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ABSTRACT

Depth sensing is useful for a variety of applications that
range from augmented reality to robotics. Time-of-flight
(TOF) cameras are appealing because they obtain dense
depth measurements with low latency. However, for reasons
ranging from power constraints to multi-camera interference,
the frequency at which accurate depth measurements can be
obtained is reduced. To address this, we propose an algorithm
that uses concurrently collected images to estimate the depth
of non-rigid objects without using the TOF camera. Our
technique models non-rigid objects as locally rigid and uses
previous depth measurements along with the optical flow of
the images to estimate depth. In particular, we show how we
exploit the previous depth measurements to directly estimate
pose and how we integrate this with our model to estimate
the depth of non-rigid objects by finding the solution to a
sparse linear system. We evaluate our technique on a RGB-D
dataset of deformable objects, where we estimate depth with
a mean relative error of 0.37% and outperform other adapted
techniques.

Index Terms— depth estimation, time-of-flight imaging,
non-rigid, RGB-D, 3D motion estimation

1. INTRODUCTION

Depth sensing is useful in a variety of applications that range
from augmented reality to robotic navigation. One appealing
way to measure depth is to use a time-of-flight (TOF) camera,
which obtains dense depth measurements by emitting pulses
of light and measuring their round trip times [1]. However, for
reasons that range from system power constraints to the mit-
igation of multi-camera interference, the frame rate at which
accurate depth measurements can be acquired is often reduced
[2, 3, 4]. To address this issue, we present an approach that
uses concurrently collected images and previous depth mea-
surements to estimate depth as shown in Figure 1. Images are
routinely collected for many applications, and we reuse them
to estimate depth maps.

The idea of using image sequences to estimate depth for
non-rigid objects has been explored in many related fields
[5, 6, 7, 8]. These techniques require only monocular images
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Fig. 1. Depth Estimation Setup: Our goal is to use consecu-
tive images and previously measured depth to estimate depth.
We denote t as the time (in units of the sampling period) at
which frames are acquired.

and many follow a common pipeline that subdivides the im-
age into segments, applies structure-from-motion principles
to compute the relative pose, or rotation and translation, of
each segment, and then estimate depth up to an unknown
scale factor. We can adapt these techniques to address our
problem by first using them to estimate depth up to scale and
then using previous depth measurements to obtain the scale
factor. However, the drawback of adapting these approaches
is that they are often complex and inaccurate, which begs
the question of whether we can directly incorporate previous
depth measurements alongside the image data to minimize
computation and increase accuracy. Previously, we presented
an algorithm that estimates depth for rigid objects [9]. Here,
we extend our work to include objects undergoing non-rigid
deformations, which encompasses a larger range of motion.

Our Contribution We introduce an algorithm that estimates
the depth of non-rigid objects using consecutive images and
previous depth measurements. We model non-rigid objects as
locally rigid and use optical flow to estimate the underlying
3D motion and depth. By exploiting the previous depth mea-
surements, we formulate this problem as a sparse linear sys-
tem, which can be efficiently solved. The resulting algorithm
obtains accurate depth compared to other adapted approaches.
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Fig. 2. Pose Estimation: We depict the different scenarios
where pose can be estimated as the object moves between the
first (t = 1) and second frame (t = 2). The dark arrows
indicate the known vectors.

2. DIRECT POSE ESTIMATION

In this section, we describe how we estimate the pose, or rota-
tion and translation, of a rigid segment, which is a prerequisite
step in many techniques that estimate the depth of non-rigid
objects. In contrast to standard approaches, we show how we
directly estimate rotation and absolute translation with linear
least squares by exploiting previous depth measurements.

To illustrate how pose is estimated, we denote the 3D
coordinate of the ith pixel in the first frame as Xi,1 and its
3D correspondence in the second frame as Xi,2, which is de-
picted in Figure 2(a). The pose is the rotation, R, and transla-
tion, T , such that:

RXi,1 + T = Xi,2 (1)

When Xi,1 and Xi,2 are not known, which is the case with
monocular depth estimation techniques as shown in Figure
2(b), the pose can still be determined in a two-step process,
where the essential matrix [10] is first estimated and then
factored to obtain R and T (which is known only up to scale).
Techniques to estimate the essential matrix range from per-
forming singular value decomposition [10] to finding the
roots of a tenth order polynomial [11].

In contrast, because we have previous depth measure-
ments, we have partial 3D information as shown in Figure
2(c). We then exploit the fact that when Xi,1 is rotated and
translated, it is collinear with X̃i,2, which is the vector that
connects the center of projection (COP) to its correspond-
ing pixel in the second frame. This results in the following
constraint:

X̃i,2 × (RXi,1 + T ) = 0 (2)

where × denotes the cross product. We further simplify
Eq. (2) by assuming that the rotation between frames is small
to approximate rotation as:

RXi,1 ≈ Xi,1 + ω ×Xi,1 (3)
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Fig. 3. Pipeline: Our algorithm takes as input consecutive
images and previous depth measurements. Nearby pixels are
partitioned into regions that have the same rigid motion. Be-
cause regions can overlap, we solve a constrained optimiza-
tion problem to estimate the new 3D position of each point
and then obtain depth.

for some ω ∈ R3. Using Eq. (3), we rewrite the constraint in
Eq. (2) as follows:

(
[X̃i,2]× X̃T

i,2Xi,1I −Xi,1X̃
T
i,2

)(T
ω

)
= Xi,1×X̃i,2 (4)

where [X̃i,2]× is the skew-symmetric matrix such that [X̃i,2]×T =

X̃i,2 × T . We refer to Eq. (4) as the rigidity assumption and
T and ω as the rigid motion that moves the point Xi,1 so
that it lines up with X̃i,2. This also holds for every pair of
corresponding points in a rigid segment and we solve for the
pose directly using least squares as opposed to the two steps
required with standard techniques [10, 11]. Our approach
also only requires three correspondences compared to the
minimum of five required for the essential matrix based ap-
proaches [11]. This is beneficial when used with RANSAC
[12], which obtains robust pose estimates by using this tech-
nique to efficiently generate pose hypotheses.

3. DEPTH ESTIMATION OF NON-RIGID OBJECTS

Our algorithm assumes that non-rigid objects are composed of
locally rigid segments. As such, our technique first partitions
the pixels into rigid regions. We then use the optical flow to
estimate the 3D motion and depth of each region. Figure 3
summarizes the pipeline of our approach.

3.1. 3D Point Partitioning

Our approach assumes that nearby points undergo the same
rigid motion. As such, we first group these points together
using their 3D coordinates. By perspective projection, the ith

pixel in the first frame, xi,1 = (ui, vi), corresponds to the 3D
point:

Xi,1 =
zi,1
f

(ui − uc, vi − vc, f)T (5)

where (uc, vc) is the principal point, f is the focal length, and
zi,1 is its depth. We then assign each point to regions that are



centered on predefined points. The region centered on the ith

point, for example, is defined as the following set of points:

Ci = {Xj,1 : ||Xi,1 −Xj,1||2 < ε j = 1, 2, . . . , N} (6)

where ε is the radius and N is the number of points. Because
neighboring pixels have similar motion and depth, we only
partition the pixels on a subsampled grid and space regions
uniformly across it. For our experiments, we subsampled the
pixels to a 10×15 grid and centered regions (with ε = 70) on
every tenth pixel.

Because the points in each region are rigid, they must sat-
isfy Eq. (4). We leverage the rigidity assumption and use
RANSAC to retain the points that have residual norms within
a carefully selected threshold, ρ. In our experiments, we used
ρ = 0.5. To obtain X̃i,2 required for Eq. (4), we use opti-
cal flow estimated using [13] to find the corresponding pixels.
This additional step improves the accuracy of our depth esti-
mates, which we describe in Section 4.2.2.

3.2. Constrained Motion Estimation

Once the points are partitioned, we want to estimate the rigid
motion for each region to obtain the new 3D positions. How-
ever, some points belong to multiple regions (as shown in Fig-
ure 3), and we need to ensure that the new 3D position of each
point is consistent across the regions it belongs to. For these
points, we have the following consistency constraint:

ωk ×Xi,1 + Tk = ωl ×Xi,1 + Tl (7)

whereXi,1 ∈ Ck∩Cl. We can rewrite Eq. (7) in matrix form,
which is convenient for our final formulation.

(
I −[Xi,1]× −I [Xi,1]×

)
Tk
ωk

Tl
ωl

 = 0 (8)

Putting It All Together Combining the rigidity assumption
in Eq. (4) and the consistency constraint in Eq. (8), we can for-
mulate an optimization problem to estimate the motion within
each region as:

min
1

2
||Ap− b||22 s.t. Dp = 0 (9)

where p = (T1, ω1, . . . , TN , ωN )T is the concatenation of the
motion of all the regions, A and b are the concatenation of the
left- and right-hand side of the rigidity assumption in Eq. (4),
respectively, and D is the concatenation of the consistency
constraints in Eq. (8) for the points that belong to multiple
regions. It should be noted that the constraint, Dp = 0,
forces regions with at least 3 overlapping points to have the
same rigid motion. While this may seem like a limitation,
it makes intuitive sense that regions with significant overlap
should have the same rigid motion. Furthermore, with careful

placement of the region centers and selection of the ρ param-
eter for RANSAC, we can avoid overlapping regions unless
the regions have the same rigid motion.

The solution, p, to Eq. (9) can be found by solving the
following linear system:(

ATA DT

D 0

)(
p
λ

)
=

(
AT b
0

)
(10)

where λ is a vector of the Lagrange multipliers that enforce
the equality constraints. The matrix in Eq. (10) is sparse,
where ATA is block-wise diagonal and every row of D con-
tains at most six elements, and this system can be solved effi-
ciently. For Eq. (10) to have a unique solution, the columns of
DT and (A,D)T must all be linearly independent, and we can
select them using QR factorization. Once the motion within
each region is estimated, we can obtain the new 3D position
for the point Xi,1 in the kth region as follows:

Xi,2 = Xi,1 + ωk ×Xi,1 + Tk (11)

3.3. Obtaining Depth

To obtain a depth map, we project the depth of each point
using the camera intrinsics. Because we estimate motion on
a subsampled grid, the resulting depth map is sparse, but we
obtain a dense depth map using linear interpolation.

3.4. Limitations of Our Approach

Our algorithm was designed with the assumption that the
frame rate at which images are acquired is high, allowing us
to approximate rotation, and that optical flow can be accu-
rately estimated. Our technique will disappoint if the frame
rate is low, or if the images are textureless.

4. ALGORITHM EVALUATION

4.1. Results

Implementation We implement our algorithm on a laptop
with an i5-5257U CPU and an embedded platform [14] with
an Exynos 5422 processor. Our laptop implementation can
estimate a dense (640 × 480) and sparse depth map in ap-
proximately 0.06 and 0.02 seconds, respectively, and the
bottleneck is linear interpolation. When using only the low
power Cortex-A7 cores on the embedded platform, which
consumes 352 mW (Idle Power: 178 mW), our algorithm
obtains dense and sparse depth estimates in 0.3 and 0.09 sec-
onds, respectively. In contrast, approaches like [5] require
minutes to obtain depth on a computer with an i7 processor.

Dataset We evaluate our algorithm on both synthetic and
real data that have substantial changes in depth from frame
to frame. We synthesize 640 × 480 planar images bending
smoothly (syn bend) and being sharply folded in the middle



Frame Number
Sequence 2 3 4 Mean

kinect paper 0.19 0.43 0.23 0.28
kinect tshirt 0.35 0.52 1.16 0.68

syn bend 0.27 0.25 0.24 0.26
syn crease 0.27 0.27 0.27 0.27

Mean - Real 0.27 0.48 0.69 0.48
Mean 0.27 0.37 0.47 0.37

Table 1. Algorithm Evaluation: We present the per-
cent MRE for each sequence and frame number for both
real (kinect paper and kinect tshirt) and synthetic sequences
(syn bend and syn crease).
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Fig. 4. Reconstruction of kinect paper: We present the 3D
reconstruction of the second frame (t = 2) from Figure 1,
which is rotated to show the contours of the paper between
points A and B.

(syn crease). We also test our algorithm on the RGB-D se-
quences kinect paper and kinect tshirt from [15]. We crop
out the regions undergoing the non-rigid deformation.

Methodology We assume that we only have depth measure-
ments in the first frame and estimate it until the fourth frame.
We quantify the accuracy of our N estimates using the per-
cent mean relative error (MRE): 100

N

∑N
i=1

|ẑi−zi|
zi

where ẑi
and zi are the estimated and ground truth depth for the ith

pixel, respectively. We summarize the percent MRE for each
sequence and frame in Table 1. The average MRE across all
sequences and frames is 0.37%. We also show an example of
a 3D reconstruction of the kinect paper sequence in Figure 4.

4.2. Discussion

4.2.1. Algorithm Outperforms Adapted Approach

We compare our algorithm to an adapted approach that first
uses techniques like [5] to obtain depth to scale, and then use
the previous depth measurements to estimate the unknown
scale factor. For approaches that perform monocular depth
estimation, this same procedure is followed to evaluate the ac-
curacy of their reconstruction. The authors of [5] also use this
procedure to benchmark the performance of their algorithm
and other competing techniques on sequences from [15].

As summarized in Table 2, the authors report a MRE of
3.22% for kinect paper and a MRE of 4.20% for kinect tshirt

Sequence This Work [5] Best in [5]
kinect paper 0.28 4.76 3.22
kinect tshirt 0.68 4.80 4.20

Table 2. Method Comparison: We compare the MRE of our
approach to techniques benchmarked in [5].

Without Refinement With Refinement Ground Truth

Fig. 5. Comparing Reconstructed Shape: Using RANSAC
to refine our point partition preserves the underlying shape.

for the best techniques. In contrast, our algorithm achieves
a lower MRE of 0.28% and 0.68% for these respective se-
quences. This suggests that integrating previous depth mea-
surements directly into the depth estimation process not only
simplifies our algorithm but also improves its accuracy.

4.2.2. Impact of RANSAC in 3D Point Partitioning on MRE

In our experiments, we find that using RANSAC to refine our
regions lowers the MRE by up to 25%. Because the MRE is
an average statistic computed over all the pixels, this metric
alone does not reflect how our refinement step preserves the
underlying structure. To show that the additional refinement
step preserves the underlying structure of the depth map, we
test our algorithm on syn crease and compare the 3D recon-
structions in Figure 5. We see that without this refinement
step, the presence of noisy optical flow estimates and our
selection of the point partitioning radius results in a curved
plane instead of a sharply folded sheet. This failure mode
makes sense because nearby points with different motions are
partitioned together, and RANSAC mitigates this.

5. CONCLUSION

In this paper, we present a technique to estimate the depth
of non-rigid objects using consecutive images and previous
depth measurements. Instead of adapting existing techniques
to address this problem, we exploit previous depth measure-
ments and our assumption of locally rigid objects to estimate
depth using linear least squares. Our proposed solution out-
performs adapted techniques and achieves a MRE of 0.37%
when evaluated on a RGB-D dataset of deformable objects.

6. ACKNOWLEDGEMENTS

We thank Analog Devices for funding this work and the re-
search scientists within the company for helpful discussions.



7. REFERENCES

[1] Miles Hansard, Seungkyu Lee, Ouk Choi, and Radu Ho-
raud, Time-of-Flight Cameras, SpringerBriefs in Com-
puter Science. Springer London, London, 2013.
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