based gaze estimator trained on data from iPhones/iPads at 30fps.

We need 240fps to accurately measure saccade onsets.

Poorer image quality

240 fps

Evaluate the robustness: compare numbers of good saccades

iTracker-face is the most robust algorithm.

V. Saccade Onset Detection and Pipeline Automation

By considering every trace with an NRMSE larger than a proper threshold as bad saccades, we achieved an average truepositive rate of 0.95 and an average false-positive rate of 0.05.

VI. Pipeline Evaluation with a Research-Grade Camera

iPhone 6, cost <\$1k,

Goal: Find a saccade onset detection method and a way to automatically detect bad saccades.

Saccade onset detection can be achieved by tanh fitting.

(i) Avoid high-frequency noise caused by differentiation.

(ii) Normalized root-mean-square /\30 deg/s errors (NRMSE) can be used to reject bad saccades.

We are able to attain almost the same saccade latency statistics. **Over 11000 saccade latencies using this pipeline [4].**

Conclusion: Accurate and Robust Saccade Determination is Feasible using Consumer-Grade Cameras.