
Energy-Efficient	Deep	Learning:		
Challenges	and	Opportuni:es	

Contact	Info	
email:	sze@mit.edu	
website:	www.rle.mit.edu/eems	

Vivienne	Sze	
Massachuse@s	Ins:tute	of	Technology	

In	collabora*on	with		
Yu-Hsin	Chen,	Joel	Emer,	Tien-Ju	Yang	



2 Example	Applica:ons	of	Deep	Learning	
Computer Vision Speech Recognition 

Game Play Medical 



What	is	Deep	Learning?	3 

Image 
“Volvo 
XC90” 

Image Source: [Lee et al., Comm. ACM 2011] 
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Why	is	Deep	Learning	Hot	Now?	5 

350M images 
uploaded per 
day 

2.5 Petabytes 
of customer 
data hourly 

300 hours of 
video uploaded 
every minute 

Big Data 
Availability 

GPU 
Acceleration 

New ML 
Techniques 



Deep	Convolu:onal	Neural	Networks	

Classes FC 
Layers 

Modern deep CNN: up to 1000 CONV layers 

CONV 
Layer 

CONV 
Layer 

Low-level 
Features 

High-level 
Features 
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Deep	Convolu:onal	Neural	Networks	

CONV 
Layer 

CONV 
Layer 

Low-level 
Features 

High-level 
Features 

Classes FC 
Layers 

1 – 3 layers 
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Deep	Convolu:onal	Neural	Networks	

Classes CONV 
Layer 

CONV 
Layer 

FC 
Layers 

Convolutions account for more 
than 90% of overall computation, 
dominating runtime and energy 
consumption 
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High-Dimensional	CNN	Convolu:on	
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Input Image (Feature Map) 

Filter 
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High-Dimensional	CNN	Convolu:on	

Input Image (Feature Map) 
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High-Dimensional	CNN	Convolu:on	
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H 
R 

Filter 
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High-Dimensional	CNN	Convolu:on	

E 

Sliding Window Processing 

Input Image (Feature Map) 
a pixel 

Output Image 

H E 
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High-Dimensional	CNN	Convolu:on	
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Input Image 

Output Image 
C Filter 

Many Input Channels (C) 

E 

H E 

AlexNet:	3	–	192	Channels	(C)		
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High-Dimensional	CNN	Convolu:on	
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AlexNet:	96	–	384	Filters	(M)		

14 



High-Dimensional	CNN	Convolu:on	
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Image	batch	size:	1	–	256	(N)	

15 



Large	Sizes	with	Varying	Shapes	

Layer	 Filter	Size	(R)	 #	Filters	(M)	 #	Channels	(C)	 Stride	
1	 11x11	 96	 3	 4	
2	 5x5	 256	 48	 1	
3	 3x3	 384	 256	 1	
4	 3x3	 384	 192	 1	
5	 3x3	 256	 192	 1	

AlexNet1	Convolu:onal	Layer	Configura:ons	

34k	Params	 307k	Params	 885k	Params	

Layer	1	 Layer	2	 Layer	3	

1.	[Krizhevsky,	NIPS	2012]	

105M	MACs	 224M	MACs	 150M	MACs	
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•  LeNet	(1998)	
•  AlexNet	(2012)	
•  OverFeat	(2013)	
•  VGGNet	(2014)	
•  GoogleNet	(2014)	
•  ResNet	(2015)	

Popular	CNNs	
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[O. Russakovsky et al., IJCV 2015] 

AlexNet	

OverFeat	

GoogLeNet	

ResNet	

Cl
ar
ifa

i	

VGGNet	

ImageNet: Large Scale Visual 
Recognition Challenge (ILSVRC) 
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Metrics LeNet-5 AlexNet VGG-16 GoogLeNet  
(v1) 

ResNet-50 

Top-5 error n/a 16.4 7.4 6.7 5.3 

Input Size 28x28 227x227 224x224 224x224 224x224 
# of CONV Layers  2 5 16 21 (depth) 49 
Filter Sizes 5 3, 5,11 3 1, 3 , 5, 7 1, 3, 7 
# of Channels 1, 6 3 - 256 3 - 512 3 - 1024 3 - 2048 
# of Filters 6, 16 96 - 384 64 - 512 64 - 384 64 - 2048 
Stride 1 1, 4 1 1, 2 1, 2 
# of Weights 2.6k 2.3M 14.7M 6.0M 23.5M 
# of MACs 283k 666M 15.3G 1.43G 3.86G 
# of FC layers 2 3 3 1 1 
# of Weights 58k 58.6M 124M 1M 2M 
# of MACs 58k 58.6M 124M 1M 2M 
Total Weights 60k 61M 138M 7M 25.5M 
Total MACs 341k 724M 15.5G 1.43G 3.9G 

Summary	of	Popular	CNNs	

CONV Layers increasingly important! 
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Training	vs.	Inference	

Training 
(determine weights) 

Weights 
Large Datasets 

Inference 
(use weights) 
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Processing	at	“Edge”	instead	of	the	“Cloud”	20 

Privacy 

Latency 

Actuator 
Image source: ericsson.com 

Sensor 

Cloud 

Communication 

Image source: 
www.theregister.co.uk 



Challenges 
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• Accuracy	
–  Evaluate	hardware	using	the	
appropriate	DNN	model	and	dataset	

•  Programmability	
–  Support	mulXple	applicaXons		
–  Different	weights	

•  Energy/Power	
–  Energy	per	operaXon	
–  DRAM	Bandwidth	

•  Throughput/Latency		
–  GOPS,	frame	rate,	delay	

•  Cost		
–  Area	(size	of	memory	and	#	of	cores)	

Key	Metrics	

DRAM 

Chip	

Computer		
Vision	

Speech		
Recogni:on	

22 

[Sze et al., CICC 2017] 

ImageNet	MNIST	



Opportunities in 
Architecture 
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GPUs	and	CPUs	Targe:ng	Deep	Learning	

Knights Mill: next gen Xeon 
Phi “optimized for deep 

learning”  

Intel Knights Landing (2016) Nvidia PASCAL GP100 (2016) 

24 

Use matrix multiplication libraries on CPUs and GPUs 



Map	DNN	to	a	Matrix	Mul:plica:on		25 

1 2 3
4 5 6
7 8 9

1 2
3 4

Filter Input Fmap Output Fmap 

* = 1 2
3 4

1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × = 

Toeplitz Matrix 
(w/ redundant data) 

Convolution: 

Matrix Mult: 

Data is repeated 
Goal: Reduced number of operations to increase throughput 



•  Fast	Fourier	Transform	[Mathieu,	ICLR	2014]	

– Pro:	Direct	convoluXon	O(No
2Nf

2)	to	O(No
2log2No)	

– Con:	Increase	storage	requirements	

•  Strassen	[Cong,	ICANN	2014]		
– Pro:	O(N3)	to	(N2.807)	
– Con:	Numerical	stability	

• Winograd	[Lavin,	CVPR	2016]		
– Pro:	2.25x	speed	up	for	3x3	filter	
– Con:	Specialized	processing	depending	on	filter	size	

Reduce	Opera:ons	in	Matrix	Mul:plica:on	26 



Analogy:	Gauss’s	Mul:plica:on	Algorithm	

4 multiplications + 3 additions 

3 multiplications + 5 additions 

27 

Reduce number of multiplications, 
but increase number of additions 
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Specialized Hardware 
(Accelerators) 



Proper:es	We	Can	Leverage	

•  OperaXons	exhibit	high	parallelism	
	à	high	throughput	possible	

•  Memory	Access	is	the	Bocleneck	

29 

  
  

  
  

ALU 
  

  

Memory Read Memory Write MAC* 

DRAM DRAM 

•  Example:  AlexNet [NIPS 2012]  has 724M MACs  
  à 2896M DRAM accesses required 

Worst Case: all memory R/W are DRAM accesses 

filter weight 
image pixel 
partial sum updated 

partial sum 

200x 1x 



Proper:es	We	Can	Leverage	

•  OperaXons	exhibit	high	parallelism	
	à	high	throughput	possible	

•  Input	data	reuse	opportuniXes	(up	to	500x)	
	 	à	exploit	low-cost	memory	

Convolu:onal	
Reuse		

(pixels,	weights)	

Filter	 Image	

Image	
Reuse	
(pixels)	

	

2 

1 

Filters	

Image	

Filter	
Reuse	

(weights)	
	

Filter	

Images	

2 

1 
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Highly-Parallel	Compute	Paradigms	31 

Temporal Architecture 
(SIMD/SIMT) 

Register File 

Memory Hierarchy 

Spatial Architecture 
(Dataflow Processing) 

ALU 
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Advantages	of	Spa:al	Architecture	32 

Temporal Architecture 
(SIMD/SIMT) 

Register File 

Memory Hierarchy 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

Control 

Spatial Architecture 
(Dataflow Processing) 

Memory Hierarchy 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

Efficient	Data	Reuse	
Distributed	local	storage	(RF)	

Inter-PE	Communica:on	
Sharing	among	regions	of	PEs	

Processing	
Element	(PE)	

Control 

Reg File 0.5 – 1.0 kB 

  

  



How	to	Map	the	Dataflow?	

Spatial Architecture 
(Dataflow Processing) 

Memory Hierarchy 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

CNN	Convolu:on	

? 
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pixels 
weights 

partial 
sums 

Goal:	Increase	reuse	of	input	data	
(weights	and	pixels)	and	local	
par:al	sums	accumulaXon	
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Energy-Efficient Dataflow 
Yu-Hsin	Chen,	Joel	Emer,	Vivienne	Sze,	ISCA	2016	

Maximize	data	reuse	and	accumula:on	at	RF	



Data	Movement	is	Expensive	35 

DRAM ALU 

Buffer ALU 

PE ALU 

RF ALU 

ALU 

Data Movement Energy Cost 

200× 

6× 

2× 

1× 

1× (Reference) 

Off-Chip 
DRAM ALU = PE 

Processing Engine 

Accelerator 

Global
Buffer 

PE 

PE PE 

ALU 

Maximize	data	reuse	at	lower	levels	of	hierarchy	



Weight	Sta:onary	(WS)	

•  Minimize weight read energy consumption 
−  maximize convolutional and filter reuse of weights 

•  Examples:  
  [Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014] 

[Park, ISSCC 2015] [Origami, GLSVLSI 2015] 

  
            

  

  

Global Buffer 

W0 W1 W2 W3 W4 W5 W6 W7 

  

  

  

  

Psum Pixel 

PE 
Weight 

36 



•  Minimize partial sum R/W energy consumption 
−  maximize local accumulation 

•  Examples:  
  

Output	Sta:onary	(OS)	

[Gupta, ICML 2015] [ShiDianNao, ISCA 2015] 
[Peemen, ICCD 2013] 

  
            

  

  

Global Buffer 

P0 P1 P2 P3 P4 P5 P6 P7 

  

  

  

  

Pixel Weight 

PE 
Psum 
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•  Use a large global buffer as shared storage 
−  Reduce DRAM access energy consumption 

•  Examples:  
  

No	Local	Reuse	(NLR)	

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014] 
[Zhang, FPGA 2015] 

PE 
        Pixel 

Psum 

Global Buffer 
Weight 
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Row	Sta:onary:	Energy-efficient	Dataflow	

* = 
Filter Output Image 

Input Image 

39 

[Chen, ISCA 2016] 



1D	Row	Convolu:on	in	PE	

* = 
Filter Partial Sums 
a b c a b c 

a b c d e 

PE Reg File 

  
  

  

b a c 

d c e a b 

Input Image 
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1D	Row	Convolu:on	in	PE	

* = 
Filter 
a b c a b c 

a b c d e 

e d 

PE 
b a c 

Reg File 

b a c 

a 

  
  

  

Partial Sums 
Input Image 
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1D	Row	Convolu:on	in	PE	

* = 
a b c 

a b c d e Partial Sums 
Input Image 

PE 
b a c 

Reg File 

c b d 

b 

  
  

  e 
a 

Filter 
a b c 
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1D	Row	Convolu:on	in	PE	

* = 
a b c 

a b c d e Partial Sums 
Input Image 

PE 
b a c 

Reg File 

d c e 

c 

  
  

  
b a 

Filter 
a b c 

43 



1D	Row	Convolu:on	in	PE	

PE 
b a c 

Reg File 

d c e 

c 

  
  

  
b a 

•  Maximize row convolutional reuse in RF 
−  Keep a filter row and image sliding window in RF 

•  Maximize row psum accumulation in RF 

44 



Row	Sta:onary	Dataflow	

PE 1 

Row 1 Row 1 

PE 2 

Row 2 Row 2 

PE 3 

Row 3 Row 3 

Row 1 

= * 

PE 4 

Row 1 Row 2 

PE 5 

Row 2 Row 3 

PE 6 

Row 3 Row 4 

Row 2 

= * 

PE 7 

Row 1 Row 3 

PE 8 

Row 2 Row 4 

PE 9 

Row 3 Row 5 

Row 3 

= * 

* * * 

* * * 

* * * 

45 

OpXmize	for	overall	energy	efficiency	instead	
for	only	a	certain	data	type	



• Weight	Sta:onary	
–  Minimize	movement	of	filter	weights	

• Output	Sta:onary	
–  Minimize	movement	of	parXal	sums	

• No	Local	Reuse	
–  Don’t	use	any	local	PE	storage.	Maximize	global	buffer	size.	

• Row	Sta:onary	
	

Evaluate	Reuse	in	Different	Dataflows	46 



• Weight	Sta:onary	
–  Minimize	movement	of	filter	weights	

• Output	Sta:onary	
–  Minimize	movement	of	parXal	sums	

• No	Local	Reuse	
–  Don’t	use	any	local	PE	storage.	Maximize	global	buffer	size.	

• Row	Sta:onary	
	

Evaluate	Reuse	in	Different	Dataflows	47 

Evalua:on	Setup	
•  Same	Total	Area	
•  AlexNet	
•  256	PEs	
•  Batch	size	=	16	

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 
6× 

PE ALU 2× 
1× 
1× (Reference) 

DRAM ALU 



Dataflow	Comparison:	CONV	Layers	

RS uses 1.4× – 2.5× lower energy than other dataflows 

Normalized 
Energy/MAC 

ALU 

RF 

NoC 

buffer 

DRAM 

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS 

CNN Dataflows 
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[Chen, ISCA 2016] 



Dataflow	Comparison:	CONV	Layers	

0

0.5

1

1.5

2

Normalized 
Energy/MAC 

WS OSA OSB OSC NLR RS 

psums 

weights 

pixels 

RS optimizes for the best overall energy efficiency 

CNN Dataflows 

49 

[Chen, ISCA 2016] 



Eyeriss	Deep	CNN	Accelerator	50 

Off-Chip DRAM 

… 

… 

… 

… 
…

 

…
 

Decomp 

Comp ReLU 

Input Image 

Output Image 

Filter Filt 

Img 

Psum 

Psum 

Global 
Buffer 
SRAM 

 
108KB 

64 bits 

DCNN Accelerator 

14×12 PE Array 

  
  

Link Clock  Core Clock  

[Chen	et	al.,	ISSCC	2016]	



Eyeriss	Chip	Spec	&	Measurement	Results	51 

Technology TSMC 65nm LP 1P9M 
On-Chip Buffer 108 KB 

# of PEs 168 
Scratch Pad / PE 0.5 KB 
Core Frequency 100 – 250 MHz 

Peak Performance 33.6 – 84.0 GOPS 
Word Bit-width 16-bit Fixed-Point 

Natively Supported 
CNN Shapes 

Filter Width: 1 – 32 
Filter Height: 1 – 12 
Num. Filters: 1 – 1024 
Num. Channels: 1 – 1024 
Horz. Stride: 1–12 
Vert. Stride: 1, 2, 4 

4000 µm 

4000 µm
 

Global 
Buffer 

Spatial Array 
(168 PEs) 

AlexNet:	For	2.66	GMACs	[8	billion	16-bit	inputs	(16GB)	and	2.7	billion	
outputs	(5.4GB)],	only	requires	208.5MB	(buffer)	and	15.4MB	(DRAM)			

[Chen	et	al.,	ISSCC	2016]	



Comparison	with	GPU	52 

Eyeriss NVIDIA TK1 (Jetson Kit) 
Technology 65nm 28nm 
Clock Rate 200MHz 852MHz 

# Multipliers 168 192 

On-Chip Storage Buffer: 108KB 
Spad: 75.3KB 

Shared Mem: 64KB 
Reg File: 256KB 

Word Bit-Width 16b Fixed 32b Float 
Throughput1 34.7 fps 68 fps 

Measured Power 278 mW Idle/Active2: 3.7W/10.2W 

DRAM Bandwidth 127 MB/s 1120 MB/s 3 

1.  AlexNet Convolutional Layers Only 
2.  Board Power 
3.  Modeled from [Tan, SC11] http://eyeriss.mit.edu  



Machine	Learning	Pipeline	(Inference)	

Score = Σn xi wi 

Feature 
Extraction 

Classification 
(wTx) 

Handcrafted Features  
(e.g. HOG) 

Learned Features  
(e.g. DNN) 

pixels Features (x) 

Trained weights (w) 
Image 

Scores 

Scores per class 
(select class based 

on max or threshold) 
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Energy-Efficient	Object	Detec:on	

0 

0.5 

1 

1.5 

2 
Energy	

HOG	Object	
Detec:on	

DPM	Object	
Detec:on	

54 

H.264/AVC	
Decoder	

H.264/AVC	
Encoder	

H.265/HEVC	
Decoder	

H.265/HEVC	
Encoder	

Enable	object	detec:on	to	be	as	energy-efficient	as	
video	compression	at	<	1nJ/pixel	

[Suleiman	et	al.,	
VLSI	2016]	

4mm	

4m
m
	



Features:	Energy	vs.	Accuracy		55 

0.1 

1 

10 

100 

1000 

10000 

0 20 40 60 80 

Accuracy	(Average	Precision)	

Energy/	
Pixel	(nJ)	

VGG162	

AlexNet2	

HOG1	

Measured	in	65nm*	
1.   [Suleiman,	VLSI	2016]	
2.   [Chen,	ISSCC	2016]		
	
*	Only	feature	extracAon.	Does	
not	include	data,	augmentaAon,	
ensemble	and	classificaAon	
energy,	etc.	

Measured	in	on	VOC	2007	Dataset	
1.   DPM	v5	[Girshick,	2012]	
2.   Fast	R-CNN	[Girshick,	CVPR	2015]		

ExponenAal	

Linear	

Video		
Compression	

[Suleiman et al., ISCAS 2017] 



Opportunities in Joint 
Algorithm Hardware Design 

56 



• Reduce	size	of	operands	for	storage/compute	
–  FloaXng	point	à	Fixed	point	
– Bit-width	reducXon	
– Non-linear	quanXzaXon	
	

• Reduce	number	of	opera:ons	for	storage/compute	
– Exploit	AcXvaXon	StaXsXcs	(Compression)	
– Network	Pruning	
– Compact	Network	Architectures	

Approaches	57 



Commercial	Products	using	8-bit	Integer	

Nvidia’s Pascal (2016) Google’s TPU (2016) 
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•  Reduce	number	of	bits		
–  Binary	Nets	[Courbariaux,	NIPS	2015]		

•  Reduce	number	of	unique	weights	
–  Ternary	Weight	Nets	[Li,	arXiv	2016]	
–  XNOR-Net	[Rategari,	ECCV	2016]	

•  Non-Linear	Quan:za:on	
–  LogNet	[Lee,	ICASSP	2017]	

Reduced	Precision	in	Research	59 

Binary Filters 

Log Domain Quantization 



Reduced	Precision	Hardware	60 

Stripes 
[Judd et al., MICRO 2016] 

Bit-serial processing for speed 

KU Leuven 

[Moons et al., VLSI 2016] 

Voltage scaling for energy savings 



•  Examples	
– YodaNN	(binary	weights)	
– BRein	(binary	weights	and	
acXvaXons)	

– TrueNorth	(ternary	weights	
and	binary	acXvaXons)	

Binary/Ternary	Net	Hardware	

[BRein, VLSI 2017] 

These designs tend not to support 
state-of-the-art DNN models  

(except YodaNN) 
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Sparsity	in	Feature	Maps	

9 -1 -3 
1 -5 5 
-2 6 -1 

Many zeros in output fmaps after ReLU 
ReLU 9 0 0 

1 0 5 
0 6 0 

0 

0.2 

0.4 

0.6 

0.8 

1 

1 2 3 4 5 
CONV Layer 

# of activations # of non-zero activations 

(Normalized) 
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Exploit	Sparsity	63 

[Chen	et	al.,	ISSCC	2016]	

Method	2:	Compress	data	to	reduce	storage	and	data	movement	
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1	

2	
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AlexNet	Conv	Layer	

Uncompressed	 Compressed	

1 2 3 4 5 
AlexNet Conv Layer 

DRAM  
Access  
(MB)  

0 

2 

4 

6 
1.2× 

1.4× 
1.7× 

1.8× 
1.9× 

Uncompressed 
Fmaps + Weights 

RLE Compressed 
Fmaps + Weights 

== 0 Zero 
Buff 

  
  Scratch Pad   

Enable 

Zero Data Skipping 

Register	File	

No	R/W	 No	Switching	

Method	1:	Skip	memory	access	and	computa*on	

45%	energy	savings	



Op:mal	Brain	Damage	

Pruning	–	Make	Weights	Sparse	

[Lecun et al., NIPS 1989] 

retraining 

64 

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Prune	DNN	based	on	
magnitude	of	weights	

[Han et al., NIPS 2015] 

Example: AlexNet 
Weight Reduction:  

CONV layers 2.7x, FC layers 9.9x 
Overall Reduction:  

Weights 9x, MACs 3x 



•  Number	of	weights	alone	is	not	a	good	metric	for	energy	

•  All	data	types	should	be	considered		
	

Key	Observa:ons	65 

Output	Feature	Map	
43%	

Input	Feature	Map	
25%	

Weights	
22%	

Computa:on	
10%	

Energy	Consump:on	
of	GoogLeNet	

[Yang et al., CVPR 2017] 



Energy-Evalua:on	Methodology	66 

CNN Shape Configuration 
(# of channels, # of filters, etc.) 

CNN Weights and Input Data 

  

[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …] 

CNN Energy Consumption  
L1 L2 L3 

Energy 

… 

Memory 
Accesses 

Optimization 

# of MACs 
Calculation 

  

  

  
  

…
 

# acc. at mem. level 1 
# acc. at mem. level 2 

# acc. at mem. level n 

# of MACs 

Hardware Energy Costs of each 
MAC and Memory Access 

Ecomp 

Edata 

Energy estimation tool available at http://eyeriss.mit.edu    

[Yang et al., CVPR 2017] 



[Yang et al., CVPR 2017] 
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AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	
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Original	DNN	

Deeper	CNNs	with	fewer	weights	do	not	necessarily	consume	
less	energy	than	shallower	CNNs	with	more	weights	

Energy	Consump:on	of	Exis:ng	DNNs	
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Normalized	Energy	Consump:on	

Original	DNN	 Magnitude-based	Pruning	[6]	[Han	et	al.,	NIPS	2015]	

Reduce	number	of	weights	by	removing	small	magnitude	weights	

Magnitude-based	Weight	Pruning	



[Yang et al., CVPR 2017] 
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AlexNet	 SqueezeNet	
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Normalized	Energy	Consump:on	

Original	DNN	 Magnitude-based	Pruning	[6]	 Energy-aware	Pruning	(This	Work)	

Remove	weights	from	layers	in	order	of	highest	to	lowest	energy	
3.7x	reduc:on	in	AlexNet	/	1.6x	reduc:on	in	GoogLeNet	

Energy-Aware	Pruning	

1.74x 



NetAdapt:	Platorm-Aware	DNN	Adapta:on	70 

•  Automa:cally	adapt	DNN	to	a	mobile	plaporm	to	reach	a	
target	latency	or	energy	budget	

•  Use	empirical	measurements	to	guide	opXmizaXon	(avoid	
modeling	of	tool	chain	or	plaporm	architecture)		

[Yang et al., arXiv 2018] 

In collaboration with Google’s Mobile Vision Team 

NetAdapt Measure 

… 

Network	Proposals	

Empirical	Measurements	
Metric Proposal A … Proposal Z 

Latency 15.6 … 14.3 

Energy 41 … 46 

…
 

…
 

…
 

Pretrained	
Network	 Metric Budget 

Latency 3.8 

Energy 10.5 

Budget	

Adapted	
Network	

…
 

…
 

Plaporm	

A	 B	 C	 D	 Z	



•  NetAdapt	boosts	the	real	inference	speed	of	MobileNet	
by	up	to	1.7x	with	higher	accuracy	

Improved	Latency	vs.	Accuracy	Tradeoff	71 

+0.3% accuracy 
1.7x faster 

+0.3% accuracy 
1.6x faster 

Reference: 
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017 
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018 

*Tested on the ImageNet dataset and a Google Pixel 1 CPU 



Sparse	Hardware	72 
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[Han et al., ISCA 2016] 

SCNN 
[Parashar et al., 

ISCA 2017] 

Supports Convolutional 
Layers Only 

Supports Fully 
Connected Layers Only 



Network	Architecture	Design	

5x5 filter Two 3x3 filters 

decompose 

Apply sequentially 

decompose 

5x5 filter 5x1 filter 

1x5 filter 

Apply sequentially 
GoogleNet/Inception v3 

VGG-16 

Build Network with series of Small Filters 

separable  
filters 
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1x1	Bo@leneck	in	Popular	DNN	models	

ResNet 

GoogleNet 

compress 

expand 

compress 
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SqueezeNet 



Tutorial	Material	on	Efficient	DNNs	75 

http://eyeriss.mit.edu/tutorial.html 

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, “Efficient Processing of Deep 
Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE, 2017 



Example:	
–  Sparse	and	Dense	
–  Large	and	Compact	network	architectures		
–  Different	Layers	(e.g.,	CONV	and	FC)	
–  Variable	Bit-width	

	

Need	More	Comprehensive	Benchmarks	76 
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Network	Pruning	

C	
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1	
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R	

1	
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S	
C	

Compact	Network	Architecture	

Processors	should	support	a	diverse	set	of	DNNs		
that	uXlize	different	techniques	

1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 

0 1 1 0 0 1 1 0 

Reduce	Precision	

32-bit	float	

8-bit	fixed	

Binary	 0 

[Chen et al., SysML 2018] 



(MAC/cycle)

(MAC/data)

Step 1: maximum workload parallelism
Step 2: maximum dataflow parallelism

Step 3: # of act. PEs under a finite PE array size
Number of PEs

Step 4: # of act. PEs under fixed PE array dims.

peak
perf.

Step 5: # of act. PEs under fixed storage cap.

workload operational intensity

Step 6: lower act. PE utilization due to insuff. avg. BW
Step 7: lower act. PE utilization due to insuff. inst. BW

Slope = BW to only act. PE

Eyexam:	Understanding	Sources	of	
Inefficiencies	in	DNN	Accelerators	

77 

A	systemaXc	way	to	evaluate	how	each	architectural	decision	
affects	performance	(throughput)	for	a	given	DNN	workload	

Tightens the roofline model 

(Theoretical Peak Performance) 

[Chen et al., In Submission] 



Opportunities in Memories 
and Devices 

78 



Advanced	Memory	Technologies	
Many new memories and devices explored to reduce data movement 

V1 
G1 

I1 = V1×G1 
V2 

G2 

I2 = V2×G2 

I = I1 + I2  
= V1×G1 + V2×G2 

Stacked DRAM 

eDRAM  
[Chen et al., DaDianNao, MICRO 2014] 

[Kim et al., NeuroCube, ISCA 2016] 
[Gao et al., Tetris, ASPLOS 2017] 

Non-Volatile 
Resistive Memories 

[Shafiee et al., ISCA 2016] 
[Chi et al., PRIME, ISCA 2016] 

WS  
dataflow 

Eyeriss 
design 
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Binary	Weight	Classifier	in	SRAM	

Weak because: 
1. Weights restricted to be +/-1 
2. Bit-cell discharge subject to variation, nonlinearity 

WLn

VDD_SRAMBL BLB
WL0

IBC,0

IBC,1

1 0

10

-1

+1

VDD_SRAM

[Zhang et al., VLSI 2016] 
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More	Compute	In	Memory		81 

[S. Gonugondla, 
ISSCC 2018] 

 
Pulse width modulation on 

WL (activation)  
 

[A. Biswas,  
Conv-RAM,  

ISSCC 2018] 

Apply Va (activation) 
to BL rather than WL 



Benchmarking Metrics  
for DNN Hardware 

82 

How can we compare designs? 

V.	Sze,	Y.-H.	Chen,	T-J.	Yang,	J.	Emer,		
“Efficient	Processing	of	Deep	Neural	Networks:		A	Tutorial	and	Survey,”		

Proceedings	of	the	IEEE,	Dec.	2017	



•  Accuracy	
–  Quality	of	result	for	a	given	task	

•  Throughput	
–  AnalyXcs	on	high	volume	data	
–  Real-Xme	performance	(e.g.,	video	at	30	fps)	

•  Latency	
–  For	interacXve	applicaXons	(e.g.,	autonomous	navigaXon)	

•  Energy	and	Power	
–  Edge	and	embedded	devices	have	limited	bacery	capacity	
–  Data	centers	have	stringent	power	ceilings	due	to	cooling	costs	

•  Hardware	Cost		
–  $$$	

Metrics	for	DNN	Hardware	83 



•  Accuracy	
–  Difficulty	of	dataset	and/or	task	should	be	considered	

•  Throughput	
–  Number	of	cores	(include	uXlizaXon	along	with	peak	performance)	
–  RunXme	for	running	specific	DNN	models	

•  Latency	
–  Include	batch	size	used	in	evaluaXon	

•  Energy	and	Power	
–  Power	consumpXon	for	running	specific	DNN	models	
–  Include	external	memory	access	

•  Hardware	Cost		
–  On-chip	storage,	number	of	cores,	chip	area	+	process	technology	

Specifica:ons	to	Evaluate	Metrics	84 



Example:	Metrics	of	Eyeriss	Chip	85 

Metric Units Input 
Name of CNN Model Text AlexNet 
Top-5 error classification 
on ImageNet 

# 19.8 

Supported Layers All CONV 
Bits per weight # 16 
Bits per input activation # 16 
Batch Size # 4 
Runtime  ms 115.3 
Power mW 278 
Off-chip Access per 
Image Inference 

MBytes 3.85 

Number of Images 
Tested 

# 100 

ASIC Specs Input 
Process Technology 65nm LP 

TSMC (1.0V) 
Total Core Area 
(mm2) 

12.25 

Total On-Chip 
Memory (kB) 

192 

Number of Multipliers 168 

Clock Frequency 
(MHz) 

200 

Core area (mm2) /
multiplier 

0.073 

On-Chip memory 
(kB) / multiplier 

1.14 

Measured or 
Simulated 

Measured 



•  All	metrics	should	be	reported	for	fair	evaluaXon	of	design	
tradeoffs	

•  Examples	of	what	can	happen	if	certain	metric	is	omiced:	
–  Without	the	accuracy	given	for	a	specific	dataset	and	task,	one	could	
run	a	simple	DNN	and	claim	low	power,	high	throughput,	and	low	cost	–	
however,	the	processor	might	not	be	usable	for	a	meaningful	task	

–  Without	repor:ng	the	off-chip	bandwidth,	one	could	build	a	processor	
with	only	mulXpliers	and	claim	low	cost,	high	throughput,	high	accuracy,	
and	low	chip	power	–	however,	when	evaluaXng	system	power,	the	off-
chip	memory	access	would	be	substanXal	

•  Are	results	measured	or	simulated?	On	what	test	data?	

Comprehensive	Coverage	86 



The	evaluaXon	process	for	whether	a	DNN	system	is	a	viable	
soluXon	for	a	given	applicaXon	might	go	as	follows:		

1.   Accuracy	determines	if	it	can	perform	the	given	task		

2.   Latency	and	throughput	determine	if	it	can	run	fast	enough	
and	in	real-Xme	

3.   Energy	and	power	consump:on	will	primarily	dictate	the	
form	factor	of	the	device	where	the	processing	can	operate		

4.   Cost,	which	is	primarily	dictated	by	the	chip	area,	determines	
how	much	one	would	pay	for	this	soluXon	

Evalua:on	Process	87 



• Deep	Learning	is	an	important	area	of	research	
– Wide	range	of	applicaXons	

•  Challenge	is	to	balance	the	key	metrics	
– Accuracy,	Energy,	Throughput,	Cost,	etc.	

• Opportuni:es	at	various	levels	of	hardware	design	
– Architecture,	Joint	Algorithm-Hardware,	Mixed-Signal	
Circuits/Memories,	Advanced	Technologies	

–  Important	to	consider	interacXons	between	levels	to	
maximize	impact	

Summary	88 

For updates on Eyerissv2, Eyexam, NetAdapt, etc. 

or join EEMS news mailing list 
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