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Video	is	the	Biggest	Big	Data		

Need	energy-efficient	pixel	processing!	

Over	70%	of	today’s	Internet	traffic	is	video	
Over	300	hours	of	video	uploaded	to	YouTube	every	minute	

Over	500	million	hours	of	video	surveillance	collected	every	day	

Energy	limited	due	
to	ba1ery	capacity	

Power	limited	due	
to	heat	dissipa8on	
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Energy-Efficient	Pixel	Processing	
Next-Genera8on	Video	Coding	(Compress	Pixels)	

Ultra-HD	
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Energy-Efficient	Computer	Vision	&	Deep	Learning	(Understand	Pixels)	

RecogniCon	 Self-Driving	Cars	 AI	

Goal:	Make	computer	vision	as	ubiquitous	as	video	coding	

Goal:	Increase	coding	efficiency,	speed	and	energy-efficiency	



Energy-Efficient	Cross-Layer	Design	
Algorithms	

Architectures	

Circuits	

Systems	
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Energy-Efficient Video 
Compression  



High	Efficiency	Video	Coding	(HEVC)	6 

Coding	
Efficiency	

Efficient	
ImplementaQon	

Larger	and	Flexible	Coding	Block	Size	 X	

More	SophisQcated	Intra	PredicQon	 X	

Larger	InterpolaQon	for	MoQon	
Comp.	

X	

Larger	Transform	Size	 X	

Parallel	Deblocking	Filter	 X	

Sample	AdapQve	Offset	 X	

High-Throughput	CABAC	 X	 X	

High	Level	Parallel	Tools	 X	

Size Energy 

H.265/HEVC	
(2013)	

MPEG-2	
(1994)	

H.264/AVC	
(2003)	

4x 

1.5x 

2x 

2x 

Joint	algorithm	and	hardware	design	is	required	to	address	coding	
efficiency,	throughput	and	power	challenges	

•  HEVC	achieves	~2x	higher	coding	efficiency	than	H.264/AVC		
•  High	throughput	(Ultra-HD	8K	@	120fps)	&	low	power	

–  ImplementaQon-friendly	features	(e.g.	built-in	parallelism)	



•  Large	transforms	give	coding	
gain:	7-9%	

•  Adapt	to	sparsity	of	coefficients	

•  Enable	constant	energy/pixel	for	
all	transform	sizes	

	

Efficient	Hardware	for	HEVC	7 

[M.	Tikekar	et	al.,	ICIP	2014]	

Energy-Efficient	HEVC	Transform	
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2	
3	
4	
5	
6	

4x4	 8x8	 16x16	 32x32	
Transform Size 

Energy/
pixel 

Exploit  
Sparsity 

•  CABAC	bo'leneck	in	H.264/AVC	
•  HEVC	4x	faster	than	H.264/AVC	
•  Ultra-HD	8K	@	120fps	

•  Also	gives	coding	gain:	3-5%	
	

[Y.-H.	Chen	et	al.,	TCSVT	2015]	

High-Throughput	HEVC	CABAC	

bits 

De-Binarizer  
(DB) 

Arithmetic 
Decoder (AD) 

Context  
Memory 

Context  
Selection 

 (CS) 

syntax 
elements 

Context Modeling (CM) 

bins 

probability 

bypass 



Low	Power	HEVC	Decoder	for	Wearable	Devices	8 

On-chip 
Buffer 

5.8mm 

5.
1m

m
 

eDRAM (2x4 banks) 

eDRAM (3x4 banks) 

eDRAM Core 1 

Core 3 

Core 2 

Core 4 C
A

B
A

C
 

Entropy 
Decoding 

Inter/Intra 
Prediction 

Inverse 
Transform 

Loop 
Filter + 

Frame 
Buffer 

bits 11001 

prediction 

residue 

pixels 

motion vectors 
intra angles 

transform 
coefficients 

1 
2 

3 

compressed  
video 

decompressed  
video 

Reduce	On-chip	and	Off-chip	
Data	Movement	

[Tikekar	et	al.,	VLSI	2017]	
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15 9 12 17 

3 15 12 11 

6 7 2 16 

4 × 4 block of pixels 

(16 × 8b) 

10 3 0 1 

13 7 10 15 

1 13 10 9 

4 5 0 14 

= 

minimum 

( M : 8b) 

range 

( R : 4b) 

delta 

( D : 16 × 4b) 

4- 

floor(log
2
(x + 1)) •  Memory	consumes	2.8x	to	6x	more	

energy	than	video	decoder	
•  Use	low	cost	compression	to	reduce	

storage	cost	of	frame	buffer			
•  Total	decoder	system	power	of	25mW	
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Compression Inspired by 
Computer Vision 



SIFT	feature	matching	10 

SIFT	features	are	widely	used	to	establish	
correspondence	between	two	similar	images	

[DG Lowe, IJCV 2004] 



SIFT	is	Rotate	Invariant	11 

SIFT	descriptor Canonizing	the	rotaQon 

Before	the	matching,	SIFT	descriptors	are	normalized	
to	the	canonical	pose	(dominant	gradient)	so	that	
patches	of	different	orientaQon	can	be	matched.	



Intra	Block	Copy	for	SCll	Image	Coding	12 

NOT	rotate	invariant.	Limited	to	screen	content.	

Use	one	block	to	predict	repeQQve	blocks.	Only	encode	
the	difference	(residual).	

 
[Yu et al., JVT-C151], 

[Budagavi et al., JCTVC-M0350], 
[Peng et al, JCTVC-N0256]  



Rotate	Intra	Block	Copy	13 

RepeCCve	structures	with	rotaCon	
In	both	screen	content	and	camera	captured	images	



ReducCon	of	Residual	Energy		14 

40%	reducQon	of	residual	energy	over	HEVC	
27%	reducQon	of	residual	energy	over	HEVC	+	Block	Copy	

First frame of ParkScene Sequence 

[Z.	Zhang	et	al.,	ICIP	2015]	

HEVC	+	Block	Copy	HEVC	 HEVC	+	Rotate	
Block	Copy	

However, there is overhead in signaling the rotate angle and motion vector 



MoCon	Vector	PredicCon	15 

Motion vectors need to be on the same rotated 
coordinate system 

Reduce average bit rate of motion vector difference by 25% 

[Z.	Zhang	et	al.,	ICIP	2015]	



HEVC	+	Intra	Block	Copy	vs.		
HEVC	+	Rotate	Intra	Block	Copy	16 

•  Residual Energy 
reduction of 20.7% 

•  BD-rate savings of 3.6% 

Evaluate on First Frame of 
JCT-VC test sequences 

[Z.	Zhang	et	al.,	ICIP	2015]	

BD-rate 
reduction 
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Energy-Efficient Deep 
Learning 



18 Example	ApplicaCons	of	Deep	Learning	
Computer Vision Speech Recognition 

Game Play Medical 

18 



Using	Deep	Learning	for	Compression	19 

[Google, ICLR 2016, 
CVPR 2017] 

End to End Auto Encoder 

Coding Tool in Video Codec 

Intra Prediction (Upsampling) [Li et al., TCSVT 2017] 

Proposed for VVC:  
prediction, loop filtering, 

upsampling, etc. 
 

JVET AHG: Neural 
Networks in Video Coding 

Challenge: Computation complexity higher than typical image processing 



Deep	ConvoluConal	Neural	Networks	

Classes FC 
Layers 

Modern deep CNN: up to 1000 CONV layers 

CONV 
Layer 

CONV 
Layer 

Low-level 
Features 

High-level 
Features 
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Deep	ConvoluConal	Neural	Networks	

CONV 
Layer 

CONV 
Layer 

Low-level 
Features 

High-level 
Features 

Classes FC 
Layers 

1 – 3 layers 
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Deep	ConvoluConal	Neural	Networks	

Classes CONV 
Layer 

CONV 
Layer 

FC 
Layers 

Convolutions account for more 
than 90% of overall computation, 
dominating runtime and energy 
consumption 
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High-Dimensional	CNN	ConvoluCon	

R 

R 

H 

Input Image (Feature Map) 

Filter 

H 

23 



R 

Filter 

High-Dimensional	CNN	ConvoluCon	

Input Image (Feature Map) 

R 

Element-wise 
Multiplication 

H 

H 
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R 

Filter 

R 

High-Dimensional	CNN	ConvoluCon	

E 

E 
Partial Sum (psum) 

Accumulation 

Input Image (Feature Map) Output Image 

Element-wise 
Multiplication 

H 

a pixel 

H 
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H 
R 

Filter 

R 

High-Dimensional	CNN	ConvoluCon	

E 

Sliding Window Processing 

Input Image (Feature Map) 
a pixel 

Output Image 

H E 
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H 

High-Dimensional	CNN	ConvoluCon	

R 

R 

C 

Input Image 

Output Image 
C Filter 

Many Input Channels (C) 

E 

H E 

AlexNet:	3	–	192	Channels	(C)		

27 



High-Dimensional	CNN	ConvoluCon	

E 

Output Image Many 
Filters (M) 

Many 
Output Channels (M) 

M 

…
 

R 

R 
1 

R 

R 

C 

M 

H 

Input Image 
C 

C 

H E 

AlexNet:	96	–	384	Filters	(M)		
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High-Dimensional	CNN	ConvoluCon	

…
 

M 

…
 

Many 
Input Images (N) Many 

Output Images (N) 
…

 

R 

R 

R 

R 

C 

C 

Filters 

E 

E 

H 

C 

H 

H 

C 

E 
1 1 

N N 

  

  

  

  

H E 

Image	batch	size:	1	–	256	(N)	
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Large	Sizes	with	Varying	Shapes	

Layer	 Filter	Size	(R)	 #	Filters	(M)	 #	Channels	(C)	 Stride	
1	 11x11	 96	 3	 4	
2	 5x5	 256	 48	 1	
3	 3x3	 384	 256	 1	
4	 3x3	 384	 192	 1	
5	 3x3	 256	 192	 1	

AlexNet1	ConvoluConal	Layer	ConfiguraCons	

34k	Params	 307k	Params	 885k	Params	

Layer	1	 Layer	2	 Layer	3	

1.	[Krizhevsky,	NIPS	2012]	

105M	MACs	 224M	MACs	 150M	MACs	

30 



ProperCes	We	Can	Leverage	

•  OperaQons	exhibit	high	parallelism	
	à	high	throughput	possible	

•  Memory	Access	is	the	Boqleneck	

31 

  
  

  
  

ALU 
  

  

Memory Read Memory Write MAC* 

* multiply-and-accumulate 

filter weight 
image pixel 
partial sum updated 

partial sum 

•  Example:  AlexNet [NIPS 2012]  has 724M MACs  
  à 2896M DRAM accesses required 

Worst Case: all memory R/W are DRAM accesses 

200x 1x 

  
  

DRAM DRAM 



ProperCes	We	Can	Leverage	

•  OperaQons	exhibit	high	parallelism	
	à	high	throughput	possible	

•  Input	data	reuse	opportuniQes	(up	to	500x)	
	 	à	exploit	low-cost	memory	

ConvoluConal	
Reuse		

(pixels,	weights)	

Filter	 Image	

Image	
Reuse	
(pixels)	

	

2 

1 

Filters	

Image	

Filter	
Reuse	

(weights)	
	

Filter	

Image	

2 

1 

32 



Highly-Parallel	Compute	Paradigms	33 

Temporal Architecture 
(SIMD/SIMT) 

Register File 

Memory Hierarchy 

Spatial Architecture 
(Dataflow Processing) 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

Control 

Memory Hierarchy 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 



Advantages	of	SpaCal	Architecture	34 

Temporal Architecture 
(SIMD/SIMT) 

Register File 

Memory Hierarchy 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

Control 

Spatial Architecture 
(Dataflow Processing) 

Memory Hierarchy 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

Efficient	Data	Reuse	
Distributed	local	storage	(RF)	

Inter-PE	CommunicaCon	
Sharing	among	regions	of	PEs	

Processing	
Element	(PE)	

Control 

Reg File 0.5 – 1.0 kB 

  

  



Data	Movement	is	Expensive	35 

DRAM ALU 

Buffer ALU 

PE ALU 

RF ALU 

ALU 

Data Movement Energy Cost 

200× 

6× 

2× 

1× 

1× (Reference) 

Off-Chip 
DRAM ALU = PE 

Processing Engine 

Accelerator 

Global
Buffer 

PE 

PE PE 

ALU 

Maximize	data	reuse	at	lower	levels	of	hierarchy	



How	to	Map	the	Dataflow?	

Spatial Architecture 
(Dataflow Processing) 

Memory Hierarchy 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

CNN	ConvoluCon	

? 

36 

pixels 
weights 

partial 
sums 

Goal:	Increase	reuse	of	input	data	
(weights	and	pixels)	and	local	
parCal	sums	accumulaQon	



Weight	StaConary	(WS)	

•  Minimize weight read energy consumption 
−  maximize convolutional and filter reuse of weights 

•  Examples:  
  [Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014] 

[Park, ISSCC 2015] [Google’s TPU, ISCA 2017] 

  
            

  

  

Global Buffer 

W0 W1 W2 W3 W4 W5 W6 W7 

  

  

  

  

Psum Pixel 

PE 
Weight 
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•  Minimize partial sum R/W energy consumption 
−  maximize local accumulation 

•  Examples:  
  

Output	StaConary	(OS)	

[Gupta, ICML 2015] [ShiDianNao, ISCA 2015] 
[Peemen, ICCD 2013] 

  
            

  

  

Global Buffer 

P0 P1 P2 P3 P4 P5 P6 P7 

  

  

  

  

Pixel Weight 

PE 
Psum 
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Row	StaConary	Dataflow	

PE 1 

Row 1 Row 1 

PE 2 

Row 2 Row 2 

PE 3 

Row 3 Row 3 

Row 1 

= * 

PE 4 

Row 1 Row 2 

PE 5 

Row 2 Row 3 

PE 6 

Row 3 Row 4 

Row 2 

= * 

PE 7 

Row 1 Row 3 

PE 8 

Row 2 Row 4 

PE 9 

Row 3 Row 5 

Row 3 

= * 

* * * 

* * * 

* * * 
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OpQmize	for	overall	energy	efficiency	instead	for	only	a	
certain	data	type	for	up	to	2.5x	energy	savings	

[Chen	et	al.,	Eyeriss,	ISCA	2016]	



Sparsity	in	Data	

9 -1 -3 
1 -5 5 
-2 6 -1 

Many zeros in output fmaps after ReLU 
ReLU 9 0 0 

1 0 5 
0 6 0 

0 

0.2 

0.4 

0.6 

0.8 

1 

1 2 3 4 5 
CONV Layer 

# of activations # of non-zero activations 

(Normalized) 
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Exploit	Sparsity	41 

[Chen	et	al.,	ISSCC	2016]	

== 0 Zero 
Buff 

  
  Scratch Pad   

Enable 

Zero Data Skipping 

Register	File	

No	R/W	 No	Switching	

Method	1.	Skip	memory	access	and	computa*on	

Method	2.	Compress	data	to	reduce	storage	and	data	movement	

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	

DR
AM

	Ac
ce
ss	

(M
B)	

AlexNet	Conv	Layer	

Uncompressed	 Compressed	

1 2 3 4 5 
AlexNet Conv Layer 

DRAM  
Access  
(MB)  

0 

2 

4 

6 
1.2× 

1.4× 
1.7× 

1.8× 
1.9× 

Uncompressed 
Fmaps + Weights 

RLE Compressed 
Fmaps + Weights 

45%	power	reducCon	



Eyeriss:	Energy-Efficient	Deep	Learning	42 

On
-ch

ip 
Bu

ffe
r Spatial  

PE Array 

>	10x	more	energy-efficient	than	mobile	GPUs		

4mm	

4m
m
	

MIT	Deep	Learning	Chip		
[ISSCC	2016,	ISCA	2016]	

278mW for AlexNet @ 30fps (batch size 4) in 65nm LP CMOS  



Features:	Energy	vs.	Accuracy		43 

0.1 

1 

10 

100 

1000 

10000 

0 20 40 60 80 

Accuracy	(Average	Precision)	

Energy/	
Pixel	(nJ)	

VGG162	

AlexNet2	

HOG1	

Measured	in	65nm*	
1.   [Suleiman,	VLSI	2016]	
2.   [Chen,	ISSCC	2016]		
	
*	Only	feature	extrac8on.	Does	
not	include	data,	augmenta8on,	
ensemble	and	classifica8on	
energy,	etc.	

Measured	in	on	VOC	2007	Dataset	
1.   DPM	v5	[Girshick,	2012]	
2.   Fast	R-CNN	[Girshick,	CVPR	2015]		

Exponen8al	

Linear	

Video		
Compression	

[Suleiman et al., ISCAS 2017] 



•  Popular	efficient	DNN	algorithm	approaches		

	

	

	

Design	of	Efficient	DNN	Algorithms	44 

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Network	Pruning	

C	
1	

1	
S	

R	

1	

R	

S	
C	

Compact	Network	Architectures	

Examples:	SqueezeNet,	MobileNet	

...	also	reduced	precision	

•  Focus	on	reducing	number	of	MACs	and	weights	
•  Does	it	translate	to	energy	savings?	

[Chen et al., SysML 2018] 



Energy-EvaluaCon	Methodology	45 

CNN Shape Configuration 
(# of channels, # of filters, etc.) 

CNN Weights and Input Data 

  

[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …] 

CNN Energy Consumption  
L1 L2 L3 

Energy 

… 

Memory 
Accesses 

Optimization 

# of MACs 
Calculation 

  

  

  
  

…
 

# acc. at mem. level 1 
# acc. at mem. level 2 

# acc. at mem. level n 

# of MACs 

Hardware Energy Costs of each 
MAC and Memory Access 

Ecomp 

Edata 

Energy estimation tool available at http://eyeriss.mit.edu    



Key	ObservaCons	

•  Number	of	weights	alone	is	not	a	good	metric	for	energy	
•  All	data	types	should	be	considered		
	

Output	Feature	Map	
43%	

Input	Feature	Map	
25%	

Weights	
22%	

ComputaCon	
10%	

Energy	ConsumpCon	
of	GoogLeNet	

[Yang et al., CVPR 2017] 
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Deeper CNNs with fewer weights do not necessarily consume less energy 
than shallower CNNs with more weights 

AlexNet	

GoogLeNet	

ResNet-50	
VGG-16	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	ConsumpCon	

Energy	ConsumpCon	of	ExisCng	DNNs	47 

[Yang et al., CVPR 2017] 



Reduce number of weights by removing small magnitude weights 

AlexNet	

GoogLeNet	

ResNet-50	
VGG-16	

AlexNet	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	ConsumpCon	

Original	DNN	 Magnitude-based	Pruning	[6]	[Han	et	al.,	NIPS	2015]	

Magnitude-based	Weight	Pruning	48 

[Yang et al., CVPR 2017] 



[Yang et al., CVPR 2017] 

Directly target energy and incorporate it into the optimization of DNNs 
to provide greater energy savings 

AlexNet	

GoogLeNet	

ResNet-50	
VGG-16	

AlexNet	AlexNet	

GoogLeNet	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	ConsumpCon	

Original	DNN	 Magnitude-based	Pruning	[6]	 Energy-aware	Pruning	(This	Work)	

1.74x 

Energy-Aware	Pruning	49 



NetAdapt:	Planorm-Aware	DNN	AdaptaCon	50 

•  AutomaCcally	adapt	DNN	to	a	mobile	plasorm	to	reach	a	
target	latency	or	energy	budget	

•  Use	empirical	measurements	to	guide	opQmizaQon	(avoid	
modeling	of	tool	chain	or	plasorm	architecture)		

[Yang et al., arXiv 2018] 

In collaboration with Google’s Mobile Vision Team 

NetAdapt Measure 

… 

Network	Proposals	

Empirical	Measurements	
Metric Proposal A … Proposal Z 

Latency 15.6 … 14.3 

Energy 41 … 46 

…
 

…
 

…
 

Pretrained	
Network	 Metric Budget 

Latency 3.8 

Energy 10.5 

Budget	

Adapted	
Network	

…
 

…
 

Plasorm	

A	 B	 C	 D	 Z	



•  NetAdapt	boosts	the	real	inference	speed	of	MobileNet	by	
1.7x	with	higher	accuracy	

Latency	vs.	Accuracy	Tradeoff	with	NetAdapt	51 

+0.3% accuracy 
1.7x faster 

+0.3% accuracy 
1.6x faster 

Reference: 
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017 
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018 

*Tested on the ImageNet dataset and a Google Pixel 1 CPU 



Tutorial	Material	on	Efficient	DNNs	52 

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, “Efficient Processing of Deep 
Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE, 2017 

http://eyeriss.mit.edu/tutorial.html 



53 

Efficient Computer Vision 
using Compression 



Super-ResoluCon	on	Mobile	Devices	54 

Use super-resolution to improve the viewing experience of 
lower-resolution content (reduce communication bandwidth) 

Screens are getting larger 

Low		
ResoluQon	
Streaming	

Transmit low resolution for lower bandwidth 

High	
ResoluQon	
Playback	



Complexity	of	Super	ResoluCon	Algorithms	55 

SRCNN (Dong et, al. ECCV 14) 

State-of-the-art super resolution algorithms use CNNs 
à computationally expensive, especially at high resolutions (HD or 4K)  

8032 MACs/pixel à ~500 GMAC/s for HD @ 30 fps  



FAST:	A	Framework	to	Accelerate	SuperRes	56 

A framework that accelerates any SR algorithm by up to 
15x when running on compressed videos 

FAST 
SR 

15x faster 

Compressed video 

SR algorithm 

Real-time 

[Zhang	et	al.,	CVPRW	2017]	



Free	InformaCon	in	Compressed	Videos	57 

  

Compressed video 
Pixels 

Video as a stack of pixels 

Block-structure Motion-compensation 

Representation in compressed video 

This representation can help accelerate super-resolution 

Decode 



Transfer	the	Super-ResoluCon	Results	58 

High Res Frame 1 

Low Res Frame 1 Low Res Frame 2 

High Res Frame 2 

Paste 

motion vector 

Super 
resolution fsr 

Bicubic  



High-res video 

Transfer	is	Lightweight	59 

Low-res video 
High-res video 

SR 

Low-res video 

Transfer 

Fractional 
Interpolation 

Bicubic 
Interpolation 

Skip Flag 

The complexity of the transfer is comparable to bicubic interpolation. 
Transfer N frames, accelerate by N 

Transfer allows SR to run on only a subset of frames 

SR 
SR SR SR 

SR 



Challenge	1:	Scene	TransiCon	60 

Transfer will NOT work if there is a transition of scenes 

GoP structure in the compressed video provides video 
segmentation for free 

Group-of-Picture (GoP) Structure 

Transfer? 



Challenge	2:	PredicCon	Error		61 

FAST skips transfer on blocks 
with large residual 

Ground-truth Non-Adaptive 
Artifacts when missing high frequency 

components of residual 

Adaptive 
Use lightweight metric to identify 

occurrence and skip transfer 



Challenge	3:	Blocking	ArCfacts	62 

No  
deblocking SRCNN 

Overlapped Block Processing 

Non-Overlapped Block Processing 

No blocking artifacts 
Process each pixel multiple times 

Process each pixel once 
Blocking artifacts 



Challenge	3:	Blocking	ArCfacts	63 

With  
deblocking 

No  
deblocking SRCNN 

32.87 

32.53 

32.84 

32.3 

32.4 

32.5 

32.6 

32.7 

32.8 

32.9 

SRCNN no deblock deblock 

PSNR 

FAST applies the deblocking filter to alleviate the blocking 
effect caused by non-overlapping block division 



Challenge	4:	Accumulated	Error	64 

When a SR result gets transferred multiple times, the error 
accumulates 

Bicubic  

FAST estimates the accumulated error as the accumulated Laplacian 
of the residual, and stops the transfer when it exceeds a threshold 

transfer transfer transfer 



EvaluaCon:	AcceleraCng	SRCNN	65 



Visual	EvaluaCon	66 

Ground-truth SRCNN SRCNN with FAST Bicubic 



Visual	EvaluaCon	67 

SRCNN FAST + 
SRCNN 

Bicubic 



•  Transfer	the	SR	results	guided	by	moCon	vectors	

•  AdapCvely	perform	the	transfer	by	thresholding	on	the	
residue,	and	accumulated	Laplacian	

•  Accelerates	SR	algorithms	by	up	to	15x	with	minimal	PSNR	loss	

Summary	of	FAST	68 

FAST 
SR algorithm SR 

15x faster 

Compressed video 

Real-time 

Code released at www.rle.mit.edu/eems/fast  

[Zhang	et	al.,	CVPRW	2017]	



Enable	Real-Cme	NavigaCon	on	nano	drone	69 

Enable	energy-efficient	navigaQon	
for	Search	and	Rescue	

Big battery 

Mobile GPU 
Mount? 

Image source: Cheerson 

In collaboration with Sertac Karaman and Luca Carlone (AeroAstro) 

[Zhang et al., RSS 2017] 
http://navion.mit.edu  



LocalizaCon	with	Visual	InerCal	Odometry	70 

Navion:	Fully	integrated	VIO	system	on-chip	consuming	<	30mW	

VIO	determines	locaQon/orientaQon	of	drone	from	images	and	IMU	
(also	used	by	headset	in	Augmented	Reality	and	Virtual	Reality)	

http://navion.mit.edu  

KF1	

L1	

L2	

L3	

L4	

L5	

L6	

KF2	

KF3	
KF4	Legend	

KFj:	Keyframe	(j)	
x:				Drone’s	state	
R:			Orienta5on	
P:			Posi5on	
fi:			2D	feature	(i)	
Li:			3D	Landmark	(i)	

Camera	

IMU	

…	

…	

Stereo	

Images	

Gyro	&	Accelerometer	

Measurements	

Preintegra5on	

State:	

x	=	{R,	P}	

Preintegra5on	

…	

Input	to	

vision	
frontend	(VFE)	

Input	to	

IMU	frontend	
(IFE)	

No	SynchronizaPon	

Graph	opPmizaPon	

Drone’s	states	in	horizon:	
(x1),	(x2)	…	(xH)	

3D	feature	tracks	

Backend	(BE)	output	

Trajectory	

Orienta5on	&	
Posi5on	

Sparse	3D	map	

IFE	

VFE	

BE	

Trajectory	

3D	feature	

tracks	



Visual	InerCal	Odometry	Demo	71 

http://navion.mit.edu  



Compression	to	Reduce	Energy	and	Cost	72 

Apply	various	compression	techniques	to	reduce	on-chip	storage	
cost	by	4.1x.	EnQre	VIO	system	is	fully	integrated	on	chip	(20mm2).	

[ Suleiman et al., VLSI 2018] 

Memory	dominates	energy	and	chip	area.			

Navion Architecture  
Processes high dimensional data 

http://navion.mit.edu  



•  Video	is	perhaps	the	biggest	of	the	‘big	data’	being	collected	
and	transmiqed.		

•  Moving	from	compressing	to	understanding	pixels	at	the	edge	
increasingly	desirable	due	to	privacy/security	and	latency	
constraints.	However,	energy	significantly	limited	at	edge.	

•  Co-design	of	algorithms	and	hardware	can	enable	energy-
efficient	video	coding,	computer	vision	and	deep	learning	such	
that	they	can	efficiently	operate	on	edge	devices	such	as	
smartphones	and	autonomous	vehicles/drones.	

•  Bridging	the	gap	between	video	coding,	computer	vision	and	
deep	learning	plays	an	important	role	in	overcoming	many	of	
the	challenges	faced	by	next	generaQon	of	edge	devices.	

Summary	73 
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