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Processing	at	“Edge”	instead	of	the	“Cloud”	2 
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Video	is	the	Biggest	Big	Data		

Need	energy-efficient	pixel	processing!	

Over	70%	of	today’s	Internet	traffic	is	video	
Over	300	hours	of	video	uploaded	to	YouTube	every	minute	

Over	500	million	hours	of	video	surveillance	collected	every	day	

Energy	limited	due	
to	ba1ery	capacity	

Power	limited	due	
to	heat	dissipa8on	

3 



Energy-Efficient	Pixel	Processing	
Next-Genera8on	Video	Coding	(Compress	Pixels)	

Ultra-HD	

4 

Energy-Efficient	Computer	Vision	&	Deep	Learning	(Understand	Pixels)	

Recogni3on	 Self-Driving	Cars	 AI	

Goal:	Make	computer	vision	as	ubiquitous	as	video	coding	

Goal:	Increase	coding	efficiency,	speed	and	energy-efficiency	



•  Area	cost	
–  Memory	Size	100-500kB	

•  Power	budget	
–  <	1W	for	smartphones		

•  Throughput	
–  Real-3me	30	fps	

•  Energy	
–  ~1nJ/pixel	

Typical	Constraints	of	Video	Coding	5 
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•  Energy-Efficient	Hardware	for	Deep	Neural	Networks	(DNNs)		

	

•  Limita3ons	of	Exis3ng	Efficient	DNN	Approaches		

•  Looking	Beyond	the	DNN	Accelerator	for	Accelera3on	

•  Looking	Beyond	DNNs:	Other	forms	of	inference	at	the	edge		

Outline	6 



Energy-Efficient Hardware 
for Deep Neural Networks 
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Y.-H.	Chen,	T.	Krishna,	J.	Emer,	V.	Sze,		
“Eyeriss:	An	Energy-Efficient	Reconfigurable	Accelerator	for	Deep	

Convolu3onal	Neural	Networks,”	JSSC	2017.	



Deep	Convolu3onal	Neural	Networks	

Classes FC 
Layers 

Modern deep CNN: up to 1000 CONV layers 

CONV 
Layer 

CONV 
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Low-level 
Features 

High-level 
Features 
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Deep	Convolu3onal	Neural	Networks	

CONV 
Layer 

CONV 
Layer 

Low-level 
Features 

High-level 
Features 

Classes FC 
Layers 

1 – 3 layers 
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Deep	Convolu3onal	Neural	Networks	

Classes CONV 
Layer 

CONV 
Layer 

FC 
Layers 

Convolutions account for more 
than 90% of overall computation, 
dominating runtime and energy 
consumption 
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High-Dimensional	CNN	Convolu3on	
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High-Dimensional	CNN	Convolu3on	
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H 

High-Dimensional	CNN	Convolu3on	
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Input Image 

Output Image 
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Many Input Channels (C) 
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AlexNet:	3	–	192	Channels	(C)		
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High-Dimensional	CNN	Convolu3on	

E 

Output Image Many 
Filters (M) 

Many 
Output Channels (M) 

M 

…
 

R 

R 
1 

R 

R 

C 

M 

H 

Input Image 
C 

C 

H E 

AlexNet:	96	–	384	Filters	(M)		
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High-Dimensional	CNN	Convolu3on	
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Image	batch	size:	1	–	256	(N)	



High-Dimensional	CNN	Convolu3on	
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Hundreds	of	Millions	of		
Mul3ply	and	Accumulates	(MAC)	per	CONV	Layer	



Proper3es	We	Can	Leverage	

•  OperaRons	exhibit	high	parallelism	
	à	high	throughput	possible	

•  Memory	Access	is	the	Bocleneck	

17 

  
  

  
  

ALU 
  

  

Memory Read Memory Write MAC* 

* multiply-and-accumulate 

filter weight 
image pixel 
partial sum updated 

partial sum 

•  Example:  AlexNet [NIPS 2012]  has 724M MACs  
  à 2896M DRAM accesses required 

Worst Case: all memory R/W are DRAM accesses 

200x 1x 

  
  

DRAM DRAM 



Proper3es	We	Can	Leverage	

•  OperaRons	exhibit	high	parallelism	
	à	high	throughput	possible	

•  Input	data	reuse	opportuniRes	(up	to	500x)	
	 	à	exploit	low-cost	memory	

Convolu3onal	
Reuse		

(pixels,	weights)	

Filter	 Image	

Image	
Reuse	
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Advantages	of	Spa3al	Architecture	19 

Spatial Architecture 
(Dataflow Processing) 

Memory Hierarchy 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

Efficient	Data	Reuse	
Distributed	local	storage	(RF)	

Inter-PE	Communica3on	
Sharing	among	regions	of	PEs	

Processing	
Element	(PE)	

Control 

Reg File 0.5 – 1.0 kB 

  

  



How	to	Map	the	Dataflow?	20 

Maximize	data	reuse	at	lower	levels	of	hierarchy	

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 



Weight	Sta3onary	(WS)	

•  Minimize weight read energy consumption 
−  maximize convolutional and filter reuse of weights 

•  Examples:  
  [Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014] 

[Park, ISSCC 2015] [Origami, GLSVLSI 2015] 

  
            

  

  

Global Buffer 
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•  Minimize partial sum R/W energy consumption 
−  maximize local accumulation 

•  Examples:  
  

Output	Sta3onary	(OS)	

[Gupta, ICML 2015] [ShiDianNao, ISCA 2015] 
[Peemen, ICCD 2013] 

  
            

  

  

Global Buffer 

P0 P1 P2 P3 P4 P5 P6 P7 

  

  

  

  

Pixel Weight 

PE 
Psum 
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•  Use a large global buffer as shared storage 
−  Reduce DRAM access energy consumption 

•  Examples:  
  

No	Local	Reuse	(NLR)	

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014] 
[Zhang, FPGA 2015] 

PE 
        Pixel 

Psum 

Global Buffer 
Weight 

23 



Row	Sta3onary	Dataflow	24 

•  Maximize row 
convolutional reuse in RF 
−  Keep a filter row and fmap 

sliding window in RF 

•  Maximize row psum 
accumulation in RF 

PE 1 

Row 1 Row 1 

Row 1 

= * 



Row	Sta3onary	Dataflow	
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Row 1 Row 1 
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* * * 

* * * 
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OpRmize	for	overall	energy	efficiency	instead	
for	only	a	certain	data	type	



• Weight	Sta3onary	
–  Minimize	movement	of	filter	weights	

• Output	Sta3onary	
–  Minimize	movement	of	parRal	sums	

• No	Local	Reuse	
–  Don’t	use	any	local	PE	storage.	Maximize	global	buffer	size.	

• Row	Sta3onary	
	

Evaluate	Reuse	in	Different	Dataflows	26 

Evalua3on	Setup	
•  Same	Total	Area	
•  AlexNet	
•  256	PEs	
•  Batch	size	=	16	

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 
6× 

PE ALU 2× 
1× 
1× (Reference) 

DRAM ALU 



Dataflow	Comparison:	CONV	Layers	

RS uses 1.4× – 2.5× lower energy than other dataflows 

Normalized 
Energy/MAC 
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RF 
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DRAM 
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[Chen, ISCA 2016] 



Dataflow	Comparison:	CONV	Layers	
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[Chen, ISCA 2016] 



Eyeriss:	Energy-Efficient	Deep	Learning	29 

On
-ch

ip 
Bu

ffe
r Spatial  

PE Array 

4mm	

4m
m
	

MIT	Deep	Learning	Chip		
[ISSCC	2016,	ISCA	2016]	

AlexNet:	For	2.66	GMACs	[8	billion	16-bit	inputs	(16GB)	and	2.7	billion	
outputs	(5.4GB)],	only	requires	a	total	of	208.5MB	reads/writes	from	on-
chip	108kB	global	buffer	and	15.4MB	reads/writes	from	off-chip	DRAM	



Features:	Energy	vs.	Accuracy		30 
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Accuracy	(Average	Precision)	

Energy/	
Pixel	(nJ)	

VGG162	

AlexNet2	

HOG1	

Measured	in	65nm*	
1.   [Suleiman,	VLSI	2016]	
2.   [Chen,	ISSCC	2016]		
	
*	Only	feature	extrac8on.	Does	
not	include	data,	augmenta8on,	
ensemble	and	classifica8on	
energy,	etc.	

Measured	in	on	VOC	2007	Dataset	
1.   DPM	v5	[Girshick,	2012]	
2.   Fast	R-CNN	[Girshick,	CVPR	2015]		

Exponen8al	

Linear	

Video		
Compression	

[Suleiman et al., ISCAS 2017] 



Limitations of Existing 
Efficient DNN Approaches  

31 

Y.-H.	Chen*,	T.-J.	Yang*,	J.	Emer,	V.	Sze,		
“Understanding	the	Limita3ons	of	Exis3ng	Energy-Efficient	Design	

Approaches	for	Deep	Neural	Networks,”	SysML	2018.	



Energy-Efficient	Processing	of	DNNs	32 

V.	Sze,	Y.-H.	Chen,		
T-J.	Yang,	J.	Emer,		

“Efficient	Processing	of	
Deep	Neural	Networks:		
A	Tutorial	and	Survey,”	
Proceedings	of	the	IEEE,	

Dec.	2017	

A	significant	amount	of	algorithm	and	hardware	research		
on	energy-efficient	processing	of	DNNs	

We	idenRfied	various	limitaRons	to	exisRng	approaches	

http://eyeriss.mit.edu/tutorial.html 



•  Popular	efficient	DNN	algorithm	approaches		

	

	

	

Design	of	Efficient	DNN	Algorithms	33 

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Network	Pruning	

C	
1	

1	
S	

R	

1	

R	

S	
C	

Compact	Network	Architectures	

Examples:	SqueezeNet,	MobileNet	

...	also	reduced	precision	

•  Focus	on	reducing	number	of	MACs	and	weights	
•  Does	it	translate	to	energy	savings?	



Data	Movement	is	Expensive	34 

Energy	of	weight	depends	on	memory	hierarchy	and	dataflow	

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 



Energy-Evalua3on	Methodology	35 

CNN Shape Configuration 
(# of channels, # of filters, etc.) 

CNN Weights and Input Data 

  

[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …] 

CNN Energy Consumption  
L1 L2 L3 

Energy 

… 

Memory 
Accesses 

Optimization 

# of MACs 
Calculation 

  

  

  
  

…
 

# acc. at mem. level 1 
# acc. at mem. level 2 

# acc. at mem. level n 

# of MACs 

Hardware Energy Costs of each 
MAC and Memory Access 

Ecomp 

Edata 

[Yang et al., CVPR 2017] 



Energy	Es3ma3on	Tool	
Website: https://energyestimation.mit.edu/  

Input DNN Configuration File 

Output DNN energy breakdown across layers 

[Yang et al., CVPR 2017] 
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•  Number	of	weights	alone	is	not	a	good	metric	for	energy	

•  All	data	types	should	be	considered		
	

Key	Observa3ons	37 

Output	Feature	Map	
43%	

Input	Feature	Map	
25%	

Weights	
22%	

Computa3on	
10%	

Energy	Consump3on	
of	GoogLeNet	

[Yang et al., CVPR 2017] 



[Yang et al., CVPR 2017] 

38 

Directly	target	energy	and	
incorporate	it	into	the	
op3miza3on	of	DNNs	to	

provide	greater	energy	savings	

Energy-Aware	Pruning	

•  Sort	layers	based	on	energy	and	
prune	layers	that	consume	most	
energy	first	

•  EAP	reduces	AlexNet	energy	by	
3.7x	and	outperforms	the	
previous	work	that	uses	
magnitude-based	pruning	by	1.7x	

0 
0.5 

1 
1.5 

2 
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3 
3.5 

4 
4.5 

Ori. DC EAP 

Normalized Energy (AlexNet) 

2.1x 
3.7x 

x109 

Magnitude 

Based Pruning 

Energy Aware 

Pruning 

Pruned models available at 
http://eyeriss.mit.edu/energy.html    



NetAdapt:	Plaqorm-Aware	DNN	Adapta3on	39 

•  Automa3cally	adapt	DNN	to	a	mobile	plaporm	to	reach	a	
target	latency	or	energy	budget	

•  Use	empirical	measurements	to	guide	opRmizaRon	(avoid	
modeling	of	tool	chain	or	plaporm	architecture)		

[Yang et al., ECCV 2018] 

In collaboration with Google’s Mobile Vision Team 

NetAdapt Measure 

… 

Network	Proposals	

Empirical	Measurements	
Metric Proposal A … Proposal Z 

Latency 15.6 … 14.3 

Energy 41 … 46 

…
 

…
 

…
 

Pretrained	
Network	 Metric Budget 

Latency 3.8 

Energy 10.5 

Budget	

Adapted	
Network	

…
 

…
 

Plaporm	

A	 B	 C	 D	 Z	



•  NetAdapt	boosts	the	real	inference	speed	of	MobileNet	
by	up	to	1.7x	with	higher	accuracy	

Improved	Latency	vs.	Accuracy	Tradeoff	40 

+0.3% accuracy 
1.7x faster 

+0.3% accuracy 
1.6x faster 

Reference: 
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017 
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018 

*Tested on the ImageNet dataset and a Google Pixel 1 CPU 

[Yang et al., ECCV 2018] 



Many	Efficient	DNN	Design	Approaches	41 

SUXQLQJ�
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Network	Pruning	

C 
1 

1 
S 

R 
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Compact	Network	Architectures	

1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 

0 1 1 0 0 1 1 0 

Reduce	Precision	

32-bit float 

8-bit fixed 

Binary 0 

No	guarantee	that	DNN	algorithm	
designer	will	use	a	given	approach.	

Need	flexible	hardware!	

[Chen et al., SysML 2018] 



Roofline	Model	42 

[Williams et al., Comm ACM 2009]  

A tool that visualizes the performance of an architecture 
under various degrees of operational intensity 

Performance 
(ops/sec) 

Operational Intensity 
(ops/byte) 

Inflection point 
slope = BW 

peak 
perf. 

    

BW- 
Limited 

Computation- 
Limited 

optimal 
op. int. 

DNN Processor 

Global 
Buffer 

PE 
Array 

DRAM 

BW 



Eyexam:	Inefficiencies	in	DNN	Accelerators	43 

A	systemaRc	way	to	evaluate	how	each	architectural	decision	
affects	performance	(throughput)	for	a	given	DNN	workload	

[Chen et al., arXiv, 2018] 

Tightens the roofline model 
(MAC/cycle) 

(MAC/data) 

Step 1: maximum workload parallelism 

Step 5: # of act. PEs under fixed storage capacity 

Step 2: maximum dataflow parallelism 
peak 
perf. Number of PEs (Theoretical Peak Performance) 

Step 3: # of act. PEs under a finite PE array size 
Step 4: # of act. PEs under fixed PE array dimen. 

Step 7: lower act. PE util. due to insuff. inst. BW 
Step 6: lower act. PE util. due to insuff. avg. BW 

Slope = BW to only act. PE 



•  Specialized	DNN	hardware	osen	rely	on	certain	properRes	of	
DNN	in	order	to	achieve	high	energy-efficiency	

•  Example:	Reduce	memory	access	by	amorRzing	across	MAC	array	
	

Exis3ng	DNN	Architectures	44 

MAC array Weight 
Memory 

Activation 
Memory 

Weight  
reuse 

Activation 
reuse 



•  Example:	Reuse	and	array	uRlizaRon	depends	on	#	of	channels,	
feature	map/batch	size		
–  Not	efficient	across	all	network	architectures	(e.g.,	compact	DNNs)	

Limita3on	of	Exis3ng	DNN	Architectures	45 

MAC array 
(spatial 

accumulation) 

Number of filters 
(output channels) 

Number of 
 input channels 

MAC array 
(temporal 

accumulation) 

Number of filters 
(output channels) 

feature map 
or batch size 



•  Example:	Reuse	and	array	uRlizaRon	depends	on	#	of	channels,	
feature	map/batch	size		
–  Not	efficient	across	all	network	architectures	(e.g.,	compact	DNNs)	

Limita3on	of	Exis3ng	DNN	Architectures	46 

MAC array 
(spatial 

accumulation) 

Number of filters 
(output channels) 

Number of 
 input channels 

MAC array 
(temporal 

accumulation) 

Number of filters 
(output channels) 

feature map 
or batch size 

C 
1 

1 

S 

R 

1 

Example	mapping	for		
depth	wise	layer	



•  Example:	Reuse	and	array	uRlizaRon	depends	on	#	of	channels,	
feature	map/batch	size		
–  Not	efficient	across	all	network	architectures	(e.g.,	compact	DNNs)	
–  Less	efficient	as	array	scales	up	in	size	
–  Can	be	challenging	to	exploit	sparsity	

Limita3on	of	Exis3ng	DNN	Architectures	47 

MAC array 
(spatial 

accumulation) 

Number of filters 
(output channels) 

Number of 
 input channels 

MAC array 
(temporal 

accumulation) 

Number of filters 
(output channels) 

feature map 
or batch size 



Active PE
Idle PE

F1

S1

F1

S1
×
G1

Row Stationary Row Stationary Plus 

Output fmap width* Output fmap width* 

Filter width* 
Filter width* 

# channel groups* 

Eyeriss	v2:	Balancing	Flexibility	and	Efficiency	48 

*tiling parameters 

•  Flexible	dataflow,	called	Row-StaRonary	Plus	(RS+),	that	
enables	the	spaRal	mapping	of	data	from	all	dimensions	for	
high	PE	array	uRlizaRon	and	data	reuse	for	various	layer	
shapes	and	sizes	



Eyeriss	v2:	Balancing	Flexibility	and	Efficiency	49 

•  Flexible	dataflow,	called	Row-StaRonary	Plus	(RS+),	that	
enables	the	spaRal	mapping	of	data	from	all	dimensions	for	
high	PE	array	uRlizaRon	and	data	reuse	for	various	layer	
shapes	and	sizes	

•  Flexible	NoC	to	support	RS+	that	can	operate	in	different	
modes	for	different	requirements	
–  URlizes	mulRcast	to	exploit	spaRal	data	reuse	
–  URlizes	unicast	for	high	BW	for	weights	for	FC	and	weights	&	
acRvaRons	for	compact	network	architectures	

•  Processes	data	in	both	compressed	and	raw	format	to	
minimize	data	movement	for	both	CONV	and	FC	layers	
–  Exploit	sparsity	in	both	weights	and	acRvaRons	



Eyeriss	v2:	Balancing	Flexibility	and	Efficiency	50 

[Chen et al., arXiv 2018] 

Over an order of magnitude faster and more  
energy efficient than Eyeriss v1 

 
 

https://arxiv.org/abs/1807.07928  

MobileNet	

Efficiently	supports	

•  Wide	range	of	filter	shapes		
–  Large	and	Compact	

•  Different	Layers		
–  CONV,	FC,	depth	wise,	etc.	

•  Wide	range	of	sparsity		
–  Dense	and	Sparse	

•  Scalable	architecture	



Benchmarking Metrics  
for DNN Hardware 

51 

How can we compare designs? 

V.	Sze,	Y.-H.	Chen,	T-J.	Yang,	J.	Emer,		
“Efficient	Processing	of	Deep	Neural	Networks:		A	Tutorial	and	Survey,”		

Proceedings	of	the	IEEE,	Dec.	2017	



•  Accuracy	
–  Quality	of	result	for	a	given	task	

•  Throughput	
–  AnalyRcs	on	high	volume	data	
–  Real-Rme	performance	(e.g.,	video	at	30	fps)	

•  Latency	
–  For	interacRve	applicaRons	(e.g.,	autonomous	navigaRon)	

•  Energy	and	Power	
–  Edge	and	embedded	devices	have	limited	bacery	capacity	
–  Data	centers	have	stringent	power	ceilings	due	to	cooling	costs	

•  Hardware	Cost		
–  $$$	

Metrics	for	DNN	Hardware	52 



•  Accuracy	
–  Difficulty	of	dataset	and/or	task	should	be	considered	

•  Throughput	
–  Number	of	cores	(include	uRlizaRon	along	with	peak	performance)	
–  RunRme	for	running	specific	DNN	models	

•  Latency	
–  Include	batch	size	used	in	evaluaRon	

•  Energy	and	Power	
–  Power	consumpRon	for	running	specific	DNN	models	
–  Include	external	memory	access	

•  Hardware	Cost		
–  On-chip	storage,	number	of	cores,	chip	area	+	process	technology	

Specifica3ons	to	Evaluate	Metrics	53 



Example:	Metrics	of	Eyeriss	Chip	54 

Metric Units Input 
Name of CNN Model Text AlexNet 
Top-5 error classification 
on ImageNet 

# 19.8 

Supported Layers All CONV 
Bits per weight # 16 
Bits per input activation # 16 
Batch Size # 4 
Runtime  ms 115.3 
Power mW 278 
Off-chip Access per 
Image Inference 

MBytes 3.85 

Number of Images 
Tested 

# 100 

ASIC Specs Input 
Process Technology 65nm LP 

TSMC (1.0V) 
Total Core Area 
(mm2) 

12.25 

Total On-Chip 
Memory (kB) 

192 

Number of Multipliers 168 

Clock Frequency 
(MHz) 

200 

Core area (mm2) /
multiplier 

0.073 

On-Chip memory 
(kB) / multiplier 

1.14 

Measured or 
Simulated 

Measured 



•  All	metrics	should	be	reported	for	fair	evaluaRon	of	design	
tradeoffs	

•  Examples	of	what	can	happen	if	certain	metric	is	omiced:	
– Without	the	accuracy	given	for	a	specific	dataset	and	task,	
one	could	run	a	simple	DNN	and	claim	low	power,	high	
throughput,	and	low	cost	–	however,	the	processor	might	
not	be	usable	for	a	meaningful	task	

– Without	repor3ng	the	off-chip	bandwidth,	one	could	build	
a	processor	with	only	mulRpliers	and	claim	low	cost,	high	
throughput,	high	accuracy,	and	low	chip	power	–	however,	
when	evaluaRng	system	power,	the	off-chip	memory	access	
would	be	substanRal	

•  Are	results	measured	or	simulated?	On	what	test	data?	

Comprehensive	Coverage	55 



The	evaluaRon	process	for	whether	a	DNN	system	is	a	viable	
soluRon	for	a	given	applicaRon	might	go	as	follows:		

1.   Accuracy	determines	if	it	can	perform	the	given	task		

2.   Latency	and	throughput	determine	if	it	can	run	fast	enough	
and	in	real-Rme	

3.   Energy	and	power	consump3on	will	primarily	dictate	the	
form	factor	of	the	device	where	the	processing	can	operate		

4.   Cost,	which	is	primarily	dictated	by	the	chip	area,	determines	
how	much	one	would	pay	for	this	soluRon	

Evalua3on	Process	56 



•  The	number	of	weights	and	MACs	are	not	sufficient	for	
evaluaRng	the	energy	consumpRon	and	latency	of	DNNs	
–  Designers	of	efficient	DNN	algorithms	should	directly	target	direct	
metrics	such	as	energy	and	latency	and	incorporate	into	the	design			

•  Many	of	the	exisRng	DNN	processors	rely	on	certain	
properRes	of	the	DNN	which	cannot	be	guaranteed	as	the	
wide	range	techniques	used	for	efficient	DNN	algorithm	
design	has	resulted	in	a	more	diverse	set	of	DNNs	
–  DNN	hardware	used	to	process	these	DNNs	should	be	sufficiently	
flexible	to	support	a	wide	range	of	techniques	efficiently	

•  Evaluate	DNN	hardware	on	a	comprehensive	set	of	
benchmarks	and	metrics	

Summary		57 



Looking Beyond the DNN 
Accelerator for Acceleration 

58 

Z.	Zhang,	V.	Sze,	“FAST:	A	Framework	to	Accelerate	Super-Resolu3on	
Processing	on	Compressed	Videos,”	CVPRW	2017	



Super-Resolu3on	on	Mobile	Devices	59 

Use super-resolution to improve the viewing experience of 
lower-resolution content (reduce communication bandwidth) 

Screens are getting larger 

Low		
ResoluRon	
Streaming	

Transmit low resolution for lower bandwidth 

High	
ResoluRon	
Playback	



Complexity	of	Super	Resolu3on	Algorithms	60 

SRCNN (Dong et, al. ECCV 14) 

State-of-the-art super resolution algorithms use CNNs 
à computationally expensive, especially at high resolutions (HD or 4K)  

8032 MACs/pixel à ~500 GMAC/s for HD @ 30 fps  



FAST:	A	Framework	to	Accelerate	SuperRes	61 

A framework that accelerates any SR algorithm by up to 
15x when running on compressed videos 

FAST 
SR 

15x faster 

Compressed video 

SR algorithm 

Real-time 

[Zhang	et	al.,	CVPRW	2017]	



Free	Informa3on	in	Compressed	Videos	62 

  

Compressed video 
Pixels 

Video as a stack of pixels 

Block-structure Motion-compensation 

Representation in compressed video 

This representation can help accelerate super-resolution 

Decode 



High-res video 

Transfer	is	Lightweight	63 

Low-res video 
High-res video 

SR 

Low-res video 

Transfer 

Fractional 
Interpolation 

Bicubic 
Interpolation 

Skip Flag 

The complexity of the transfer is comparable to bicubic interpolation. 
Transfer N frames, accelerate by N 

Transfer allows SR to run on only a subset of frames 

SR 
SR SR SR 

SR 



Evalua3on:	Accelera3ng	SRCNN	64 



Visual	Evalua3on	65 

SRCNN FAST + 
SRCNN 

Bicubic 

Code released at www.rle.mit.edu/eems/fast  

[Zhang	et	al.,	CVPRW	2017]	

Look	beyond	the	DNN	accelerator	for	opportuniRes	to	accelerate	
DNN	processing	(e.g.,	structure	of	data	and	temporal	correlaRon)	



Beyond Deep Neural 
Networks 

66 

A.	Suleiman,	Z.	Zhang,	L.	Carlone,	S.	Karaman,	V.	Sze,	“Navion:	A	Fully	Integrated	
Energy-Efficient	Visual-Iner3al	Odometry	Accelerator	

for	Autonomous	Naviga3on	of	Nano	Drones,”	Symposium	on	VLSI	2018	



Energy-Efficient	Autonomous	Naviga3on	67 

Navion	Chip		
LocalizaRon	and	Mapping	at	2mW	

(full	integraRon	on-chip)	

[Zhang et al., RSS 2017], 
[Suleiman et al., VLSI 2018] 

http://navion.mit.edu   

In collaboration with Sertac Karaman (AeroAstro) 

Enable	energy-efficient	navigaRon	
for	Search	and	Rescue	



Localiza3on	and	Mapping	Using	VIO*	68 

Visual-Inertial 
Odometry 

(VIO) 

Localization 

Mapping 

Image sequence 

IMU 
Inertial Measurement Unit 

…
 

*Subset of SLAM algorithm 
(Simultaneous Localization And Mapping) Slide 28 

VIO	determines	locaRon/orientaRon	of	drone	from	images	and	IMU	
(also	used	by	headset	in	Augmented	Reality	and	Virtual	Reality)	



Frontend:	Processing	Sensors	Data	69 

Camera	

IMU 

Vision	
Frontend	
(VFE)	

IMU	Frontend	
(IFE)	

[Zhang	et	al.,	RSS	2017]	



Frontend:	Processing	Sensors	Data	70 

Camera	

IMU 

Vision	
Frontend	
(VFE)	

IMU	Frontend	
(IFE)	

Feature	
Tracks	

[Zhang	et	al.,	RSS	2017]	



Frontend:	Processing	Sensors	Data	71 

Camera	

IMU 

Vision	
Frontend	
(VFE)	

IMU	Frontend	
(IFE)	

Gyro.	&	Acc.	
Measurements	

PreintegraRon	 PreintegraRon	

… 

KF1	 KF2	 KF3	

ΔR12,	ΔT12	 ΔR23,	ΔT23	

Feature	
Tracks	

EsRmated	State	
(Pose	&	LocaRon)	

[Zhang	et	al.,	RSS	2017]	



Backend:	Reduce	Inconsistency	72 

Camera	

IMU 

Vision	
Frontend	
(VFE)	

IMU	Frontend	
(IFE)	

Backend	
(BE)	

Feature	
Tracks	

EsRmated	State	
(Pose	&	LocaRon)	

[Zhang	et	al.,	RSS	2017]	

Update states (xi) to minimize inconsistencies 

between measurements across time 

x’1 

x’2 

x’3 

L
k
 

t=1 

t=2 
t=3 



Backend:	Factor	Graph	to	Infer	State	of	Drone	73 

Camera	

IMU 

Vision	
Frontend	
(VFE)	

IMU	Frontend	
(IFE)	

Backend	
(BE)	

Feature	
Tracks	

EsRmated	State	
(Pose	&	LocaRon)	

IMU	Factors	 Vision	Factors	 Other	Factors	

[Zhang	et	al.,	RSS	2017]	

Factor	Graph	

Non-linear	least	squares	factor	graph	op*miza*on	

4000+	
factors	



Backend:	Factor	Graph	to	Infer	State	of	Drone	74 

Camera	

IMU 

Vision	
Frontend	
(VFE)	

IMU	Frontend	
(IFE)	

Backend	
(BE)	

Feature	
Tracks	

EsRmated	State	
(Pose	&	LocaRon)	

[Zhang	et	al.,	RSS	2017]	

Factor	Graph	

4000+	
factors	

Updated	States	(xi)	
&	

Sparse	3D	Map	

IMU	Factors	 Vision	Factors	 Other	Factors	

Non-linear	least	squares	factor	graph	op*miza*on	



Navion	Chip	Architecture	75 

Backend Control

Data & Control Bus
Build 
Graph

Linear 
Solver

Linearize

Marginal

Retract

Graph
Linear 
Solver

Horizon 
States
Shared 

Memory

Floating 
Point 

Arithmetic

Matrix 
Operations

Cholesky

Back 
Substitute

Rodrigues 
Operations

Feature 
Tracking 

(FT)

Previous 
FrameLine Buffers

Feature 
Detection 

(FD)

Undistort 
& Rectify 

(UR)

Undistort 
& Rectify 

(UR)

Data & Control Bus

Sparse Stereo (SS)

Vision Frontend Control

RANSAC Fixed Point 
Arithmetic Point Cloud Pre-IntegrationFloating Point 

Arithmetic
IMU 

memory

Current 
Frame

Left 
Frame

Right 
Frame

Vision Frontend (VFE)

IMU Frontend (IFE)

Backend (BE)

Register 
File

Navion	is	a	fully	integrated	system:			
No	off-chip	storage	or	processing	



Reduce	Memory	76 

Backend Control

Data & Control Bus
Build 
Graph

Linear 
Solver

Linearize

Marginal

Retract

Graph
Linear 
Solver

Horizon 
States
Shared 

Memory

Floating 
Point 

Arithmetic

Matrix 
Operations

Cholesky

Back 
Substitute

Rodrigues 
Operations

Feature 
Tracking 

(FT)

Previous 
FrameLine Buffers

Feature 
Detection 

(FD)

Undistort 
& Rectify 

(UR)

Undistort 
& Rectify 

(UR)

Data & Control Bus

Sparse Stereo (SS)

Vision Frontend Control

RANSAC Fixed Point 
Arithmetic Point Cloud Pre-IntegrationFloating Point 

Arithmetic
IMU 

memory

Current 
Frame

Left 
Frame

Right 
Frame

Vision Frontend (VFE)

IMU Frontend (IFE)

Backend (BE)

Register 
File

Linear 
solver 

memory 
703 kB 

Graph 
memory 
(Feature 
tracks) 
962 kB 

Frame 
buffers 

1,410 kB 

Use	Compression	and	Exploit	Sparsity	to	
reduce	memory	by	4.1x	



Navion	Evalua3on	77 

5.0 mm 

4.
0 

m
m

 

Over	250	configurable	parameters	
to	adapt	to	different	sensors	and	

environments	

•  Peak	Performance	 	 											
@	Maximum	Configura3on	
–  VFE:	28	–	171	fps	(71	fps	average)	
–  BE:	16	–	90	fps	(19	fps	average)	
–  Average	Power	ConsumpRon:	24mW	
–  Trajectory	Error:	0.28%	
	

•  Real-Time	Performance	 												
@	Op3mized	Configura3on	
–  VF:	20	fps	
–  BE:	5	fps	
–  Average	Power	ConsumpRon:	2mW	
–  Trajectory	Error:	0.27%	

65nm CMOS Test Chip 



Navion	System	Demo	78 

https://youtu.be/X5VZkPo_704   



•  Data	movement	dominates	energy	consump3on	in	deep	
learning	hardware	
–  Use	dataflow	that	maximizes	data	reuse	for	all	data	types	

•  Design	considera3ons	for	deep	learning	at	the	edge	
–  Incorporate	direct	metrics	into	algorithm	design	for	improved	efficiency	
–  Use	a	flexible	dataflow	and	NoC	to	exploit	data	reuse	for	energy	
efficiency	and	increase	PE	uRlizaRon	for	speed	

•  Accelerate	deep	learning	by	looking	beyond	the	accelerator	
–  Exploit	data	representaRon	for	FAST	Super-ResoluRon	

•  Other	forms	of	inference	at	the	edge	beyond	deep	learning	
–  Graphical	models	for	localizaRon	and	mapping	in	nanodrones	

Summary	79 

www.rle.mit.edu/eems	
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