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Abstract— Quantitative and accurate tracking of neurocogni-
tive decline remains an ongoing challenge. We seek to address
this need by focusing on robust and unobtrusive measurement
of saccade latency — the time between the presentation of
a visual stimulus and the initiation of an eye movement
towards the stimulus — which has been shown to be altered
in patients with neurocognitive decline or neurodegenerative
diseases. Here, we present a novel, deep convolutional-neural-
network-based method to measure saccade latency outside of
the clinical environment using a smartphone camera without
the need for supplemental or special-purpose illumination. We
also describe a model-based approach to estimate saccade
latency that is less sensitive to noise compared to conventional
methods. With this flexible and robust system, we collected
over 11,000 saccade-latency measurements from 21 healthy
individuals and found distinctive saccade-latency distributions
across subjects. When analyzing intra-subject variability across
time, we observed noticeable variations in the mean saccade
latency and associated standard deviation. We also observed a
potential learning effect that should be further characterized
and potentially accounted for when interpreting saccade latency
measurements.

I. INTRODUCTION

Quantitative and accurate tracking of neurocognitive de-
cline remains an ongoing challenge. Repeat observations by
care providers are qualitative and suffer from inter-observer
variability. Standard neurocognitive and neuropsychological
test batteries take significant amount of time to adminis-
ter, require a trained provider, and suffer from high retest
variability. Thus, no objective biomarker currently exists for
accurate tracking of neurocognitive decline in the elderly
or patients with neurodegenerative diseases. This technology
gap is particularly limiting in Alzheimer’s Disease (AD), in
which expensive and invasive neuroimaging studies are per-
formed to assess a patient’s response to candidate treatments.

One way to address the lack of an objective, quantifi-
able, and accurate metric to track neurodegenerative disease
progression is by monitoring changes in a set of digi-
tal biomarkers that correlate with disease progression [1].
Digital biomarkers are features of physiological variables
obtained through portable platforms, such as laptops and
smartphones. In contrast to current diagnostic methods, data
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Fig. 1. Top panel: Example of the visual tracking task during a saccade

measurement. Only the final 0.1 s of the 1.0 s fixation period is shown.
Bottom panel: A corresponding saccadic eye movement.

from such consumer electronic devices are readily available
and can be collected unobtrusively and repeatedly, thus
allowing averaging to reduce random variations in obser-
vations and thereby enabling longitudinal feature tracking
for monitoring of disease progression and quantification of
response to treatment. In the context of tracking AD, one
such digital biomarker is saccade latency — the time delay
between the appearance of a visual stimulus and the eye
movement towards the stimulus (Fig. [I). Previous studies
have shown significant differences in saccade latency among
normal subjects and patients with AD [2] as well as other
neurodegenerative diseases [3], [4].

In this work, we propose and test a novel method to
enable measurement and tracking of saccade latency outside
of the clinical environment using a smartphone camera. Our
approach eliminates the need for special-purpose capital
equipment or additional sources of light, such as infrared
(IR) illumination, to enhance the recording conditions. We
also present a new approach to estimate saccade latency
by fitting a mathematical model to the raw eye movement
tracings. This method is less sensitive to high-frequency
noise, compared to the current approach of numerically dif-
ferentiating raw eye position tracings [5]. Finally, we report
on the saccade-latency distributions of individual subjects
and track the variation of mean saccade latency in healthy
volunteers.



II. MATERIALS AND METHODS
A. Video recordings

Video recordings on volunteers were approved by MIT’s
Institutional Review Board, and informed consent was ob-
tained from each participant prior to recording. Subjects were
seated centrally in front of a laptop screen, with their chin
placed comfortably on a soft chin rest to minimize head
movements. An iPhone 6 was also centrally placed, and
video recordings were made with the phone’s rear-facing
camera in slow-motion mode, resulting in a frame rate of
240 fps at a full resolution of 1280x720 pixels. A second
monitor was placed behind the subject’s head mirroring the
laptop’s screen. The camera position was chosen to capture
the subject’s face and the mirrored screen during the task,
thus capturing the eye movement and the moment the visual
stimulus appeared on the laptop screen.

We used the Psychophysics Toolbox 3 for Matlab [6] to
implement and display the visual fixation/stimulus task. A
task started with a fixation period in which three squares
were presented on the screen, arranged horizontally, against
a black background: a green square at the center of the laptop
screen and two white squares arranged horizontally (Fig. [I).
Subjects were asked to fix their gaze on the green square.
After 1.0 s, all three squares disappeared. Following a further
0.2 s, the two lateral squares reappeared in their original
position but with one of them bounded by an additional
square (the stimulus). Subjects were tasked with moving their
eyes to — and subsequently keeping their gaze fixed on — the
stimulus (Fig. [I). After the stimulus disappeared, subjects
returned their gaze back to the centrally located green square.
This task was repeated 40 times per trial, with 20 stimuli each
randomized to the right and to the left. Three such trials were
conducted in one recording session, resulting in 120 saccade
measurements per session.

B. Eye tracking algorithm

To perform eye-tracking, we modified iTracker, a deep
convolutional neural network (CNN) for gaze estimation on
mobile devices [7]. Details on our modification of iTracker
can be found in [8]. Briefly, the original version of iTracker
estimates gaze by analyzing separate crops of the right eye,
the left eye and the face in each video frame. It also considers
a face grid that indicates the location and size of the head
within the frame. Our modified version of iTracker only
analyzes the face crop and the face grid, resulting in a more
computationally efficient algorithm with higher SNR on our
data set than the original iTracker algorithm.

C. Modeling horizontal eye movement

To calculate saccade latency, it is necessary to determine
the onset of the eye movement toward the target. In prior
work, the saccade onset has commonly been defined as an
increase in eye velocity above a predefined threshold [2],
[9], such as 30 deg/s, where the velocity had been estimated
through numerical differentiation and subsequent filtering of
the raw eye-position tracing [5]. Such numerical differentia-
tion of experimental data might be permissible for recordings
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Fig. 2. Top panel: Eye position as estimated by the modified iTracker
algorithm (gray) and hyperbolic tangent fit (black). Bottom panel: Eye
velocity obtained by differentiating the hyperbolic tangent fit. The dashed
line at 0 s indicates the moment of stimulus presentation. The saccade onset
is determined by an increase in eye velocity above 30 deg/s (second dotted
line). The saccade latency is the time difference between the dotted lines.

with very high SNR, as obtained from high-end cameras
and IR-based eye tracking [10]. Given our use of consumer-
grade electronics to record eye movements, point-by-point
differentiation would amplify high-frequency noise in the
eye-position data, resulting in noisy estimates of velocity and
hence saccade onset. To overcome this limitation, we used
lsgcurvefit in Matlab to fit a hyperbolic tangent model
of the form

- t—C
Z(t) = A+ B - tanh <D>

to the eye-position data and differentiate the resulting best-fit
solution to obtain a smooth eye-velocity tracing for thresh-
olding (Fig. [2). To quantify the model’s goodness of fit, we
computed the normalized root-mean-squared error (NRMSE)
between the eye-position and model fit. Empirically, we
found that a NRMSE<10% is indicative of a good fit.

D. Data analysis

We censored saccade latencies below 100 ms to guard
against anticipatory eye movements [2]. We report individ-
ual subject measurements and fit log-normal distributions
to each subject’s saccade-latency data. The Kolmogorov-
Smirnov test (significance level of 0.05) was used to test
the null hypothesis that the experimental saccade-latency
distributions can be described by a log-normal distribution.

We also report the distribution of the mean saccade
latencies across subjects and linear regression analysis on
the mean saccade latencies in four subject in whom we had
repeat measurements on over ten occasions. The coefficient
of determination, R?, and confidence limits on the slope
parameters were calculated.
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Fig. 3. Saccade latency histograms for four healthy individuals. p is the sample mean, o is the associated sample standard deviation, and n is the total

number of observations. Saccade latencies below 100 ms were censored. The estimated log-normal probability density functions are shown in blue.

ITI. RESULTS
A. Saccade-latency distributions in healthy individuals

To date, we have recorded over 11,000 saccade tasks in 21
healthy subjects. The aggregate saccade-latency distributions
of four subjects are shown in Fig. [3] where all saccade
fits with a NRMSE<10% were included. Rejected saccades
include those contaminated by blinks or initially directed
toward the opposite direction, as well as noisy eye traces.
Saccade latencies smaller than 100 ms were censored, as they
were considered anticipatory movements [2]. Taking these
rejection criteria into account, the average fraction of good
saccades per recording session across subjects is 73 + 17%
(about 88 £ 20/120). Some subjects had a large tendency
to initiate saccades toward the opposite direction or make
anticipatory movements, which reduced the fraction of good
saccades per session.

The saccade-latency distributions from individual subjects
show variable degrees of positive skewness, with saccade
latencies larger than 200 or 300 ms not being uncommon.
Others have hypothesized that reaction times follow a log-
normal distribution, and we tested that hypothesis by fitting
censored log-normal distributions to the saccade-latency data
from individual recording sessions and also to the saccade la-
tencies from individual subjects aggregated across recording
sessions (Fig. [3).

A Kolmogorov-Smirnov test on the individual saccade-
latency distributions (one for each recording session) across
all subjects indicated that 77 out of 82 (94%) distributions
were not significantly different from a log-normal distribu-
tion (p < 0.05). When the individual data for each subject
were aggregated into a single distribution, like in Fig.
seven out of ten distributions were not significantly different
from a log-normal distribution (p < 0.05).

The histogram in Fig. [4| shows the distribution of the mean
saccade latencies from the first recording session across all
21 subjects, and indicates that there is a significant range in
mean saccade latencies even in the healthy population.

B. Longitudinal analysis of saccade latency

Ten of the 21 subjects have been available for repeat
measurements on five or more days, accounting for over
7,500 saccade measurements in our data set. Fig. E] shows
the mean saccade latency across recording sessions from four

trained subjects, i.e., they had prior familiarity with the visual
tracking task. The error bars represent one sample standard
deviation above and below the mean of each session. The
dashed lines connecting each subject’s data points are the
best-fit regression lines. With the exception of one subject,
the R? values were > 0.56. The subject shown in blue had
an R? value of 0.07. The slope parameters of the linear
regression model were statistically different from zero in
three of the four subjects studied, indicating a potential
learning effect over time.

IV. DISCUSSION

When using saccade latency to track neurodegenerative
decline, it is essential to understand the associated intra- and
inter-subject variability in healthy subjects in order to put
into context the changes seen in patients with neurodegen-
erative disease. Most clinical studies [2], [11] lack a set-
up that allows for unobtrusive and easily repeatable mea-
surements of saccade latency. Often, mean saccade latency
measurements from single recording sessions in a number
of patients are pooled into a single distribution (Fig. [).
In this approach, intra-subject variability is often not taken
into account; very few studies [12] have reported repeat
measurements per individual. In this work, we measured
more than 900 saccade latencies in each of four subjects
(Fig. B) and demonstrate that the intra-subject variability
can be quite substantial. These recordings were enabled by
the flexible nature of our measurement system that allows
for 120 saccade measurements in less than five minutes.
Considering the criteria to reject certain saccade latencies,
we are still able to retain, on average, a sizable amount (73%)
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Fig. 4. Distribution of mean saccade latency values from 21 healthy
individuals.

Count
w E

N}




1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15
Session Number

Fig. 5. Changes in the mean saccade latency across recording sessions. An
individual subject is represented by a distinct color. The error bars indicate
one sample standard deviation above and below the mean for each recording
session. The dashed lines indicate linear regression on the mean values
across recording sessions.

of data per session across subjects. With this amount of data,
we observed that the shape and parameters of the saccade
latency distributions differ across normal subjects, as seen
in [12]. This suggests that the common approach of pooling
data from different subjects may indeed obscure important
intra-subject variation that might be important to track.

Moreover, we observed that the saccade latency distribu-
tion of the majority of the subjects may be modeled as a
log-normal distribution. This observation is consistent with
[13], in which neural mechanisms are discussed that might
give rise to log-normally distributed reaction times. It might
therefore be sufficient to characterize individual saccade-
latency distributions using the two parameters of a log-
normal distribution (log —p and log —o) and analyze how
these parameters change through time. In our longitudinal
analysis, however, we evaluated how the mean (u) and the
standard deviation (o) of the saccacde-latency distributions
changed across time. These statistics were chosen over
the mode or the median for two major reasons: (1) the
mode, mean, and median tracked one another closely; and
(2) clinical studies usually report the mean and standard
deviation.

One of the goals of our work is elucidating whether
repeat measurements of saccade latency can be used to
assess neurocognitve decline. Therefore, it is important to
understand the behavior and variability of saccade latency in
healthy subjects. To aid our understanding, we took multi-
ple measurements of saccade latency per individual across
days and analyzed the patterns in these measurements. The
recording sessions are sequential but were not necessarily
taken on consecutive days. Ultimately, the mean and standard
deviation of the saccade-latency distributions were analyzed
as a function of the individual recording sessions. Fig. [
shows that for each subject, the mean saccade latency and
the standard deviation change across recording sessions. A
linear model on the mean saccade latencies across recording
sessions accounted for 7% to 82% of the variability in the
measurements. This suggests that although the mean saccade
latencies varies with the number of recording sessions, there
are other factors (such as tiredness or test-taking strategies)
that introduce variability. To quantify the changes in these
values for tracking of disease progression, we need to analyze
a sufficient amount of recordings to isolate these factors.

With our approach to measure saccade latency using laptop
and smartphone cameras, it is promising to identify these
factors while current clinical methods are too restrictive.

V. CONCLUSIONS

We present a method to measure saccade latency outside
of the clinical environment using a consumer-grade camera.
Furthermore, our implementation of a mathematical model
to estimate saccade latency is robust to high-frequency noise,
allows for automated rejection of bad saccades and therefore
enables efficient large-scale data analysis. We collected over
11,000 saccade latency measurements across 21 healthy vol-
unteers and observed that the saccade-latency distributions
of normal subjects have distinctive shapes. A longitudinal
analysis also demonstrates that saccade distributions are
variable across recording sessions. A deeper understanding
of these variations is essential to put into perspective the
saccade-latency changes seen in patients with neurocognitive
disease.
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