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Processing at “Edge” instead of the “Cloud”
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Video is the Biggest Big Data

Over 70% of today’s Internet traffic is video
Over 300 hours of video uploaded to YouTube every minute
Over 500 million hours of video surveillance collected every day
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Energy limited due Power limited due
to battery capacity to heat dissipation

Need energy-efficient pixel processing!
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Energy-Efficient Pixel Processing

( Next-Generation Video Coding (Compress Pixels) \

Ultra-HD j

Goal: Increase coding efficiency, speed and energy-efficiency

( Energy-Eﬁ‘:c:ent Computer Vision & Deep Learnmg (Understand PIXEIS)\

h@@m_uu ‘L‘;,pm__g mrenar,.m.

k Recognition Self-Driving Cars Al j

Goal: Make computer vision as ubiquitous as video coding




Typical Constraints of Video Coding

* Area cost
— Memory Size 100-500kB

* Power budget
— < 1W for smartphones

MIT Object
Detection Chip
[VLSI 2016]

* Throughput
— Real-time 30 fps

* Energy
— ~1nl/pixel

DPM

Video Compression  Object
Detection




B Outline

* Energy-Efficient Hardware for Deep Neural Networks (DNNs)

 Limitations of Existing Efficient DNN Approaches

Looking Beyond the DNN Accelerator for Acceleration

Looking Beyond DNNs: Other forms of inference at the edge

-
nnnnnnnnnnnnnnn M 000
I I I I I rl-e TTTTTTTTTTTTTTTTTT micro-sly-slt:ms technology laboratories
AT MIT

institute of




Energy-Efficient Hardware

for Deep Neural Networks

Y.-H. Chen, T. Krishna, J. Emer, V. Sze,
“Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep
Convolutional Neural Networks,” JSSC 2017.
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] Deep Convolutional Neural Networks

Modern deep CNN: up to 1000 CONYV layers

f \

BN CONV

- 1
Low-level Al

Features

High-level
Features
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Il Deep Convolutional Neural Networks

1 -3 layers

Features
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Deep Convolutional Neural Networks

CONV FC
Layer Layers

Convolutions account for more
than 90% of overall computation,
dominating runtime and energy
consumption
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High-Dimensional CNN Convolution

A I

Input Image (Feature Map)

Filter —
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High-Dimensional CNN Convolution

Filter
f
Rl
|
<~ R —
Element-wise Partial Sum (psum)
Multiplication Accumulation
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High-Dimensional CNN Convolution

Input Image

Filter A"C’{" Output Image
L /:{H = @ E
i l
<~ R— < H > < E —

Many Input Channels (C)

it  AlexNet: 3 — 192 Channels (C) ST ——




High-Dimensional CNN Convolution

Input Image

Many Output Image
Filters (M) &7 .’"%>pl—g
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Output Channels (M
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High-Dimensional CNN Convolution

Many
Input Images (N) Many
. . . Output Images (N
Filters L . P ges (N)
A M?’. .
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High-Dimensional CNN Convolution

Hundreds of Millions of
Multiply and Accumulates (MAC) per CONV Layer
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Properties We Can Leverage

* Operations exhibit high parallelism

- high throughput possible

* Memory Access is the Bottleneck

Memory Read MAC"

filter weight

image pixel ®

DRAM

partial sum

ALU

Memory Write

updated

200x 1x

partial sum

* multiply-and-accumulate

Worst Case: all memory R/W are DRAM accesses

« Example: AlexNet [NIPS 2012] has 724M MACs
- 2896M DRAM accesses required

R oseancasorarony MTLeee
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Properties We Can Leverage

e Operations exhibit high parallelism
- high throughput possible

* Input data reuse opportunities (up to 500x)
- exploit low-cost memory

Image

Filters
: Image | Image :
Filter e Filter
= I e
2
Convolutional Image Filter
Reuse Reuse Reuse

(pixels, weights) (pixels) (weights)



Advantages of Spatial Architecture

Spatial Architecture
(Dataflow Processing)

Efficient Data Reuse Memory Hierarchy

Distributed local storage (RF)

Inter-PE Communication
Sharing among regions of PEs

Processing
Element (PE)

0.5-1.0kB Reg File

Control
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How to Map the Dataflow?

PE H PE

PE M ALU fetch data to run
a MAC here

Normalized Enerqy Cost

ALU 1% (Reference)
0.5-1.0kB [g—TAL] [ 1x
NoC: 200 - 1000 PEs | PE > ALU 2%

100 - 500 kB [N} »[ALU 6x
 DRAM | »[ALU { 200x

* measured from a commercial 65nm process

Maximize data reuse at lower levels of hierarchy




Weight Stationary (WS)

Global Buffer

* Minimize weight read energy consumption
— maximize convolutional and filter reuse of weights

« Examples:

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014]
[Park, ISSCC 2015] [Origami, GLSVLSI 2015]
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Output Stationary (OS)

Global Buffer

Psum

* Minimize partial sum R/W energy consumption
— maximize local accumulation

« Examples:

[Gupta, ICML 2015] [ShiDianNao, /ISCA 2015]
[Peemen, ICCD 2013]
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No Local Reuse (NLR)

Global Buffer

« Use a large global buffer as shared storage
— Reduce DRAM access energy consumption

« Examples:

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014]
[Zhang, FPGA 2015]
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Row Stationary Dataflow

Row 1
T PE 1
Row1l] Row1 _ . Maximize row

convolutional reuse in RF

- Keep a filter row and fmap
sliding window in RF

 Maximize row psum
accumulation in RF

B
*
I

B
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Row Stationary Dataflow

Row 1 Row 2 Row 3
T PE 1 T PE 4 T PE 7
Row1y Row1 |M[Row1{ Row2 |M[Row1j; Row3
I PE 2 I PE5 1 PE 8
Row2y Row2 |HM[Row2f Row3 |M[Row2j; Row4
I PE 3 I PE 6 I PE 9
Row3y Row3 |M[Row3y Row4 |M[Row3i Row5

B * FH =

O Exf =8 s

Optimize for overall energy efficiency instead
for only a certain data type
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Evaluate Reuse in Different Dataflows

 Weight Stationary

— Minimize movement of filter weights

* Output Stationary

— Minimize movement of partial sums

* No Local Reuse

— Don’t use any local PE storage. Maximize global buffer size.

* Row Stationary

Evaluation Setup Normalized Energy Cost’
e Same Total Area LALUT P 1x (Reference)
e AlexNet EE—m 1
PE_|——>|E| 2%
" 256PEs O——@m 6x
e Batchsize=16 "DRAM | 5T 2 200%




Dataflow Comparison: CONV Layers

2

m ALU
RF
Normalized
Energy/MAC " NoC
W buffer
® DRAM

S, 0S; 0S,
CNN Dataflows

RS uses 1.4x — 2.5% lower energy than other dataflows ‘

i [Chen, ISCA 2016] ety MTLeeS ...




Dataflow Comparison: CONV Layers

Normalized
Energy/MAC I

S, 0S; 0S,
CNN Dataflows

® psums

= weights

W pixels

RS optimizes for the best overall energy efficiency

Uiy [Chen, ISCA 2016] wrmgy MILee




Eyeriss: Energy-Efficient Deep Learning

Link Clock! Core Clock DCNN Accelerator
<=)-

14x12 PE Array

2890

SR

SR
8

Filter

»ﬂj:‘,

Input Image

1 1 1

=I=I=E

Off-Chip DRAM
64 bits

MIT Deep Learning Chip
[ISSCC 2016, ISCA 2016]

AlexNet: For 2.66 GMACs [8 billion 16-bit inputs (16GB) and 2.7 billion
outputs (5.4GB)], only requires a total of 208.5MB reads/writes from on-
chip 108kB global buffer and 15.4MB reads/writes from off-chip DRAM
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Features: Energy vs. Accuracy

Exponential
10000 *VGG16?
1000
2
Energy/ 100 + AlexNet
Pixel (nJ)
. 10 :
Measured in 65nm* Video
1. [Suleiman, VLSI 2016] Compression
2. [Chen, ISSCC 2016] 1 - HOG!
Linear
* Only feature extraction. Does 0.1 : : : |
not include data, augmentation,
ensemble and classification 0 20 40 60 80

energy, etc.

Accuracy (Average Precision)

Measured in on VOC 2007 Dataset
1. DPM v5 [Girshick, 2012]
2. Fast R-CNN [Girshick, CVPR 2015]

i [Suleiman et al., ISCAS 2017] | St MTLeee . ..




Limitations of Existing

Efficient DNN Approaches

Y.-H. Chen*, T.-J. Yang*, J. Emer, V. Sze,
“Understanding the Limitations of Existing Energy-Efficient Design
Approaches for Deep Neural Networks,” SysML 2018.
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Energy-Efficient Processing of DNNs

A significant amount of algorithm and hardware research
on energy-efficient processing of DNNs

Hardware Architectures for
Deep Neural Networks

ISCA Tutorial
June 24, 2017

Website: http://eyeriss.mit.edu/tutorial.html

HEm  Massachusetts
I I Institute of nv I DIA
Technology i

http://eyeriss.mit.edu/tutorial.html

Dece

ember 2017 | Volume 105 | Number 12 o
roceedings: IEEE
ici rocessing of Deep

Efficient P; I

V. Sze, Y.-H. Chen,
T-J. Yang, J. Emer,
“Efficient Processing of
Deep Neural Networks:
A Tutorial and Survey,”
Proceedings of the IEEE,
Dec. 2017

< IEEE

We identified various limitations to existing approaches
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Design of Efficient DNN Algorithms

* Popular efficient DNN algorithm approaches

Network Pruning Compact Network Architectures

before pruning after pruning

ok > 1 —
R R
o ! % &
s L o1

<——S——>¢

Examples: SqueezeNet, MobileNet

... also reduced precision
* Focus on reducing number of MACs and weights

* Does it translate to energy savings?
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Data Movement is Expensive

PE H PE

PE

ALU fetch data to run
a MAC here

Normalized Enerqy Cost

ALU

0.5-1.0 k8 [

NoC: 200 - 1000 PEs

PE

ALU

>

ALU

100 - 500 kB [N}

>

ALU

>

ALU

1% (Reference)
1%
2%
6%

{ 200x

* measured from a commercial 65nm process

Energy of weight depends on memory hierarchy and dataflow




Energy-Evaluation Methodology

4

CNN Shape Configuration
(# of channels, # of filters, etc.)

Hardware Energy Costs of each
MAC and Memory Access

# acc. at mem. level 1

Memory # acc. at mem. level 2

Accesses

CNN Weights and Input Data

Optimization # acc. at mém. level n Ejata
# of MACs # of MACs Ecomp S
Calculation
v
Energy T
_I >
[0.3,0,-04,0.7,0,0,0.1, ...] 1213

i [Yang et al., CVPR 2017]

CNN Energy Consumption

o MTLOO®
TMIT microsystems technology laboratorie
massachusetts ins
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Energy Estimation Tool

Website: https://energyestimation.mit.edu/

Input DNN Configuration File

Deep Neural Network Energy Estimation Tool Layer_Index,Input_Feature_Map,Output_Feature_Map,Weight,Computation
1,161226686.785535,323273662,88858340.625,58290651
2,63540403.7543396,19104256.68408292,4770357.50868125,3263307.508868125

G 3,26787638.8555562,39583335.5555542,3272222.77777708,2285942.77777708
4,26018817.2746958,48841502.80819458,15927826.1926396,7847418.086763958

This Deep Neural Network Energy Estimation Tool is used for evaluating and designing energy-efficient deep neural 5,62285056.8236438,49433953.294575, 4188476.6472875,3227376.6472875

networks that are critical for embedded deep learning processing. Energy estimation was used in the development of 6,27267689.7685187,45381705.7407417,3740581.20370417, 2666586. 28370417

the energy-aware pruning method (Yang et al., CVPR 2017), which reduced the energy consumption of AlexNet and 7,26787131.0480146,48586492.3413917,16216779.2956958,8136371.17869583

GoogleNet by 3.7x and 1.6x, respectively, with less than 1% top-5 accuracy loss. This website provides a simplified
version of the energy estimation tool for shorter runtime (around 10 seconds).

nput Output DNN energy breakdown across layers
To support the variety of toclboxes, this tool takes a single network configuration file. The network configuration file is 8
a txt file, where each line denotes the configuration of a CONV/FC layer. The format of each line is: %10 . . . . .
6 I nput Feature Map |
height nChannels nZercEntries y  bottom right [ Output Feature Map
wndth nMapsOrFlIts bnwndth x top Ieft = weight
+ 4 Computation
2,27, 27 96, 44 3.5731e+05, 16 5,5,48,256,0,16,27,27,256,44,6.623e+06, 16, 1,1,2 2 2 2
LIt 1l Il | —
Layer_Index Conf_IfMap Conf_Filt Conf_OfMap Stride Paddlng
« Layer Index: the index of the layer, from 1 to the number of layers. It should be the same as the line number.

Conf IfMap, Conf Filt, Conf OfMap: the configuration of the input feature maps, the filters and the output feature
maps. The configuration of each of the three data types is in the format of "height width number_of_channels
number_of_maps_or_filts number_of_zero_entries bitwidth_in_bits".

Stride: the stride of this layer. It is in the format of "stride_y stride_x".

Pad: the amount of input padding. It is in the format of “pad_top pad_bottom pad_left pad_right".

Therefore, there will be 25 entries separated by commas in each line.

Normalized Energy Consumption

Running the Estimation Model
After creating your text file, follow these steps to upload your text file and run the estimation model:

1. Check the "l am not a robot" checkbox and complete the Google reCAPTCHA challenge. Help us prevent spam.
2. Click the "Choose File" button below to choose your text file from your computer.

3. Click the "Run Estimation Model" button below to upload your text file and run the estimation model.

Layer Index

i [Yang et al., CVPR 2017] o MIL®®S .
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Key Observations

* Number of weights alone is not a good metric for energy

* All data types should be considered

Computation
10% Input Feature Map

25%

Weights
Energy Consumption 22%

of GooglLeNet

i [Yang et al., CVPR 2017] o MILe®S .




Energy-Aware Pruning

Directly target energy and Normalized Energy (AlexNet)
incorporate it into the x10°

. .. 4.5
optimization of DNNs to 4

provide greater energy savings | ;-

3

* Sort layers based on energy and 2.5
prune layers that consume most 2

energy first 1.5

1
* EAP reduces AlexNet energy by 0.5

3.7x and outperforms the 0
previous work that uses Ori. Magnitude  Energy Aware
magnitude-based pruning by 1.7x Based Pruning  Pruning

2.1x

Pruned models available at
http://eyeriss.mit.edu/energy.html

i [Yang et al., CVPR 2017] o MILe®S .




NetAdapt: Platform-Aware DNN Adaptation

 Automatically adapt DNN to a mobile platform to reach a
target latency or energy budget

* Use empirical measurements to guide optimization (avoid
modeling of tool chain or platform architecture)

Pretrained Budget

Platform
Network

: Empirical Measurements
Metric Budget

Metric Proposal A Proposal Z 040

Latency 3.8

Latency 15.6 14.3 ﬂ

Energy 10.5 - ] :
; l Energy 41 46 1

NetAdapt

Network Proposals
B C D Z
A A

A

Measure

\ 4

> b b >
>

7y
7y
Adapted * *

Network

[Yang et al., ECCV 2018]
Mii™ /n collaboration with Google’s Mobile Vision Team s LS LR —
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Improved Latency vs. Accuracy Tradeoff

* NetAdapt boosts the real inference speed of MobileNet
by up to 1.7x with higher accuracy

59%
57% 1 Y A
55% - °
53% A o— —A ® NetAdapt (This Work)

+0.3% accurac
51% - o o) AMobileNet Family

49% - '. A ¢ MorphNet

o
o/
47% o— o
45% - ® Ai03% accuracy
43% 4 @ 1.6x faster

Top-1 Accuracy

41% 1 I I 1 I
3 S} 7 9 11 13

Latency (ms)

*Tested on the ImageNet dataset and a Google Pixel 1 CPU
Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018

i [Yang et al., ECCV 2018] sty MTLeee ..
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Many Efficient DNN Design Approaches

Network Pruning

after pruning

Reduce Precision

Compact Network Architectures

R 01001011000000d001 010000000

8-bit fixed [JFIHELHHE

Binary E

i [Chen et al., SysML 2018]

No guarantee that DNN algorithm
designer will use a given approach.
Need flexible hardware!
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Roofline Model

A tool that visualizes the performance of an architecture
under various degrees of operational intensity

Performance slope = BW
(ops/sec) P | . .
o nflection point
peak
perf.

BW-  Computation-
Limited Limited

optimal«J Operational Intensity
op. int. (ops/byte)
[Williams et al., Comm ACM 2009]
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Eyexam: Inefficiencies in DNN Accelerators

A systematic way to evaluate how each architectural decision
affects performance (throughput) for a given DNN workload

Tightens the roofline model

(MAi/CYde) Slope = BW to only act. PE
—> Step 1: maximum workload parallelism
) —> Step 2: maximum dataflow parallelism
F;Z?f B —> Number of PEs (Theoretical Peak Performance)

—> Step 3: # of act. PEs under a finite PE array size
—> Step 4: # of act. PEs under fixed PE array dimen.

/mm —> Step 5: # of act. PEs under fixed storage capacity

e - Step 6: |ower aCt. PE util. due to inSUff, an. BW

........................................... - Step 7- lower act. PE util. due to insuff. inst. BW
’ > (MAC/data)

[Chen et al., arXiv, 2018] wemgen MILeee




Existing DNN Architectures

* Specialized DNN hardware often rely on certain properties of
DNN in order to achieve high energy-efficiency

* Example: Reduce memory access by amortizing across MAC array

Activation
Memory
> Weight
reuse
MAC array
Activation
Y reuse

u -
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Limitation of Existing DNN Architectures

 Example: Reuse and array utilization depends on # of channels,
feature map/batch size

— Not efficient across all network architectures (e.g., compact DNNs)

I

Number of filters
(output channels)

|

<€

Number of

input channels

>

MAC array
(spatial

accumulation)

<€

>

I

Number of filters
(output channels)

feature map
or batch size

MAC array
(temporal
accumulation)

nnnnnnnnnnn




Limitation of Existing DNN Architectures

 Example: Reuse and array utilization depends on # of channels,
feature map/batch size

— Not efficient across all network architectures (e.g., compact DNNs)

Example mapping for

I

Number of filters
(output channels)

|

depth wise layer

Number of

input channels

<
[

MAC array
(spatial

accumulation)

<€

>

S 1

I

Number of filters
(output channels)

vvvvv

.

feature map
or batch size

MAC array
(temporal
accumulation)
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Limitation of Existing DNN Architectures

 Example: Reuse and array utilization depends on # of channels,
feature map/batch size

— Not efficient across all network architectures (e.g., compact DNNs)

— Less efficient as array scales up in size

— Can be challenging to exploit sparsity

I

Number of filters
(output channels)

|

Number of

input channels

<
[

MAC array
(spatial

accumulation)

<€

>

I

Number of filters
(output channels)

vvvvv

feature map
or batch size

= =

|
MAC array
(temporal

accumulation)

...........




Eyeriss v2: Balancing Flexibility and Efficiency

* Flexible dataflow, called Row-Stationary Plus (RS+), that
enables the spatial mapping of data from all dimensions for

high PE array utilization and data reuse for various layer
shapes and sizes

Output fmap width*

S
7

&
€

Output fmap width*

Filter width*
Filter width*

X
# channel groups

Active PE <+
Idle PE &+

*

Row Stationary Row Stationary Plus

eeir:
tiling parameters
mErchdterey MTLeee

institute of
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Eyeriss v2: Balancing Flexibility and Efficiency

* Flexible dataflow, called Row-Stationary Plus (RS+), that

enables the spatial mapping of data from all dimensions for
high PE array utilization and data reuse for various layer
shapes and sizes

Flexible NoC to support RS+ that can operate in different
modes for different requirements
— Utilizes multicast to exploit spatial data reuse

— Utilizes unicast for high BW for weights for FC and weights &
activations for compact network architectures

Processes data in both compressed and raw format to
minimize data movement for both CONV and FC layers

— Exploit sparsity in both weights and activations

RESEARCH LABORATORY I
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Eyeriss v2: Balancing Flexibility and Efficiency

EfﬁCiently SUppOrtS = Eyeriss v1 = Eyeriss v2
MobileNet

44.9

* Wide range of filter shapes

— Large and Compact

* Different Layers
— CONV, FC, depth wise, etc.

Speedup (times)

* Wide range of sparsity

— Dense and Sparse

* Scalable architecture [Chen et al., arXiv 2018]
https://arxiv.org/abs/1807.07928

Over an order of magnitude faster and more
energy efficient than Eyeriss v1

nnnnnnnnnnn
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Benchmarking Metrics

for DNN Hardware

How can we compare designs?

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer,

“Efficient Processing of Deep Neural Networks: A Tutorial and Survey,”

Proceedings of the IEEE, Dec. 2017
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Metrics for DNN Hardware

* Accuracy
— Quality of result for a given task

* Throughput
— Analytics on high volume data
— Real-time performance (e.g., video at 30 fps)

* Latency

— For interactive applications (e.g., autonomous navigation)

* Energy and Power
— Edge and embedded devices have limited battery capacity

— Data centers have stringent power ceilings due to cooling costs

Hardware Cost
— SSS

-
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Specifications to Evaluate Metrics

* Accuracy
— Difficulty of dataset and/or task should be considered

* Throughput
— Number of cores (include utilization along with peak performance)

— Runtime for running specific DNN models

* Latency

— Include batch size used in evaluation

* Energy and Power
— Power consumption for running specific DNN models

— Include external memory access

Hardware Cost

— On-chip storage, number of cores, chip area + process technology
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Example: Metrics of Eyeriss Chip

Process Technology @ 65nm LP

TSMC (1.0V) Name of CNN Model Text AlexNet
Total Core Area 1225 Top-5 error classification  # 19.8
(mm2) on ImageNet
Total On-ChIp 192 Supported LayerS All CONV
Memory (kB) Bits per weight # 16
Number of Multipliers 168 Bits per input activation # 16
Clock Frequency 200 Batch Size ## 4
(MHz) Runtime ms 115.3
Core area (mm?2) / 0.073 Power mW 278
RIIRIC] Off-chip Access per MBytes 3.85
On-Chip memory 1.14 Image Inference
W=D L2l Number of Images # 100
Measured or Measured Tested
Simulated

u -
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Comprehensive Coverage

* All metrics should be reported for fair evaluation of design
tradeoffs

* Examples of what can happen if certain metric is omitted:

— Without the accuracy given for a specific dataset and task,
one could run a simple DNN and claim low power, high

throughput, and low cost — however, the processor might
not be usable for a meaningful task

— Without reporting the off-chip bandwidth, one could build
a processor with only multipliers and claim low cost, high
throughput, high accuracy, and low chip power — however,

when evaluating system power, the off-chip memory access
would be substantial

e Are results measured or simulated? On what test data?
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Evaluation Process

The evaluation process for whether a DNN system is a viable
solution for a given application might go as follows:

1. Accuracy determines if it can perform the given task

2. Latency and throughput determine if it can run fast enough
and in real-time

3. Energy and power consumption will primarily dictate the
form factor of the device where the processing can operate

4. Cost, which is primarily dictated by the chip area, determines
how much one would pay for this solution
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Summary

* The number of weights and MACs are not sufficient for
evaluating the energy consumption and latency of DNNs

— Designers of efficient DNN algorithms should directly target direct
metrics such as energy and latency and incorporate into the design

* Many of the existing DNN processors rely on certain
properties of the DNN which cannot be guaranteed as the
wide range techniques used for efficient DNN algorithm
design has resulted in a more diverse set of DNNs

— DNN hardware used to process these DNNs should be sufficiently
flexible to support a wide range of techniques efficiently

* Evaluate DNN hardware on a comprehensive set of
benchmarks and metrics
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Looking Beyond the DNN

Accelerator for Acceleration

Z.Zhang, V. Sze, “FAST: A Framework to Accelerate Super-Resolution
Processing on Compressed Videos,” CVPRW 2017
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Super-Resolution on Mobile Devices

Low High
Resolution Resolution
Streaming Playback

Transmit low resolution for lower bandwidth Screens are getting larger

Use super-resolution to improve the viewing experience of
lower-resolution content (reduce communication bandwidth)
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El Complexity of Super Resolution Algorithms

SRCNN (Dong et, al. ECCV 14)

n, feature maps ng feature maps
of low-resolution image of high-resolution image

W < N 1x1 fs % f3
Low-resolution s S 1 r== High-resolution
image (input) B\NWAA TR ] ) image (output)
| | J
Patch extraction Non-linear mapping Reconstruction

and representation

8032 MACs/pixel - ~500 GMAC/s for HD @ 30 fps

State-of-the-art super resolution algorithms use CNNs
- computationally expensive, especially at high resolutions (HD or 4K)
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FAST: A Framework to Accelerate SuperRes

FAST

Compressed video Real-time

A framework that accelerates any SR algorithm by up to
15x when running on compressed videos

i [Zhang et al., CVPRW 2017] wRcaeey  MTLees
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Free Information in Compressed Videos

Decode [

_ Pixels Block-structure ~ Motion-compensation
Compressed video

Video as a stack of pixels Representation in compressed video

This representation can help accelerate super-resolution

u -
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Transfer is Lightweight

Transfer

Low-res video

A - ]
” (N W

High-res video High-res video

| Transfer allows SR to run on only a subset of frames |

i+ R=-H

Fractional Bicubic
Interpolation Interpolation

The complexity of the transfer is comparable to bicubic interpolation.
Transfer N frames, accelerate by N
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Evaluation: Accelerating SRCNN

PartyScehe | RaceHorse BasketballPass
Examples of videos in the test set (20 videos for HEVC development)

PSNR with 4x acceleration PSNR with 16x acceleration
GOP =4 GOP =16
31.5 31.04 31.04 31 =0.09 30.65
31 30.5
303.2 29 87 30 29 77
295 29.5
29 29
SRCNN SRCNN with Bicubic SRCNN SRCNN with Bicubic
FAST FAST

4 x acceleration with NO PSNR LOSS. 16 x acceleration with 0.2 dB loss of PSNR
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Visual Evaluation

SRCNN FAST + Bicubic
SRCNN

Look beyond the DNN accelerator for opportunities to accelerate
DNN processing (e.g., structure of data and temporal correlation)

Code released at www.rle.mit.edu/eems/fast

[Zhang et al., CVPRW 2017] Al swicnsievrn MTLeee ..
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Beyond Deep Neural

Networks

A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, “Navion: A Fully Integrated
Energy-Efficient Visual-Inertial Odometry Accelerator
for Autonomous Navigation of Nano Drones,” Symposium on VLS 2018
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Energy-Efficient Autonomous Navigation

Navion Chip
Localization and Mapping at 2mW
(full integration on-chip)

Enable energy-efficient navigation
for Search and Rescue

http://navion.mit.edu

[Zhang et al., RSS 2017],
[Suleiman et al., VLS| 2018]

it /n collaboration with Sertac Karaman (AeroAstro) [ &y MILOSS .
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El Localization and Mapping Using VIO*

VIO determines location/orientation of drone from images and IMU
(also used by headset in Augmented Reality and Virtual Reality)

Localization

4 )
Image sequence —| Visual-Inertial
Odometry
IMU N (VIO)
Inertial Measurement Unit \_ _J

Z T:L ' Y /4—'7‘
Q,

*Subset of SLAM algorithm
(Simultaneous Localization And Mapping) Mapping

-
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EM Frontend: Processing Sensors Data

¢ P
\Camera )

\ 4

Vision
Frontend
(VFE)

IMU Frontend
(IFE)

(MU @
o J

i [Zhang et al., RSS 2017] seaecnatvey MTL®eS ...




Frontend: Processing Sensors Data

KF, KF,
_ : :
c R =
amera ’ - -
\_ J e
Vision
Frontend
(VFE)
Feature
Tracks

IMU Frontend
(IFE)

(wo
_ 5 _J

Mir [Zhang et al., RSS 2017] wrichmerey  MTLeee ..
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Frontend: Processing Sensors Data

KF, KF, KF, KF,
1P . THLRE " -y
== ." = -
I9p o — %"
Vision
Frontend
(VFE)
Feature
Tracks
Estimated State AR A AR AT
(Pose & Location) Riz le\ - 2 23\
IMU Frontend KF, KF, KF;

Preintegration

Preintegration
_AL

(IFE)

( IMU @ N Gyro. & Acc.

\_ W,
Measurements

i [Zhang et al., RSS 2017] wrensty MILSee ...
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Backend: Reduce Inconsistency

g P
\Camera )

\ 4

. . *e I'k
Vision
Frontend
(VFE)
Feature -
Tracks Backend
Estimated State _ (BE) X1 x3
(Pose & Location) x’,
IMU Frontend
(IFE) L . .
T Update states (x;) to minimize inconsistencies
r N between measurements across time
(MU @J

i [Zhang et al., RSS 2017] seaecnatvey MTL®eS ...




Backend: Factor Graph to Infer State of Drone

Non-linear least squares factor graph optimization

r R
| CEMEE ’) ‘mxin > Nroaw G 8815, 885, 85I + 5 [lrcana (o b e ) [+ IrpraorCOIP? ‘

(i,))EF kEL IEF,
Vision IMU Factors Vision Factors Other Factors
Frontend
(VFE) Factor Graph
b L [ b [
Feature -
Tracks Backend
Estimated State R (BE)
(Pose & Location)
4000+
IMU Frontend Py Pas factors

(IFE)

Horizon at time t,

KF, KF, KF
( IMU @w — > ime
\_ )

i [Zhang et al., RSS 2017] A LR —
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Backend: Factor Graph to Infer State of Drone

Non-linear least squares factor graph optimization

r R
| CEMEE ’) ‘mxin > Nroaw G 8815, 885, 85I + 5 [lrcana (o b e ) [+ IrpraorCOIP? ‘

(i er KEL (EF;
Vision IMU Factors Vision Factors Other Factors
Frontend
(VFE) Factor Graph
b L [ b [
Feature -
Tracks Backend
Estimated State R (BE)
(Pose & Location)
4000+
IMU {I:::;tend v P12 Pas factors
‘ Updated States (x;) Horizon at time',
- ~ & KF, KF, KF; L
IMU @ Sparse 3D Map > time
\_ _J

i [Zhang et al., RSS 2017] seaecnatvey MTL®eS ...




Navion Chip Architecture

Vision Frontend (VFE) Backend (BE)

Previous
Frame

Backend Control

'

Data & Control Bus

Line Buffers

A 4 Yy

Fixed Point : Floating Point .
RANSACIe» o ) o i Point Cloud Arithmetic  [*] Pre-Integration

Feature Undistort || Undistort Feature Floating Build m
Detection || & Rectify & Rectify Tracking Point | ¥  Graph
(FD) (UR) (UR) (FT) Arithmetic
1 Matrix |, *| Linearize Solver
Right Operations Horizon
Frame - IS.inIear States
= olver
> Sparse S'iereo (SS) < Substitute - Marginal Memory
e Rodrigues Register
Vision Front:nd Control Operations [* «| Retract
Data & Control Bus IMU Frontend (IFE) M

Navion is a fully integrated system:
No off-chip storage or processing
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Reduce Memory

Graph
memory
‘ (Feature

O ¥ e 962 kB

“ ‘1 Linear l
bFr?fme [ o LB (1%, Linear
uriers [Coesky Jo « ] solver
1,410 kB ] i memory
1 i 703 kB
7 i N

Use Compression and Exploit Sparsity to
reduce memory by 4.1x
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Navion Evaluation

50 mm

= | -
Feature | [
Tracking | vee h‘j‘lhar—i@: iﬁph—‘
Cont'ro]l emorv§ : : p
c | “Feature = : {8
E | “Detectjon ~| Horizon States | =
Undi g : g
< &ngg{i;?fz ~~~~~ ’ | tinear |
M €0 | | Solver
- | & Rectr _é, x ': )"""].‘3’{ .-
65nm CMOS Test Chip
Over 250 configurable parameters
to adapt to different sensors and
environments
i

 Peak Performance
@ Maximum Configuration

— VFE: 28 — 171 fps (71 fps average)

— BE: 16 — 90 fps (19 fps average)

— Average Power Consumption: 24mW
— Trajectory Error: 0.28%

* Real-Time Performance
@ Optimized Configuration
— VF: 20 fps
— BE: 5 fps
— Average Power Consumption: 2mW
— Trajectory Error: 0.27%

RESEARCH LABORATORY
r e OF ELECTRONICS AT MIT

vvvvv

MTLeeo
microsystems technology lal

...........



Navion System Demo

®
=
>
B
B
B
"
@
|

i https://voutu.be/X5VZkPo 704 wrichasenoy MTLeee
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Summary

 Data movement dominates energy consumption in deep
learning hardware

— Use dataflow that maximizes data reuse for all data types

* Design considerations for deep learning at the edge

— Incorporate direct metrics into algorithm design for improved efficiency

— Use a flexible dataflow and NoC to exploit data reuse for energy
efficiency and increase PE utilization for speed

* Accelerate deep learning by looking beyond the accelerator
— Exploit data representation for FAST Super-Resolution

* Other forms of inference at the edge beyond deep learning

— Graphical models for localization and mapping in nanodrones
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