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Outline 

 
•  Selecting a Machine Learning Approach 
 
•  Limitations of Existing Efficient DNN Approaches  
 
•  Benchmarking Metrics for DNN Hardware 

Slide 2 



Symposia on VLSI Technology and Circuits 

Selecting a Machine Learning 
Approach 

A. Suleiman*, Y.-H. Chen*, J. Emer, V. Sze,  
“Towards Closing the Energy Gap Between HOG and CNN Features for 

Embedded Vision,” ISCAS 2017 
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Hand-Crafted vs. Learned Features 
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Hand-Crafted Features (HOG) 
HOG	=	Histogram	of	Oriented	Gradients	

Slide 5 

[Dalal and Triggs, CVPR 2005] 
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Compare HOG and CNN 5 

Object	Detec)on	using	HOG	features	
and	Deformable	Parts	Models		
[Suleiman	et	al.,	VLSI	2016]	

4000 µm 
4000 µm

 
Global 
Buffer 

Spatial Array 
(168 PEs) 

4000 µm 

4000 µm
 

Eyeriss:	Convolu1onal	Neural	
Networks	

[Chen	et	al.,	ISSCC	2016,	ISCA	2016]	

Compare	using	measured	results	from	test	chips	(65	nm)	
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Features: Energy vs. Accuracy Tradeoff  
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HOG1	

Measured	in	65nm*	
1.   [Suleiman,	VLSI	2016]	
2.   [Chen,	ISSCC	2016]		
	
*	Only	feature	extrac6on.	Does	not	include	
data,	augmenta6on,	ensemble	and	
classifica6on	energy,	etc.	

Measured	in	on	VOC	2007	Dataset	
1.   DPM	v5	[Girshick,	2012]	
2.   Fast	R-CNN	[Girshick,	CVPR	2015]		

Exponen6al	

Linear	

Video		
Compression	

[Suleiman et al., ISCAS 2017] 
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HOG vs. CNN: Hardware Cost 

HOG	[VLSI	2016]	 CNN	[ISSCC	2016]	

Technology	 TSMC	LP	65nm	 TSMC	LP	65m	

Gate	Count	(kgates)	 893	 1176	

Memory	(kB)	 159	 181.5	

Global 
Buffer 

Spatial Array 
(168 PEs) 

4000 µm 

4000 µm
 

4000 µm 
4000 µm

 

Similar	Hardware	Cost	(comparable	with	Video	Compression)	
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HOG vs. CNN: Throughput 

Global 
Buffer 

Spatial Array 
(168 PEs) 

4000 µm 

4000 µm
 

4000 µm 
4000 µm

 

HOG	 CNN	(AlexNet)	 CNN	(VGG16)	

Throughput	(Mpixels/s)	 62.5	 1.8	 0.04	

GOP/Mpixel	 0.7	 25.8	 610.3	

Throughput	(GOPS)	 46.0	 46.2	 21.4	

Throughput	gap	explained	by	GOP/Mpixel	gap	
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Similar	Hardware	Cost	(comparable	with	Video	Compression)	

Global 
Buffer 

Spatial Array 
(168 PEs) 

4000 µm 

4000 µm
 

4000 µm 
4000 µm

 

HOG	 CNN	(AlexNet)	 CNN	(VGG16)	

Energy	(nJ/pixel)	 0.5	 155.5	 6742.9	

GOP/Mpixel	 0.7	 25.8	 610.3	

Energy	(GOPS/W)	 1570	 166.2	 90.7	

DRAM	(B/pixel)	 1.0	 74.7	 2128.6	

Energy	gap	larger	than	GOPS/Mpixel	gap	

HOG vs. CNN: Energy and DRAM Access 
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•  CNNs require more operations per pixel  
–  AlexNet vs. HOG = 37x 
–  VGG-16 vs. HOG = 872x 

•  CNN requires a programmable architecture 
–  Example: AlexNet CONV layers have 2.3M weights (assume 8-bits per 

weight); Area budget of HOG chip is ~1000 kgates, 150kB 
–  Design A: Hard-wired weights  

•  Only have 10k multipliers with fixed weights (>100x increase in area) 

–  Design B: Store all weights on-chip  
•  Only store 150k weights on chip (>10x increase in storage) 

–  Support different shapes per layer and different weights 

Energy Gap between CNN and HOG 

Slide 11 
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Limitations of Existing Efficient 
DNN Approaches 

Y.-H. Chen*, T.-J. Yang*, J. Emer, V. Sze,  
“Understanding the Limitations of Existing Energy-Efficient Design 

Approaches for Deep Neural Networks,” SysML 2018. 
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Energy-Efficient Processing of DNNs 

Slide 13 

A significant amount of algorithm and hardware research  
on energy-efficient processing of DNNs 

We identified various limitations to existing approaches 

V. Sze, Y.-H. Chen,  
T-J. Yang, J. Emer,  

“Efficient Processing of 
Deep Neural Networks:  
A Tutorial and Survey,” 
Proceedings of the IEEE, 

Dec. 2017 
eyeriss.mit.edu/tutorial.html 
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Design of Efficient DNN Algorithms 

Slide 14 

•  Popular efficient DNN algorithm approaches  
 

 

•  Focus on reducing number of MACs and weights 
•  Does it translate to energy savings? 
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Compact	Network	Architectures	

Examples:	SqueezeNet,	MobileNet	

...	also	reduced	precision	
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Data Movement is Expensive 

Slide 15 

Energy of weight 
depends on memory 

hierarchy and dataflow 

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 
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Energy-Evaluation Methodology 

Slide 16 

Energy estimation 
tool available at 
eyeriss.mit.edu 

DNN Shape Configuration 
(# of channels, # of filters, etc.) 

DNN Weights and Input Data 
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Optimization 
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MAC and Memory Access 
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[Yang et al., CVPR 2017] 
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Key Observations 

•  Number of weights alone is not a good metric for energy 
•  All data types should be considered  

17 

Output	Feature	Map	
43%	

Input	Feature	Map	
25%	

Weights	
22%	

Computa:on	
10%	

Energy	Consump:on	
of	GoogLeNet	

[Yang et al., CVPR 2017] 
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AlexNet	

GoogLeNet	

ResNet-50	
VGG-16	

AlexNet	
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Original	DNN	 Magnitude-based	Pruning	[6]	[Han	et	al.,	NIPS	2015]	

Magnitude-based Weight Pruning 

18 

Reduce number of weights by removing small magnitude weights 

[Yang et al., 
CVPR 2017] 
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Normalized	Energy	Consump9on	

Original	DNN	 Magnitude-based	Pruning	[6]	 Energy-aware	Pruning	(This	Work)	

1.74x 

Directly target energy and incorporate it into the optimization 
of DNNs to provide greater energy savings 

19 

Energy-Aware Pruning 

[Yang et al., 
CVPR 2017] 
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NetAdapt: Platform-Aware DNN Adaptation 

•  Automatically adapt DNN 
to a mobile platform to 
reach a target latency or 
energy budget 

•  Use empirical 
measurements to guide 
optimization (avoid 
modeling of tool chain or 
platform architecture)  

NetAdapt Measure 

… 

Network	Proposals	

Empirical	Measurements	
Metric Proposal A … Proposal Z 

Latency 15.6 … 14.3 

Energy 41 … 46 

…
 

…
 

…
 

Pretrained	
Network	 Metric Budget 

Latency 3.8 

Energy 10.5 

Budget	

Adapted	
Network	

…
 

…
 

Pla8orm	

A	 B	 C	 D	 Z	

[Yang et al., arXiv 2018] In collaboration with Google’s Mobile Vision Team 
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Improved Latency vs. Accuracy Tradeoff 

21 

•  NetAdapt boosts the real inference speed of MobileNet 
by up to 1.7x with higher accuracy 

+0.3% accuracy 
1.7x faster 

+0.3% accuracy 
1.6x faster 

*Tested on the ImageNet dataset 
and a Google Pixel 1 CPU 
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Many Efficient DNN Design Approaches 
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Compact	Network	Architectures	
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0 1 1 0 0 1 1 0 

Reduce	Precision	
32-bit float 

8-bit fixed 

Binary 0 

No	guarantee	that	DNN	algorithm	
designer	will	use	a	given	approach.	

Need	flexible	hardware!	
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Roofline Model 

Slide 23 

DNN Processor 

Global 
Buffer 

PE 
Array 

DRAM 

BW 

[Williams et al., Comm ACM 2009]  

A tool that visualizes the performance of an architecture 
under various degrees of operational intensity 
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Eyexam: Understanding Sources of Inefficiencies in DNN 
Accelerators 

24 

A	systemaWc	way	to	evaluate	how	each	architectural	decision	affects	
performance	(throughput)	for	a	given	DNN	workload	

Tightens the roofline model 

[Chen et al., Eyeriss v2, arXiv 2018] 

(MAC/cycle) 

(MAC/data) 

Step 1: maximum workload parallelism 

Step 5: # of act. PEs under fixed storage capacity 

Step 2: maximum dataflow parallelism 
peak 
perf. Number of PEs (Theoretical Peak Performance) 

Step 3: # of act. PEs under a finite PE array size 
Step 4: # of act. PEs under fixed PE array dimensions 

workload operational intensity 

Step 7: lower act. PE utilization due to insufficient inst. BW 
Step 6: lower act. PE utilization due to insufficient avg. BW 

Slope = BW to only act. PE 
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Existing DNN Architectures 

•  Specialized DNN hardware often rely on certain properties of DNN in 
order to achieve high energy-efficiency 

•  Example: Reduce memory access by amortizing across MAC array 
 

25 

MAC array 
Weight 

Memory 

Activation 

Memory 

Weight reuse 

Activation reuse 
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Limitation of Existing DNN Architectures 

•  Example: reuse depends on # of channels, feature map/batch size  
–  Not efficient across all network architectures (e.g., compact DNNs) 
–  Can be challenging to exploit sparsity 

26 

MAC array 
(spatial 

accumulation) 
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(output channels) 

Number of 
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MAC array 
(temporal 

accumulation) 

Number of filters 
(output channels) 
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Existing Sparse DNN Architectures   

•  Sparse	DNN	architectures	translate	sparsity	from	pruning	into	improved	
energy-efficiency	and	throughput	
–  Perform	only	non-zero	MACs	and	move	data	in	compressed	format	

•  ExisWng	sparse	DNN	architectures	opWmized	for	either	CONV	or	FC	layer	due	
to	different	BW	and	data	reuse	requirements		

•  Efficient	for	sparse	DNNs,	but	overhead	for	dense	DNNs	
–  Compressed	format	results	in	memory	overhead	for	dense	DNNs	
–  AddiWonal	control	to	idenWfy	locaWon	of	non-zero	values	results	in	energy	overhead	for	
dense	DNNs	

	

27 

Since	there	is	no	guarantee	in	degree	of	sparsity,		
it	is	important	to	evaluate	the	overhead	on	dense	DNNs	
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Need More Comprehensive Benchmarks 

28 

Example:	
–  Sparse	and	Dense	
–  Large	and	Compact	network	architectures		
–  Different	Layers	(e.g.,	CONV	and	FC)	
–  Variable	Bit-width	

	

Processors	should	support	a	diverse	set	of	
DNNs	that	uFlize	different	techniques	

1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 

0 1 1 0 0 1 1 0 

Reduce	Precision	
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Binary	 0 
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Eyeriss v2: Balancing Flexibility and Efficiency 

29 

eyeriss.mit.edu 

[Chen et al., arXiv 2018] Over an order of magnitude faster and more  
energy efficient than Eyeriss v1 

Comparison on MobileNet 
Efficiently supports 
•  Wide range of filter shapes  

–  Large and Compact 

•  Different Layers  
–  e.g., CONV and FC 

•  Wide range of sparsity  
–  Dense and Sparse 
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Eyeriss v2: Balancing Flexibility and Efficiency 

•  Flexible dataflow, called Row-Stationary Plus (RS+), that enables the spatial 
tiling of data from all dimensions for high PE array utilization and data reuse for 
various layer shapes and sizes 

30 

eyeriss.mit.edu [Chen et al., arXiv 2018] 

Active PE
Idle PE

F1

S1

F1

S1
×
G1

Row Stationary Row Stationary Plus 

Output fmap width* Output fmap width* 

Filter width* 

Filter width* 

# channel groups* 

*tiling parameters 
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Eyeriss v2: Balancing Flexibility and Efficiency 

•  Flexible dataflow, called Row-Stationary Plus (RS+), that enables the spatial 
tiling of data from all dimensions for high PE array utilization and data reuse for 
various layer shapes and sizes 

•  Flexible NoC to support RS+ that can operate in different modes for different 
requirements 
–  Utilizes multicast to exploit spatial data reuse 

–  Utilizes unicast for high BW for weights for FC and weights & activations for compact network 
architectures 

•  Processes data in both compressed and raw format to minimize data movement 
for both CONV and FC layers 
–  Exploit sparsity in both weights and activations 

31 

eyeriss.mit.edu 
[Chen et al., arXiv 2018] 
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Benchmarking Metrics  
for DNN Hardware 

How can we compare designs? 

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer,  
“Efficient Processing of Deep Neural Networks:  A Tutorial and Survey,”  

Proceedings of the IEEE 2017 

32 
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Metrics for DNN Hardware 

•  Accuracy 
–  Quality of result for a given task 

•  Throughput 
–  Analytics on high volume data 
–  Real-time performance (e.g., video at 30 fps) 

•  Latency 
–  For interactive applications (e.g., autonomous navigation) 

•  Energy and Power 
–  Edge and embedded devices have limited battery capacity 
–  Data centers have stringent power ceilings due to cooling costs 

•  Hardware Cost  
–  $$$ 

33 



Symposia on VLSI Technology and Circuits 

Specifications to Evaluate Metrics 

•  Accuracy 
–  Difficulty of dataset and/or task should be considered 

•  Throughput 
–  Number of cores (include utilization along with peak performance) 
–  Runtime for running specific DNN models 

•  Latency 
–  Include batch size used in evaluation 

•  Energy and Power 
–  Power consumption for running specific DNN models 
–  Include external memory access 

•  Hardware Cost  
–  On-chip storage, number of cores, chip area + process technology 

34 
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Example: Metrics of Eyeriss Chip 

35 

Metric Units Input 
Name of CNN Model Text AlexNet 

Top-5 error classification 
on ImageNet 

# 19.8 

Supported Layers All CONV 

Bits per weight # 16 

Bits per input activation # 16 

Batch Size # 4 

Runtime  ms 115.3 

Power mW 278 

Off-chip Access per Image 
Inference 

MBytes 3.85 

Number of Images Tested # 100 

ASIC Specs Input 
Process Technology 65nm LP TSMC 

(1.0V) 

Total Core Area (mm2) 12.25 

Total On-Chip Memory 
(kB) 

192 

Number of Multipliers 168 

Clock Frequency (MHz) 200 

Core area (mm2) /
multiplier 

0.073 

On-Chip memory (kB) / 
multiplier 

1.14 

Measured or Simulated Measured 
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Comprehensive Coverage 

•  All metrics should be reported for fair evaluation of design 
tradeoffs 

•  Examples of what can happen if certain metric is omitted: 
– Without the accuracy given for a specific dataset and task, one 

could run a simple DNN and claim low power, high throughput, and 
low cost – however, the processor might not be usable for a 
meaningful task 

– Without reporting the off-chip bandwidth, one could build a 
processor with only multipliers and claim low cost, high throughput, 
high accuracy, and low chip power – however, when evaluating system 
power, the off-chip memory access would be substantial 

•  Are results measured or simulated? On what test data? 

36 
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Evaluation Process 

The evaluation process for whether a DNN system is a viable 
solution for a given application might go as follows:  
1.   Accuracy determines if it can perform the given task  
2.   Latency and throughput determine if it can run fast enough 

and in real-time 
3.   Energy and power consumption will primarily dictate the 

form factor of the device where the processing can operate  
4.   Cost, which is primarily dictated by the chip area, 

determines how much one would pay for this solution 

37 
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Summary  

•  The number of weights and MACs are not sufficient for evaluating the energy 
consumption and latency of DNNs 
–  Designers of efficient DNN algorithms should directly target direct metrics 

such as energy and latency and incorporate into the design   

•  Many of the existing DNN processors rely on certain properties of the 
DNN which cannot be guaranteed as the wide range techniques used for 
efficient DNN algorithm design has resulted in a more diverse set of 
DNNs 
–  DNN hardware used to process these DNNs should be sufficiently flexible to 

support a wide range of techniques efficiently 

•  Evaluate DNN hardware on a comprehensive set of benchmarks and 
metrics 

38 
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References 

•  Overview Paper 
–  V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, “Efficient Processing of Deep Neural 

Networks: A Tutorial and Survey”, Proceedings of the IEEE, 2017  

•  More info about Eyeriss and Tutorial on DNN Architectures           
http://eyeriss.mit.edu 

•  MIT Professional Education Course on “Designing Efficient Deep Learning 
Systems” Next offering: July 23-24, 2018 on MIT campus      
http://professional-education.mit.edu/deeplearning 
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For updates on Eyerissv2, Eyexam, NetAdapt, etc. 

or join EEMS news mailing list: http://mailman.mit.edu/mailman/listinfo/eems-news   
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