
Energy-Efficient	Edge	Compu3ng		
for	AI-driven	Applica3ons	

Contact	Info	
email:	sze@mit.edu	
website:	www.rle.mit.edu/eems	

Vivienne	Sze	
Massachuse@s	Ins3tute	of	Technology	

In	collabora*on	with	Luca	Carlone,	Yu-Hsin	Chen,	Joel	Emer,		
Sertac	Karaman,	Tushar	Krishna,	Amr	Suleiman,		

Tien-Ju	Yang,	Zhengdong	Zhang		

Processing	at	“Edge”	instead	of	the	“Cloud”	2

Privacy

Latency

Actuator
Image source: ericsson.com

Sensor

Cloud

Communication

Image source:
www.theregister.co.uk

Video	is	the	Biggest	Big	Data		

Need	energy-efficient	pixel	processing!	

Over	70%	of	today’s	Internet	traffic	is	video	
Over	300	hours	of	video	uploaded	to	YouTube	every	minute	

Over	500	million	hours	of	video	surveillance	collected	every	day	

Energy	limited	due	
to	ba1ery	capacity	

Power	limited	due	
to	heat	dissipa8on	

3

Energy-Efficient	Pixel	Processing	
Next-Genera8on	Video	Coding	(Compress	Pixels)	

Ultra-HD	

4

Energy-Efficient	Computer	Vision	&	Deep	Learning	(Understand	Pixels)	

Recogni3on	 Self-Driving	Cars	 AI	

Goal:	Make	computer	vision	as	ubiquitous	as	video	coding	

Goal:	Increase	coding	efficiency,	speed	and	energy-efficiency	

•  Area	cost	
–  Memory	Size	100-500kB	

•  Power	budget	
–  <	1W	for	smartphones		

•  Throughput	
–  Real-3me	30	fps	

•  Energy	
–  ~1nJ/pixel	

Typical	Constraints	of	Video	Coding	5

MIT	Object	
DetecRon	Chip		
[VLSI	2016]	

4mm	

4m
m
	

0

0.5

1

1.5

2
Energy	

Video	Compression	 Object	
Detec3on	

HOG

DPM

H.264/AVC

H.265/HEVC

•  Energy-Efficient	Hardware	for	Deep	Neural	Networks	(DNNs)		

	

•  Limita3ons	of	Exis3ng	Efficient	DNN	Approaches		

•  Looking	Beyond	the	DNN	Accelerator	for	Accelera3on	

•  Looking	Beyond	DNNs:	Other	forms	of	inference	at	the	edge		

Outline	6

Energy-Efficient Hardware
for Deep Neural Networks

7

Y.-H.	Chen,	T.	Krishna,	J.	Emer,	V.	Sze,		
“Eyeriss:	An	Energy-Efficient	Reconfigurable	Accelerator	for	Deep	

Convolu3onal	Neural	Networks,”	JSSC	2017.	

Deep	Convolu3onal	Neural	Networks	

Classes FC
Layers

Modern deep CNN: up to 1000 CONV layers

CONV
Layer

CONV
Layer

Low-level
Features

High-level
Features

8

Deep	Convolu3onal	Neural	Networks	

CONV
Layer

CONV
Layer

Low-level
Features

High-level
Features

Classes FC
Layers

1 – 3 layers

9

Deep	Convolu3onal	Neural	Networks	

Classes CONV
Layer

CONV
Layer

FC
Layers

Convolutions account for more
than 90% of overall computation,
dominating runtime and energy
consumption

10

High-Dimensional	CNN	Convolu3on	

R

R

H

Input Image (Feature Map)

Filter

H

11

R

Filter

R

High-Dimensional	CNN	Convolu3on	

E

E
Partial Sum (psum)

Accumulation

Input Image (Feature Map) Output Image

Element-wise
Multiplication

H

a pixel

H

12

H

High-Dimensional	CNN	Convolu3on	

R

R

C

Input Image

Output Image
C Filter

Many Input Channels (C)

E

H E

AlexNet:	3	–	192	Channels	(C)		

13

High-Dimensional	CNN	Convolu3on	

E

Output Image Many
Filters (M)

Many
Output Channels (M)

M

…

R

R
1

R

R

C

M

H

Input Image
C

C

H E

AlexNet:	96	–	384	Filters	(M)		

14

High-Dimensional	CNN	Convolu3on	

…

M

…

Many
Input Images (N) Many

Output Images (N)
…

R

R

R

R

C

C

Filters

E

E

H

C

H

H

C

E
1 1

N N

H E

15

Image	batch	size:	1	–	256	(N)	

High-Dimensional	CNN	Convolu3on	

…

M

…

Many
Input Images (N) Many

Output Images (N)
…

R

R

R

R

C

C

Filters

E

E

H

C

H

H

C

E
1 1

N N

H E

16

Hundreds	of	Millions	of		
Mul3ply	and	Accumulates	(MAC)	per	CONV	Layer	

Proper3es	We	Can	Leverage	

•  OperaRons	exhibit	high	parallelism	
	à	high	throughput	possible	

•  Memory	Access	is	the	Bocleneck	

17

ALU

Memory Read Memory Write MAC*

* multiply-and-accumulate

filter weight
image pixel
partial sum updated

partial sum

•  Example: AlexNet [NIPS 2012] has 724M MACs
 à 2896M DRAM accesses required

Worst Case: all memory R/W are DRAM accesses

200x 1x

DRAM DRAM

Proper3es	We	Can	Leverage	

•  OperaRons	exhibit	high	parallelism	
	à	high	throughput	possible	

•  Input	data	reuse	opportuniRes	(up	to	500x)	
	 	à	exploit	low-cost	memory	

Convolu3onal	
Reuse		

(pixels,	weights)	

Filter	 Image	

Image	
Reuse	
(pixels)	

	

2

1

Filters	

Image	

Filter	
Reuse	

(weights)	
	

Filter	

Image	

2

1

18

Advantages	of	Spa3al	Architecture	19

Spatial Architecture
(Dataflow Processing)

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

Efficient	Data	Reuse	
Distributed	local	storage	(RF)	

Inter-PE	Communica3on	
Sharing	among	regions	of	PEs	

Processing	
Element	(PE)	

Control

Reg File 0.5 – 1.0 kB

How	to	Map	the	Dataflow?	20

Maximize	data	reuse	at	lower	levels	of	hierarchy	

DRAM Global
Buffer

PE

PE PE

ALU fetch data to run
a MAC here

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×

6×

PE ALU 2×

1×
1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

NoC: 200 – 1000 PEs

* measured from a commercial 65nm process

Weight	Sta3onary	(WS)	

•  Minimize weight read energy consumption
−  maximize convolutional and filter reuse of weights

•  Examples:
 [Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014]

[Park, ISSCC 2015] [Origami, GLSVLSI 2015]

Global Buffer

W0 W1 W2 W3 W4 W5 W6 W7

Psum Pixel

PE
Weight

21

•  Minimize partial sum R/W energy consumption
−  maximize local accumulation

•  Examples:

Output	Sta3onary	(OS)	

[Gupta, ICML 2015] [ShiDianNao, ISCA 2015]
[Peemen, ICCD 2013]

Global Buffer

P0 P1 P2 P3 P4 P5 P6 P7

Pixel Weight

PE
Psum

22

•  Use a large global buffer as shared storage
−  Reduce DRAM access energy consumption

•  Examples:

No	Local	Reuse	(NLR)	

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014]
[Zhang, FPGA 2015]

PE
 Pixel

Psum

Global Buffer
Weight

23

Row	Sta3onary	Dataflow	24

•  Maximize row
convolutional reuse in RF
−  Keep a filter row and fmap

sliding window in RF

•  Maximize row psum
accumulation in RF

PE 1

Row 1 Row 1

Row 1

= *

Row	Sta3onary	Dataflow	

PE 1

Row 1 Row 1

PE 2

Row 2 Row 2

PE 3

Row 3 Row 3

Row 1

= *

PE 4

Row 1 Row 2

PE 5

Row 2 Row 3

PE 6

Row 3 Row 4

Row 2

= *

PE 7

Row 1 Row 3

PE 8

Row 2 Row 4

PE 9

Row 3 Row 5

Row 3

= *

* * *

* * *

* * *

25

OpRmize	for	overall	energy	efficiency	instead	
for	only	a	certain	data	type	

• Weight	Sta3onary	
–  Minimize	movement	of	filter	weights	

• Output	Sta3onary	
–  Minimize	movement	of	parRal	sums	

• No	Local	Reuse	
–  Don’t	use	any	local	PE	storage.	Maximize	global	buffer	size.	

• Row	Sta3onary	
	

Evaluate	Reuse	in	Different	Dataflows	26

Evalua3on	Setup	
•  Same	Total	Area	
•  AlexNet	
•  256	PEs	
•  Batch	size	=	16	

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×
6×

PE ALU 2×
1×
1× (Reference)

DRAM ALU

Dataflow	Comparison:	CONV	Layers	

RS uses 1.4× – 2.5× lower energy than other dataflows

Normalized
Energy/MAC

ALU

RF

NoC

buffer

DRAM

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS

CNN Dataflows

27

[Chen, ISCA 2016]

Dataflow	Comparison:	CONV	Layers	

0

0.5

1

1.5

2

Normalized
Energy/MAC

WS OSA OSB OSC NLR RS

psums

weights

pixels

RS optimizes for the best overall energy efficiency

CNN Dataflows

28

[Chen, ISCA 2016]

Eyeriss:	Energy-Efficient	Deep	Learning	29

On
-ch

ip
Bu

ffe
r Spatial

PE Array

4mm	

4m
m
	

MIT	Deep	Learning	Chip		
[ISSCC	2016,	ISCA	2016]	

AlexNet:	For	2.66	GMACs	[8	billion	16-bit	inputs	(16GB)	and	2.7	billion	
outputs	(5.4GB)],	only	requires	a	total	of	208.5MB	reads/writes	from	on-
chip	108kB	global	buffer	and	15.4MB	reads/writes	from	off-chip	DRAM	

Features:	Energy	vs.	Accuracy		30

0.1

1

10

100

1000

10000

0 20 40 60 80

Accuracy	(Average	Precision)	

Energy/	
Pixel	(nJ)	

VGG162	

AlexNet2	

HOG1	

Measured	in	65nm*	
1.   [Suleiman,	VLSI	2016]	
2.   [Chen,	ISSCC	2016]		
	
*	Only	feature	extrac8on.	Does	
not	include	data,	augmenta8on,	
ensemble	and	classifica8on	
energy,	etc.	

Measured	in	on	VOC	2007	Dataset	
1.   DPM	v5	[Girshick,	2012]	
2.   Fast	R-CNN	[Girshick,	CVPR	2015]		

Exponen8al	

Linear	

Video		
Compression	

[Suleiman et al., ISCAS 2017]

Limitations of Existing
Efficient DNN Approaches

31

Y.-H.	Chen*,	T.-J.	Yang*,	J.	Emer,	V.	Sze,		
“Understanding	the	Limita3ons	of	Exis3ng	Energy-Efficient	Design	

Approaches	for	Deep	Neural	Networks,”	SysML	2018.	

Energy-Efficient	Processing	of	DNNs	32

V.	Sze,	Y.-H.	Chen,		
T-J.	Yang,	J.	Emer,		

“Efficient	Processing	of	
Deep	Neural	Networks:		
A	Tutorial	and	Survey,”	
Proceedings	of	the	IEEE,	

Dec.	2017	

A	significant	amount	of	algorithm	and	hardware	research		
on	energy-efficient	processing	of	DNNs	

We	idenRfied	various	limitaRons	to	exisRng	approaches	

http://eyeriss.mit.edu/tutorial.html

•  Popular	efficient	DNN	algorithm	approaches		

	

	

	

Design	of	Efficient	DNN	Algorithms	33

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Network	Pruning	

C	
1	

1	
S	

R	

1	

R	

S	
C	

Compact	Network	Architectures	

Examples:	SqueezeNet,	MobileNet	

...	also	reduced	precision	

•  Focus	on	reducing	number	of	MACs	and	weights	
•  Does	it	translate	to	energy	savings?	

Data	Movement	is	Expensive	34

Energy	of	weight	depends	on	memory	hierarchy	and	dataflow	

DRAM Global
Buffer

PE

PE PE

ALU fetch data to run
a MAC here

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×

6×

PE ALU 2×

1×
1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

NoC: 200 – 1000 PEs

* measured from a commercial 65nm process

Energy-Evalua3on	Methodology	35

CNN Shape Configuration
(# of channels, # of filters, etc.)

CNN Weights and Input Data

[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …]

CNN Energy Consumption
L1 L2 L3

Energy

…

Memory
Accesses

Optimization

of MACs
Calculation

…

acc. at mem. level 1
acc. at mem. level 2

acc. at mem. level n

of MACs

Hardware Energy Costs of each
MAC and Memory Access

Ecomp

Edata

[Yang et al., CVPR 2017]

Energy	Es3ma3on	Tool	
Website: https://energyestimation.mit.edu/

Input DNN Configuration File

Output DNN energy breakdown across layers

[Yang et al., CVPR 2017]

36

•  Number	of	weights	alone	is	not	a	good	metric	for	energy	

•  All	data	types	should	be	considered		
	

Key	Observa3ons	37

Output	Feature	Map	
43%	

Input	Feature	Map	
25%	

Weights	
22%	

Computa3on	
10%	

Energy	Consump3on	
of	GoogLeNet	

[Yang et al., CVPR 2017]

[Yang et al., CVPR 2017]

38

Directly	target	energy	and	
incorporate	it	into	the	
op3miza3on	of	DNNs	to	

provide	greater	energy	savings	

Energy-Aware	Pruning	

•  Sort	layers	based	on	energy	and	
prune	layers	that	consume	most	
energy	first	

•  EAP	reduces	AlexNet	energy	by	
3.7x	and	outperforms	the	
previous	work	that	uses	
magnitude-based	pruning	by	1.7x	

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Ori. DC EAP

Normalized Energy (AlexNet)

2.1x
3.7x

x109

Magnitude

Based Pruning

Energy Aware

Pruning

Pruned models available at
http://eyeriss.mit.edu/energy.html

NetAdapt:	Plaqorm-Aware	DNN	Adapta3on	39

•  Automa3cally	adapt	DNN	to	a	mobile	plaporm	to	reach	a	
target	latency	or	energy	budget	

•  Use	empirical	measurements	to	guide	opRmizaRon	(avoid	
modeling	of	tool	chain	or	plaporm	architecture)		

[Yang et al., ECCV 2018]

In collaboration with Google’s Mobile Vision Team

NetAdapt Measure

…

Network	Proposals	

Empirical	Measurements	
Metric Proposal A … Proposal Z

Latency 15.6 … 14.3

Energy 41 … 46

…

…

…

Pretrained	
Network	 Metric Budget

Latency 3.8

Energy 10.5

Budget	

Adapted	
Network	

…

…

Plaporm	

A	 B	 C	 D	 Z	

•  NetAdapt	boosts	the	real	inference	speed	of	MobileNet	
by	up	to	1.7x	with	higher	accuracy	

Improved	Latency	vs.	Accuracy	Tradeoff	40

+0.3% accuracy
1.7x faster

+0.3% accuracy
1.6x faster

Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018

*Tested on the ImageNet dataset and a Google Pixel 1 CPU

[Yang et al., ECCV 2018]

Many	Efficient	DNN	Design	Approaches	41

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Network	Pruning	

C
1

1
S

R

1

R

S
C

Compact	Network	Architectures	

1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0

0 1 1 0 0 1 1 0

Reduce	Precision	

32-bit float

8-bit fixed

Binary 0

No	guarantee	that	DNN	algorithm	
designer	will	use	a	given	approach.	

Need	flexible	hardware!	

[Chen et al., SysML 2018]

Roofline	Model	42

[Williams et al., Comm ACM 2009]

A tool that visualizes the performance of an architecture
under various degrees of operational intensity

Performance
(ops/sec)

Operational Intensity
(ops/byte)

Inflection point
slope = BW

peak
perf.

BW-
Limited

Computation-
Limited

optimal
op. int.

DNN Processor

Global
Buffer

PE
Array

DRAM

BW

Eyexam:	Inefficiencies	in	DNN	Accelerators	43

A	systemaRc	way	to	evaluate	how	each	architectural	decision	
affects	performance	(throughput)	for	a	given	DNN	workload	

[Chen et al., arXiv, 2018]

Tightens the roofline model
(MAC/cycle)

(MAC/data)

Step 1: maximum workload parallelism

Step 5: # of act. PEs under fixed storage capacity

Step 2: maximum dataflow parallelism
peak
perf. Number of PEs (Theoretical Peak Performance)

Step 3: # of act. PEs under a finite PE array size
Step 4: # of act. PEs under fixed PE array dimen.

Step 7: lower act. PE util. due to insuff. inst. BW
Step 6: lower act. PE util. due to insuff. avg. BW

Slope = BW to only act. PE

•  Specialized	DNN	hardware	osen	rely	on	certain	properRes	of	
DNN	in	order	to	achieve	high	energy-efficiency	

•  Example:	Reduce	memory	access	by	amorRzing	across	MAC	array	
	

Exis3ng	DNN	Architectures	44

MAC array Weight
Memory

Activation
Memory

Weight
reuse

Activation
reuse

•  Example:	Reuse	and	array	uRlizaRon	depends	on	#	of	channels,	
feature	map/batch	size		
–  Not	efficient	across	all	network	architectures	(e.g.,	compact	DNNs)	

Limita3on	of	Exis3ng	DNN	Architectures	45

MAC array
(spatial

accumulation)

Number of filters
(output channels)

Number of
 input channels

MAC array
(temporal

accumulation)

Number of filters
(output channels)

feature map
or batch size

•  Example:	Reuse	and	array	uRlizaRon	depends	on	#	of	channels,	
feature	map/batch	size		
–  Not	efficient	across	all	network	architectures	(e.g.,	compact	DNNs)	

Limita3on	of	Exis3ng	DNN	Architectures	46

MAC array
(spatial

accumulation)

Number of filters
(output channels)

Number of
 input channels

MAC array
(temporal

accumulation)

Number of filters
(output channels)

feature map
or batch size

C
1

1

S

R

1

Example	mapping	for		
depth	wise	layer	

•  Example:	Reuse	and	array	uRlizaRon	depends	on	#	of	channels,	
feature	map/batch	size		
–  Not	efficient	across	all	network	architectures	(e.g.,	compact	DNNs)	
–  Less	efficient	as	array	scales	up	in	size	
–  Can	be	challenging	to	exploit	sparsity	

Limita3on	of	Exis3ng	DNN	Architectures	47

MAC array
(spatial

accumulation)

Number of filters
(output channels)

Number of
 input channels

MAC array
(temporal

accumulation)

Number of filters
(output channels)

feature map
or batch size

Active PE
Idle PE

F1

S1

F1

S1
×
G1

Row Stationary Row Stationary Plus

Output fmap width* Output fmap width*

Filter width*
Filter width*

channel groups*

Eyeriss	v2:	Balancing	Flexibility	and	Efficiency	48

*tiling parameters

•  Flexible	dataflow,	called	Row-StaRonary	Plus	(RS+),	that	
enables	the	spaRal	mapping	of	data	from	all	dimensions	for	
high	PE	array	uRlizaRon	and	data	reuse	for	various	layer	
shapes	and	sizes	

Eyeriss	v2:	Balancing	Flexibility	and	Efficiency	49

•  Flexible	dataflow,	called	Row-StaRonary	Plus	(RS+),	that	
enables	the	spaRal	mapping	of	data	from	all	dimensions	for	
high	PE	array	uRlizaRon	and	data	reuse	for	various	layer	
shapes	and	sizes	

•  Flexible	NoC	to	support	RS+	that	can	operate	in	different	
modes	for	different	requirements	
–  URlizes	mulRcast	to	exploit	spaRal	data	reuse	
–  URlizes	unicast	for	high	BW	for	weights	for	FC	and	weights	&	
acRvaRons	for	compact	network	architectures	

•  Processes	data	in	both	compressed	and	raw	format	to	
minimize	data	movement	for	both	CONV	and	FC	layers	
–  Exploit	sparsity	in	both	weights	and	acRvaRons	

Eyeriss	v2:	Balancing	Flexibility	and	Efficiency	50

[Chen et al., arXiv 2018]

Over an order of magnitude faster and more
energy efficient than Eyeriss v1

https://arxiv.org/abs/1807.07928

MobileNet	

Efficiently	supports	

•  Wide	range	of	filter	shapes		
–  Large	and	Compact	

•  Different	Layers		
–  CONV,	FC,	depth	wise,	etc.	

•  Wide	range	of	sparsity		
–  Dense	and	Sparse	

•  Scalable	architecture	

Benchmarking Metrics
for DNN Hardware

51

How can we compare designs?

V.	Sze,	Y.-H.	Chen,	T-J.	Yang,	J.	Emer,		
“Efficient	Processing	of	Deep	Neural	Networks:		A	Tutorial	and	Survey,”		

Proceedings	of	the	IEEE,	Dec.	2017	

•  Accuracy	
–  Quality	of	result	for	a	given	task	

•  Throughput	
–  AnalyRcs	on	high	volume	data	
–  Real-Rme	performance	(e.g.,	video	at	30	fps)	

•  Latency	
–  For	interacRve	applicaRons	(e.g.,	autonomous	navigaRon)	

•  Energy	and	Power	
–  Edge	and	embedded	devices	have	limited	bacery	capacity	
–  Data	centers	have	stringent	power	ceilings	due	to	cooling	costs	

•  Hardware	Cost		
–  $$$	

Metrics	for	DNN	Hardware	52

•  Accuracy	
–  Difficulty	of	dataset	and/or	task	should	be	considered	

•  Throughput	
–  Number	of	cores	(include	uRlizaRon	along	with	peak	performance)	
–  RunRme	for	running	specific	DNN	models	

•  Latency	
–  Include	batch	size	used	in	evaluaRon	

•  Energy	and	Power	
–  Power	consumpRon	for	running	specific	DNN	models	
–  Include	external	memory	access	

•  Hardware	Cost		
–  On-chip	storage,	number	of	cores,	chip	area	+	process	technology	

Specifica3ons	to	Evaluate	Metrics	53

Example:	Metrics	of	Eyeriss	Chip	54

Metric Units Input
Name of CNN Model Text AlexNet
Top-5 error classification
on ImageNet

19.8

Supported Layers All CONV
Bits per weight # 16
Bits per input activation # 16
Batch Size # 4
Runtime ms 115.3
Power mW 278
Off-chip Access per
Image Inference

MBytes 3.85

Number of Images
Tested

100

ASIC Specs Input
Process Technology 65nm LP

TSMC (1.0V)
Total Core Area
(mm2)

12.25

Total On-Chip
Memory (kB)

192

Number of Multipliers 168

Clock Frequency
(MHz)

200

Core area (mm2) /
multiplier

0.073

On-Chip memory
(kB) / multiplier

1.14

Measured or
Simulated

Measured

•  All	metrics	should	be	reported	for	fair	evaluaRon	of	design	
tradeoffs	

•  Examples	of	what	can	happen	if	certain	metric	is	omiced:	
– Without	the	accuracy	given	for	a	specific	dataset	and	task,	
one	could	run	a	simple	DNN	and	claim	low	power,	high	
throughput,	and	low	cost	–	however,	the	processor	might	
not	be	usable	for	a	meaningful	task	

– Without	repor3ng	the	off-chip	bandwidth,	one	could	build	
a	processor	with	only	mulRpliers	and	claim	low	cost,	high	
throughput,	high	accuracy,	and	low	chip	power	–	however,	
when	evaluaRng	system	power,	the	off-chip	memory	access	
would	be	substanRal	

•  Are	results	measured	or	simulated?	On	what	test	data?	

Comprehensive	Coverage	55

The	evaluaRon	process	for	whether	a	DNN	system	is	a	viable	
soluRon	for	a	given	applicaRon	might	go	as	follows:		

1.   Accuracy	determines	if	it	can	perform	the	given	task		

2.   Latency	and	throughput	determine	if	it	can	run	fast	enough	
and	in	real-Rme	

3.   Energy	and	power	consump3on	will	primarily	dictate	the	
form	factor	of	the	device	where	the	processing	can	operate		

4.   Cost,	which	is	primarily	dictated	by	the	chip	area,	determines	
how	much	one	would	pay	for	this	soluRon	

Evalua3on	Process	56

•  The	number	of	weights	and	MACs	are	not	sufficient	for	
evaluaRng	the	energy	consumpRon	and	latency	of	DNNs	
–  Designers	of	efficient	DNN	algorithms	should	directly	target	direct	
metrics	such	as	energy	and	latency	and	incorporate	into	the	design			

•  Many	of	the	exisRng	DNN	processors	rely	on	certain	
properRes	of	the	DNN	which	cannot	be	guaranteed	as	the	
wide	range	techniques	used	for	efficient	DNN	algorithm	
design	has	resulted	in	a	more	diverse	set	of	DNNs	
–  DNN	hardware	used	to	process	these	DNNs	should	be	sufficiently	
flexible	to	support	a	wide	range	of	techniques	efficiently	

•  Evaluate	DNN	hardware	on	a	comprehensive	set	of	
benchmarks	and	metrics	

Summary		57

Looking Beyond the DNN
Accelerator for Acceleration

58

Z.	Zhang,	V.	Sze,	“FAST:	A	Framework	to	Accelerate	Super-Resolu3on	
Processing	on	Compressed	Videos,”	CVPRW	2017	

Super-Resolu3on	on	Mobile	Devices	59

Use super-resolution to improve the viewing experience of
lower-resolution content (reduce communication bandwidth)

Screens are getting larger

Low		
ResoluRon	
Streaming	

Transmit low resolution for lower bandwidth

High	
ResoluRon	
Playback	

Complexity	of	Super	Resolu3on	Algorithms	60

SRCNN (Dong et, al. ECCV 14)

State-of-the-art super resolution algorithms use CNNs
à computationally expensive, especially at high resolutions (HD or 4K)

8032 MACs/pixel à ~500 GMAC/s for HD @ 30 fps

FAST:	A	Framework	to	Accelerate	SuperRes	61

A framework that accelerates any SR algorithm by up to
15x when running on compressed videos

FAST
SR

15x faster

Compressed video

SR algorithm

Real-time

[Zhang	et	al.,	CVPRW	2017]	

Free	Informa3on	in	Compressed	Videos	62

Compressed video
Pixels

Video as a stack of pixels

Block-structure Motion-compensation

Representation in compressed video

This representation can help accelerate super-resolution

Decode

High-res video

Transfer	is	Lightweight	63

Low-res video
High-res video

SR

Low-res video

Transfer

Fractional
Interpolation

Bicubic
Interpolation

Skip Flag

The complexity of the transfer is comparable to bicubic interpolation.
Transfer N frames, accelerate by N

Transfer allows SR to run on only a subset of frames

SR
SR SR SR

SR

Evalua3on:	Accelera3ng	SRCNN	64

Visual	Evalua3on	65

SRCNN FAST +
SRCNN

Bicubic

Code released at www.rle.mit.edu/eems/fast

[Zhang	et	al.,	CVPRW	2017]	

Look	beyond	the	DNN	accelerator	for	opportuniRes	to	accelerate	
DNN	processing	(e.g.,	structure	of	data	and	temporal	correlaRon)	

Beyond Deep Neural
Networks

66

A.	Suleiman,	Z.	Zhang,	L.	Carlone,	S.	Karaman,	V.	Sze,	“Navion:	A	Fully	Integrated	
Energy-Efficient	Visual-Iner3al	Odometry	Accelerator	

for	Autonomous	Naviga3on	of	Nano	Drones,”	Symposium	on	VLSI	2018	

Energy-Efficient	Autonomous	Naviga3on	67

Navion	Chip		
LocalizaRon	and	Mapping	at	2mW	

(full	integraRon	on-chip)	

[Zhang et al., RSS 2017],
[Suleiman et al., VLSI 2018]

http://navion.mit.edu

In collaboration with Sertac Karaman (AeroAstro)

Enable	energy-efficient	navigaRon	
for	Search	and	Rescue	

Localiza3on	and	Mapping	Using	VIO*	68

Visual-Inertial
Odometry

(VIO)

Localization

Mapping

Image sequence

IMU
Inertial Measurement Unit

…

*Subset of SLAM algorithm
(Simultaneous Localization And Mapping) Slide 28

VIO	determines	locaRon/orientaRon	of	drone	from	images	and	IMU	
(also	used	by	headset	in	Augmented	Reality	and	Virtual	Reality)	

Frontend:	Processing	Sensors	Data	69

Camera	

IMU

Vision	
Frontend	
(VFE)	

IMU	Frontend	
(IFE)	

[Zhang	et	al.,	RSS	2017]	

Frontend:	Processing	Sensors	Data	70

Camera	

IMU

Vision	
Frontend	
(VFE)	

IMU	Frontend	
(IFE)	

Feature	
Tracks	

[Zhang	et	al.,	RSS	2017]	

Frontend:	Processing	Sensors	Data	71

Camera	

IMU

Vision	
Frontend	
(VFE)	

IMU	Frontend	
(IFE)	

Gyro.	&	Acc.	
Measurements	

PreintegraRon	 PreintegraRon	

…

KF1	 KF2	 KF3	

ΔR12,	ΔT12	 ΔR23,	ΔT23	

Feature	
Tracks	

EsRmated	State	
(Pose	&	LocaRon)	

[Zhang	et	al.,	RSS	2017]	

Backend:	Reduce	Inconsistency	72

Camera	

IMU

Vision	
Frontend	
(VFE)	

IMU	Frontend	
(IFE)	

Backend	
(BE)	

Feature	
Tracks	

EsRmated	State	
(Pose	&	LocaRon)	

[Zhang	et	al.,	RSS	2017]	

Update states (xi) to minimize inconsistencies

between measurements across time

x’1

x’2

x’3

L
k

t=1

t=2
t=3

Backend:	Factor	Graph	to	Infer	State	of	Drone	73

Camera	

IMU

Vision	
Frontend	
(VFE)	

IMU	Frontend	
(IFE)	

Backend	
(BE)	

Feature	
Tracks	

EsRmated	State	
(Pose	&	LocaRon)	

IMU	Factors	 Vision	Factors	 Other	Factors	

[Zhang	et	al.,	RSS	2017]	

Factor	Graph	

Non-linear	least	squares	factor	graph	op*miza*on	

4000+	
factors	

Backend:	Factor	Graph	to	Infer	State	of	Drone	74

Camera	

IMU

Vision	
Frontend	
(VFE)	

IMU	Frontend	
(IFE)	

Backend	
(BE)	

Feature	
Tracks	

EsRmated	State	
(Pose	&	LocaRon)	

[Zhang	et	al.,	RSS	2017]	

Factor	Graph	

4000+	
factors	

Updated	States	(xi)	
&	

Sparse	3D	Map	

IMU	Factors	 Vision	Factors	 Other	Factors	

Non-linear	least	squares	factor	graph	op*miza*on	

Navion	Chip	Architecture	75

Backend Control

Data & Control Bus
Build
Graph

Linear
Solver

Linearize

Marginal

Retract

Graph
Linear
Solver

Horizon
States
Shared

Memory

Floating
Point

Arithmetic

Matrix
Operations

Cholesky

Back
Substitute

Rodrigues
Operations

Feature
Tracking

(FT)

Previous
FrameLine Buffers

Feature
Detection

(FD)

Undistort
& Rectify

(UR)

Undistort
& Rectify

(UR)

Data & Control Bus

Sparse Stereo (SS)

Vision Frontend Control

RANSAC Fixed Point
Arithmetic Point Cloud Pre-IntegrationFloating Point

Arithmetic
IMU

memory

Current
Frame

Left
Frame

Right
Frame

Vision Frontend (VFE)

IMU Frontend (IFE)

Backend (BE)

Register
File

Navion	is	a	fully	integrated	system:			
No	off-chip	storage	or	processing	

Reduce	Memory	76

Backend Control

Data & Control Bus
Build
Graph

Linear
Solver

Linearize

Marginal

Retract

Graph
Linear
Solver

Horizon
States
Shared

Memory

Floating
Point

Arithmetic

Matrix
Operations

Cholesky

Back
Substitute

Rodrigues
Operations

Feature
Tracking

(FT)

Previous
FrameLine Buffers

Feature
Detection

(FD)

Undistort
& Rectify

(UR)

Undistort
& Rectify

(UR)

Data & Control Bus

Sparse Stereo (SS)

Vision Frontend Control

RANSAC Fixed Point
Arithmetic Point Cloud Pre-IntegrationFloating Point

Arithmetic
IMU

memory

Current
Frame

Left
Frame

Right
Frame

Vision Frontend (VFE)

IMU Frontend (IFE)

Backend (BE)

Register
File

Linear
solver

memory
703 kB

Graph
memory
(Feature
tracks)
962 kB

Frame
buffers

1,410 kB

Use	Compression	and	Exploit	Sparsity	to	
reduce	memory	by	4.1x	

Navion	Evalua3on	77

5.0 mm

4.
0

m
m

Over	250	configurable	parameters	
to	adapt	to	different	sensors	and	

environments	

•  Peak	Performance	 	 											
@	Maximum	Configura3on	
–  VFE:	28	–	171	fps	(71	fps	average)	
–  BE:	16	–	90	fps	(19	fps	average)	
–  Average	Power	ConsumpRon:	24mW	
–  Trajectory	Error:	0.28%	
	

•  Real-Time	Performance	 												
@	Op3mized	Configura3on	
–  VF:	20	fps	
–  BE:	5	fps	
–  Average	Power	ConsumpRon:	2mW	
–  Trajectory	Error:	0.27%	

65nm CMOS Test Chip

Navion	System	Demo	78

https://youtu.be/X5VZkPo_704

•  Data	movement	dominates	energy	consump3on	in	deep	
learning	hardware	
–  Use	dataflow	that	maximizes	data	reuse	for	all	data	types	

•  Design	considera3ons	for	deep	learning	at	the	edge	
–  Incorporate	direct	metrics	into	algorithm	design	for	improved	efficiency	
–  Use	a	flexible	dataflow	and	NoC	to	exploit	data	reuse	for	energy	
efficiency	and	increase	PE	uRlizaRon	for	speed	

•  Accelerate	deep	learning	by	looking	beyond	the	accelerator	
–  Exploit	data	representaRon	for	FAST	Super-ResoluRon	

•  Other	forms	of	inference	at	the	edge	beyond	deep	learning	
–  Graphical	models	for	localizaRon	and	mapping	in	nanodrones	

Summary	79

www.rle.mit.edu/eems	

Acknowledgements	80

Research	conducted	in	the	MIT	Energy-Efficient	Mul3media	Systems	Group	would	not	
be	possible	without	the	support	of	the	following	organizaRons:		

For updates on our research

Joel Emer Tushar Krishna

Sertac Karaman Luca Carlone

References	

More	info	about	Eyeriss	and	Tutorial	on	DNN	Architectures	
hcp://eyeriss.mit.edu		

For	updates	
http://mailman.mit.edu/mailman/listinfo/eems-news

Overview	Paper	
V.	Sze,	Y.-H.	Chen,	T-J.	Yang,	J.	Emer,	“Efficient	Processing	of	
Deep	Neural	Networks:	A	Tutorial	and	Survey,”	Proceedings	of	
the	IEEE,	December	2017	

81

MIT	Professional	EducaRon	Course	on		
“Designing	Efficient	Deep	Learning	Systems”		
hcp://professional-educaRon.mit.edu/deeplearning		

•  Energy-Efficient	Hardware	for	Deep	Neural	Networks	
–  Y.-H.	Chen,	T.	Krishna,	J.	Emer,	V.	Sze,	“Eyeriss:	An	Energy-Efficient	

Reconfigurable	Accelerator	for	Deep	Convolu*onal	Neural	Networks,”	IEEE	
Interna*onal	Conference	on	Solid-State	Circuits	(ISSCC),	pp.	262-264,	February	
2016.	hap://eyeriss.mit.edu		

–  Y.-H.	Chen,	J.	Emer,	V.	Sze,	“Eyeriss:	A	Spa*al	Architecture	for	Energy-Efficient	
Dataflow	for	Convolu*onal	Neural	Networks,”	Interna*onal	Symposium	on	
Computer	Architecture	(ISCA),	pp.	367-379,	June	2016.		

–  A.	Suleiman,	Z.	Zhang,	V.	Sze,	“A	58.6mW	Real-*me	Programmable	Object	
Detec*on	with	Mul*-Scale	Mul*-Object	Support	Using	Deformable	Parts	Models	
on	1920×1080	Video	at	30fps,”	IEEE	Symposium	on	VLSI	Circuits	(VLSI-Circuits),	
pp.	184-185,	June	2016.	

–  A.	Suleiman*,	Y.-H.	Chen*,	J.	Emer,	V.	Sze,	“Towards	Closing	the	Energy	Gap	
Between	HOG	and	CNN	Features	for	Embedded	Vision,”	IEEE	Interna*onal	
Symposium	of	Circuits	and	Systems	(ISCAS),	Invited	Paper,	May	2017.		

References	82

•  Limita3ons	of	Exis3ng	Efficient	DNN	Approaches		
–  Y.-H.	Chen*,	T.-J.	Yang*,	J.	Emer,	V.	Sze,	“Understanding	the	Limita*ons	of	

Exis*ng	Energy-Efficient	Design	Approaches	for	Deep	Neural	Networks,”	SysML	
Conference,	February	2018.	

–  V.	Sze,	Y.-H.	Chen,	T.-J.	Yang,	J.	Emer,	“Efficient	Processing	of	Deep	Neural	
Networks:	A	Tutorial	and	Survey,”	Proceedings	of	the	IEEE,	vol.	105,	no.	12,	pp.	
2295-2329,	December	2017.	

–  T.-J.	Yang,	Y.-H.	Chen,	V.	Sze,	“Designing	Energy-Efficient	Convolu*onal	Neural	
Networks	using	Energy-Aware	Pruning,”	IEEE	Conference	on	Computer	Vision	
and	Paaern	Recogni*on	(CVPR),	July	2017.		

–  T.-J.	Yang,	A.	Howard,	B.	Chen,	X.	Zhang,	A.	Go,	V.	Sze,	H.	Adam,	“NetAdapt:	
Plaporm-Aware	Neural	Network	Adapta*on	for	Mobile	Applica*ons,”	ECCV	
2018.	

–  Y.-H.	Chen,	J.	Emer,	V.	Sze,	“Eyeriss	v2:	A	Flexible	and	High-Performance	
Accelerator	for	Emerging	Deep	Neural	Networks,”	arXiv	2018.	
haps://arxiv.org/abs/1807.07928		

References	83

•  Looking	Beyond	the	DNN	Accelerator	for	Accelera3on	
–  Z.	Zhang,	V.	Sze,	“FAST:	A	Framework	to	Accelerate	Super-Resolu*on	Processing	

on	Compressed	Videos,”	CVPR	Workshop	on	New	Trends	in	Image	Restora*on	
and	Enhancement,	July	2017.	www.rle.mit.edu/eems/fast		

•  Looking	Beyond	DNNs:	Other	forms	of	inference	at	the	edge		
–  A.	Suleiman,	Z.	Zhang,	L.	Carlone,	S.	Karaman,	V.	Sze,	“Navion:	A	Fully	Integrated	

Energy-Efficient	Visual-Iner*al	Odometry	Accelerator	for	Autonomous	
Naviga*on	of	Nano	Drones,”	IEEE	Symposium	on	VLSI	Circuits	(VLSI-Circuits),	
June	2018.	hap://navion.mit.edu		

–  Z.	Zhang*,	A.	Suleiman*,	L.	Carlone,	V.	Sze,	S.	Karaman,	“Visual-Iner*al	
Odometry	on	Chip:	An	Algorithm-and-Hardware	Co-design	Approach,”	Robo*cs:	
Science	and	Systems	(RSS),	July	2017.		

–  A.	Suleiman,	Z.	Zhang,	L.	Carlone,	S.	Karaman,	V.	Sze,	“Navion:	An	Energy-
Efficient	Visual-Iner*al	Odometry	Accelerator	for	Micro	Robo*cs	and	Beyond,”	
IEEE	Hot	Chips:	A	Symposium	for	High-Performance	Chips,	August	2018.	

References	84

