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Example Applications of Deep Learning

~ Computer Vision Speech_ Recognltlon |

person
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What is Deep Learning?
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Weighted Sums

in XXi)

=1

input layer

hidden layer

i Image Source: Stanford [ seecsmerrenr MTLeee

AAAAA




Why is Deep Learning Hot Now?

Big Data GPU New ML
Availability Acceleration Techniques

350M images

facebook uploaded per
day

' 2.5 Petabytes
Walmart>{ of customer
data hourly

300 hours of

YOlI video uploaded
every minute
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] Deep Convolutional Neural Networks

Modern deep CNN: up to 1000 CONYV layers

f \

BN CONV
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Low-level Al

Features

High-level
Features
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Deep Convolutional Neural Networks

1 -3 layers

Features
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] Deep Convolutional Neural Networks

CONV FC
Layer Layers

Convolutions account for more
than 90% of overall computation,
dominating runtime and energy
consumption
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Il High-Dimensional CNN Convolution

Input Image (Feature Map)
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High-Dimensional CNN Convolution

Input Image (Feature Map)
Filter —

.

«— R —
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Element-wise
Multiplication
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High-Dimensional CNN Convolution

Filter
f
Rl
|
<~ R —
Element-wise Partial Sum (psum)
Multiplication Accumulation
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High-Dimensional CNN Convolution

Input Image (Feature Map) Output Image
Filter

a pixel

<« —>

Sliding Window Processing
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High-Dimensional CNN Convolution

Input Image

Filter A"C’{" Output Image
L /:{H = @ E
i l
<~ R— < H > < E —

Many Input Channels (C)

it  AlexNet: 3 — 192 Channels (C) ST ——




High-Dimensional CNN Convolution

Input Image

Many Output Image
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High-Dimensional CNN Convolution

Many
Input Images (N) Many
. . . Output Images (N
Filters L . P ges (N)
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Large Sizes with Varying Shapes

AlexNet! Convolutional Layer Configurations

Layer | Filter Size (R) | # Filters (M) | # Channels (C) | Stride

1 11x11 96 3 4

2 5x5 256 48 1

3 3x3 384 256 1

4 3x3 384 192 1

5 3x3 256 192 1

Layer 1 Layer 2 Layer 3

34k Params 307k Params 885k Params
105M MACs 224M MACs 150M MACGs

i 1. [Krizhevsky, NIPS 2012] seeenginl MRS e




Popular CNNs

ImageNet: Large Scale Visual
Recognition Challenge (ILSVRC)

* LeNet (1998) '8
» AlexNet (2012) _ e | eNet
o
e OverFeat (2013) £ 14 OverFeat
(Te)
» VGGNet (2014) g 12
£ 10
* GoogleNet (2014) g o
g GooglLeNet
* ResNet (2015) 3 6
<
4
2
0 .

2012 2013 2014 2015 Human

[O. Russakovsky et al., IJCV 2015]
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Summary of Popular CNNs

Metrics LeNet-5 | AlexNet GoogLeNet ResNet-50
(v1)

Top-5 error n/a 16.4 7.4 6.7 5.3

Input Size 28x28 227x227 224x224 224x224 224x224

# of CONV Layers 2 5 16 21 (depth) 49

Filter Sizes 5 3, 5,11 3 1,3,5,7 1, 3,7

# of Channels 1,6 3 -256 3-512 3-1024 3 -2048

# of Filters 6, 16 96 - 384 64 - 512 64 - 384 64 - 2048

Stride 1 1,4 1 1, 2 1,2

# of Weights 2.6k 2.3M 14.7TM 6.0M 23.5M

# of MACs 283k 666M 15.3G 1.43G 3.86G

# of FC layers 2 3 3 1 1

# of Weights 58k 58.6M 124M 1M 2M

# of MACs 58k 58.6M 124M 1M 2M

Total Weights 60k 61M 138M ™ 25.5M

Total MACs 341k 724M 15.5G 1.43G 3.9G

ir CONV Layers increasingly important!  |ue. MTLeee

S AT MIT

nnnnnnnnnnn




Training vs. Inference

Training Inference
(determine weights) (use weights)

tasets _
S S Weights
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Processing at “Edge” instead of the “Cloud”

Privacy Communication

36% COMPLETE

Image source:

Ink] Herald Tribune www.theregister.co.uk
Latency
) — i w—
Sensor @

Receiver _
oy — o

Image source: ericsson.com

Actuator
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Challenges
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Key Metrics

MNIST
* Accuracy dragrizaic]
— Evaluate hardware using the §§i§232%23 :
appropriate DNN model and dataset ~ t3:rozaisy |
* Programmability
— Support multiple applications Computer Speech
— Different weights Vision Recognition

* Energy/Power

— Energy per operation
— DRAM Bandwidth

Throughput/Latency
— GOPS, frame rate, delay

Cost

— Area (size of memory and # of cores)
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Opportunities in

Architecture
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GPUs and CPUs Targeting Deep Learning

Intel Knights Landing (2016) Nvidia PASCAL GP100 (2016)

Knights Mill: next gen Xeon
Phi “optimized for deep
learning”

Use matrix multiplication libraries on CPUs and GPUs
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Map DNN to a Matrix Multiplication

Filter Input Fmap  Output Fmap

Convolution: % 2180 = 112
3 H [3]4]

Toeplitz Matrix
(w/ redundant data)

1[2]3]4] x

Matrix Mult:

Data is repeated

Goal: Reduced number of operations to increase throughput
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Reduce Operations in Matrix Multiplication

* Fast Fourier Transform [Mathieu, ICLR 2014]
— Pro: Direct convolution O(N_2N,?) to O(N_%log,N,)
— Con: Increase storage requirements

e Strassen [Cong, ICANN 2014]
— Pro: O(N?) to (N28%)
— Con: Numerical stability

e Winograd [Lavin, CVPR 2016]

— Pro: 2.25x speed up for 3x3 filter
— Con: Specialized processing depending on filter size
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Analogy: Gauss’s Multiplication Algorithm
(a + bi)(c + di) = (ac — bd) + (bc + ad)s.

4 multiplications + 3 additions

ki=c-(a+Db)
k2=a-(d—c)
k3=b'(C+d)

Real part = k4 — k3
Imaginary part = k1 + ko.

3 multiplications + 5 additions

Reduce number of multiplications,
but increase number of additions
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Specialized Hardware

(Accelerators)
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Properties We Can Leverage

* Operations exhibit high parallelism
- high throughput possible

* Memory Access is the Bottleneck

Memory Read MAC’ Memory Write
filter Wei.qht A ALU
DRAM Ll updated__
200x 1x

Worst Case: all memory R/W are DRAM accesses

« Example: AlexNet [NIPS 2012] has 724M MACs
- 2896M DRAM accesses required
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Properties We Can Leverage

e Operations exhibit high parallelism
- high throughput possible

* Input data reuse opportunities (up to 500x)
- exploit low-cost memory

Images

Filters
: Image | Image :
Filter e Filter
= I e
2
Convolutional Image Filter
Reuse Reuse Reuse

(pixels, weights) (pixels) (weights)



Highly-Parallel Compute Paradigms

Temporal Architecture Spatial Architecture
(SIMD/SIMT) (Dataflow Processing)

Memory Hierarchy Memory Hierarchy
Register File
ALU ALU ALU ALU
ALU ALU ALU ALU

A 4 A 4 A 4 A 4
ALU ALU ALU ALU

A 4 A 4 A 4 A 4

ALU ALU ALU ALU
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Advantages of Spatial Architecture

Spatial Architecture
(Dataflow Processing)

Efficient Data Reuse Memory Hierarchy

Distributed local storage (RF)

Inter-PE Communication
Sharing among regions of PEs

Processing
Element (PE)

0.5-1.0kB Reg File

Control
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How to Map the Dataflow?

Spatial Architecture
(Dataflow Processing)

CNN Convolution
Memory Hierarchy

pixels
weights »
partial
sums

Goal: Increase reuse of input data
(weights and pixels) and local
partial sums accumulation
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Energy-Efficient Dataflow

Yu-Hsin Chen, Joel Emer, Vivienne Sze, ISCA 2016

Maximize data reuse and accumulation at RF
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Data Movement is Expensive

Off-Chip
DRAM

Global

Buffer

Accelerator

Processing Engine

PE 4 PE
¢
PE ALU

PE

bem

ALU

ALU

ALU

ALU

ALU

Data Movement Energy Cost

2%
1%

/| 200

6x

1% (Reference)

Maximize data reuse at lower levels of hierarchy




Weight Stationary (WS)

Global Buffer

* Minimize weight read energy consumption
— maximize convolutional and filter reuse of weights

« Examples:

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014]
[Park, ISSCC 2015] [Origami, GLSVLSI 2015]
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Output Stationary (OS)

Global Buffer

Psum

* Minimize partial sum R/W energy consumption
— maximize local accumulation

« Examples:

[Gupta, ICML 2015] [ShiDianNao, /ISCA 2015]
[Peemen, ICCD 2013]
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No Local Reuse (NLR)

Global Buffer

« Use a large global buffer as shared storage
— Reduce DRAM access energy consumption

« Examples:

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014]
[Zhang, FPGA 2015]
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Row Stationary: Energy-efficient Dataflow

Input Image
Filter Output Image

u -
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1D Row Convolution in PE

Input Image
Filter Partial Sums

* =

Reg File

M
H

| 3|
HIT AP eseecrisosrory  MTL 00 @
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1D Row Convolution in PE

Input Image

Filter Partial Sums

ablc +

Reg File

H

| 3|
HIT B sosconcrianonarony
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1D Row Convolution in PE

Input Image

Filter Partial Sums

ablc +

Reg File

H
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1D Row Convolution in PE

Input Image

Filter Partial Sums

ablc +

Reg File

H
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1D Row Convolution in PE

« Maximize row convolutional reuse in RF
— Keep a filter row and image sliding window in RF

 Maximize row psum accumulation in RF

Reg File

H

microsystems technology laboratories
institute of




Row Stationary Dataflow

Row 1 Row 2 Row 3
T PE 1 T PE 4 T PE 7
Row1y Row1 |M[Row1{ Row2 |M[Row1j; Row3
I PE 2 I PE5 1 PE 8
Row2y Row2 |HM[Row2f Row3 |M[Row2j; Row4
I PE 3 I PE 6 I PE 9
Row3y Row3 |M[Row3y Row4 |M[Row3i Row5

B * FH =

O Exf =8 s

Optimize for overall energy efficiency instead
for only a certain data type
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Evaluate Reuse in Different Dataflows

 Weight Stationary

— Minimize movement of filter weights

* Output Stationary

— Minimize movement of partial sums

* No Local Reuse

— Don’t use any local PE storage. Maximize global buffer size.

* Row Stationary
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Evaluate Reuse in Different Dataflows

 Weight Stationary

— Minimize movement of filter weights

* Output Stationary

— Minimize movement of partial sums

* No Local Reuse

— Don’t use any local PE storage. Maximize global buffer size.

* Row Stationary

Evaluation Setup Normalized Energy Cost’
e Same Total Area LALUT P 1x (Reference)
e AlexNet EE—m 1
PE_|——>|E| 2%
" 256PEs O——@m 6x
e Batchsize=16 "DRAM | 5T 2 200%




Dataflow Comparison: CONV Layers

2

m ALU
RF
Normalized
Energy/MAC " NoC
W buffer
® DRAM

S, 0S; 0S,
CNN Dataflows

RS uses 1.4x — 2.5% lower energy than other dataflows ‘

i [Chen, ISCA 2016] ety MTLeeS ...




Dataflow Comparison: CONV Layers

Normalized
Energy/MAC I

S, 0S; 0S,
CNN Dataflows

® psums

= weights

W pixels

RS optimizes for the best overall energy efficiency

Uiy [Chen, ISCA 2016] wrmgy MILee




Eyeriss Deep CNN Accelerator

Link Clock' Core Clock DCNN Accelerator
_“I

| 14%x12 PE Array

. Filter Filt

' Inputimage [N Img

; Jecomp NF Psum

E OUtpUt Image 08KB |-y

U D DRA

64 bits
[Chen et al., ISSCC 2016]
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Eyeriss Chip Spec & Measurement Results

Technology

TSMC 65nm LP 1PSM

On-Chip Buffer

108 KB

# of PEs

168

Scratch Pad / PE

0.5 KB

Core Frequency

100 — 250 MHz

Peak Performance

33.6 — 84.0 GOPS

Word Bit-width

16-bit Fixed-Point

Natively Supported
CNN Shapes

Filter Width: 1 — 32

Filter Height: 1 - 12
Num. Filters: 1 — 1024
Num. Channels: 1 — 1024
Horz. Stride: 1-12

Vert. Stride: 1,2, 4

< 4000 um

IRERAREEUATRARRES

AlexNet: For 2.66 GMACs [8 billion 16-bit inputs (16GB) and 2.7 billion

outputs (5.4GB)], only requires 208.5MB (buffer) and 15.4MB (DRAM)

i [Chen et al., ISSCC 2016] S R L ——




Comparison with GPU

Eyeriss NVIDIA TK1 (Jetson Kit)
Technology 65nm 28nm
Clock Rate 200MHz 852MHz
# Multipliers 168 192
On-Chip Storage Buffe_r: 108KB Shared _Mgm: 64KB
Spad: 75.3KB Reg File: 256KB
Word Bit-Width 16b Fixed 32b Float
Throughput’ 34.7 fps 68 fps
Measured Power 278 mW |dle/Active?: 3.7W/10.2W
DRAM Bandwidth 127 MB/s 1120 MB/s 3

1. AlexNet Convolutional Layers Only
2. Board Power _ _
3. Modeled from [Tan, SC11] http://eyeriss.mit.edu
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Machine Learning Pipeline (Inference)

Trained weights (w)

!

Feature Features (x) Classification Scores>
Extraction J- < (W'x)
— = Scores per class
- Sseo (select class based
‘*ssgn max or threshold)
.~~~ Handcrafted Features Learned Features  ~~o
(e.g. HOG) (e.g- DNN)

Score =2_ X, W;
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Energy-Efficient Object Detection

Admm

| [Suleiman etal.,
VLSI 2016]

Enable object detection to be as energy-efficient as
Energy video compression at < 1nJ/pixel

H.264/AVC H.264/AVC H.265/HEVC H.265/HEVC HOG Object DPM Object
Decoder Encoder Decoder Encoder Detection Detection



Features: Energy vs. Accuracy

Exponential
1000
2
Pixel (nJ)
10 Video
1 Compression
+ HOG!
Linear
0.1
0 20 40 60 80

Accuracy (Average Precision)

i [Suleiman et al., ISCAS 2017] sramenanEy ML e




Opportunities in Joint

Algorithm Hardware Design
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Approaches

* Reduce size of operands for storage/compute
— Floating point = Fixed point
— Bit-width reduction
— Non-linear quantization

* Reduce number of operations for storage/compute

— Exploit Activation Statistics (Compression)
— Network Pruning
— Compact Network Architectures

-
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Commercial Products using 8-bit Integer

Nvidia’s Pascal (2016) Google’s TPU (2016)

L
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Reduced Precision in Research

Reduce number of bits
— Binary Nets [Courbariaux, NIPS 2015]

Reduce number of unique weights
— Ternary Weight Nets [Li, arXiv 2016]
— XNOR-Net [Rategari, ECCV 2016]

Non-Linear Quantization
— LogNet [Lee, ICASSP 2017]

Log Domain Quantization

3000

2500
2000 |
1500 |
1000 |
500 |

0

-0.2

linear quantizer

| | [ | [

I
I
I
I
I
I
I
I
I
I
I
I

I |
\ |
\ |
\ |
I |
I |
\ |
I |
\ |

-0.1 0 0.1

Weight Values

-- boundaries |

0.2

Binary Filters

Iog2 quantizer

3000
2500 ¢
2000
1500 |
1000
500

0
-0.2

I
|
|
|
[
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|
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|
|
|

[T I
[{ |
IR |
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[ [ |
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I I
| |
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I
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Weight Values
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EM Reduced Precision Hardware

LSB MSB Cycle 1 Cycle 2 Cycle 3
2 o1
- S
Stripes 3 Tdo [TToh
f\/SBa [6 6
[Judd et al., MICRO 2016] 2 4 ; i ; H
gLSBl » 1 (1) 1]
Bit-serial processing for speed 3 |; 0 o
o o o
1 1 1
xO/Oy y2 y1/0 y0/0 ? o
x1/0; pO/O % "
a. 10
x2_gie g S KU Leuven
= heid % 10’4 —s - E -2 0
= 0 & 10 10 10 10 [MOOnS et al., VLSI 2016]

Root-Mean-Square Error [-]
p7 p6 p5 p4

2 L V.2
Pyrecise = aCfve = P imprecise = —Cf()
ki * 'k

Voltage scaling for energy savings

reseancuasonarorr  VITL. @@ @

icrosystems technology laboratories
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Binary/Ternary Net Hardware

* Examples
— YodaNN (binary weights)

— BRein (binary weights and
activations)

— TrueNorth (ternary weights
and binary activations)

These designs tend not to support
state-of-the-art DNN models

(except YodaNN)

Upper SRAM (H-bit L-word)
—H1[1]0] Neuron 1
Neuron # OHO[1] - Neuron 2
R0 QoL Neuron's
OH
o
St
—H
wnH
o - XNOR
Input 3| — Accumulate
Activation Bitl<H Wy — Sign
Sweam A1, $4%%%
B850 T 1 | | ”
/1///, /4’/.///@/ OPNE
W=
IPNE I A3 1A
— Adder Tree frrr—"4 Outpu
- Sign ~Activation Bit
(= XNOR 2] 5| Stream A3
Q
(&)
154
HO
H
2]
15
0 Neuron 3 Ho
11101 - Neuron 2 O
1/0/1] Neﬂron1 ﬁ Neuron #
Lower SRAM (H-bit L-word)

(b) Processing-in-Memory Module (PIM)

A

[BRein, VLSI 2017]
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Sparsity in Feature Maps

Many zeros in output fmaps after ReLU

9(-1]-3 RelU 9lofo

1 '5 5 > > 1 0 5
2|6 ]-1 M 0[6]0
W # of activations  ®# of non-zero activations
1

0.8

0.6 -
(Normalized) 4

0.2 -
0 -

1 2 3 4 5
CONV Layer

o RESEARCH LABORATORY
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Exploit Sparsity
Method 1: Skip memory access and computation

No R/W No Switching
Register File

|
|
J

Enable 45% energy savings

Method 2: Compress data to reduce storage and data movement
1.2%

6
1 7
DRAM 4 1 8% m Uncompressed
Access 1 9x Fmaps + Weights
(MB) 2
. m RLE Compressed

Fmaps + Weights
AIexNet Conv Layer

i [Chen et al., ISSCC 2016] sy MILese .




Pruning — Make Weights Sparse

Optimal Brain Damage Prune DNN based on
[Lecun et al., NIPS 1989] magnitude of weights
[Han et al., NIPS 2015]
16_ before pruning after pruning
14,
121 pruning ___
synapses
104 -
m 84
70 runin
2 6. gelfjrongs o
20 4 retraining
— 2-.,- .\0—0 - o9
0L Example: AlexNet
-2 : : = 4 : Weight Reduction:
0 500 1000 1500 2000 2500 CONV layers 2.7x, FC layers 9.9x
Parameters Overall Reduction:

Weights 9x, MACs 3x

-
nnnnnnnnnnnnnnn M 000
I I I I I r]—e TTTTTTTTTTTTTTTTTT micro]y-slt:ms technology laboratories

nnnnnnnnnnnnnnnn




Key Observations

* Number of weights alone is not a good metric for energy

* All data types should be considered

Computation
10% Input Feature Map

25%

Weights
Energy Consumption 22%

of GooglLeNet

i [Yang et al., CVPR 2017] o MILe®S .




EM Energy-Evaluation Methodology

4

CNN Shape Configuration
(# of channels, # of filters, etc.)

Hardware Energy Costs of each
MAC and Memory Access

# acc. at mem. level 1

Memory # acc. at mem. level 2

Accesses

CNN Weights and Input Data

Optimization # acc. at mém. level n Ejata
# of MACs # of MACs Ecomp S
Calculation
v
Energy T
_I >
[0.3,0,-04,0.7,0,0,0.1, ...] 1213

[Yang et al., CVPR 2017]

CNN Energy Consumption

llifr Energy estimation tool available at http://eyeriss.mit.edu L LI L S

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn




Energy Consumption of Existing DNNs
%
zi% ResNet-50@

VGG-16
89%

87%
85%
83%

® GoogleNet

Top-5 Accuracy

81% AlexNet@ @SqueezeNet
79%

77%
5E+08 5E+09 5E+10
Normalized Energy Consumption

® Original DNN

Deeper CNNs with fewer weights do not necessarily consume
less energy than shallower CNNs with more weights

i [Yang et al., CVPR 2017] o MIL®eS .
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El Magnitude-based Weight Pruning

93%
91% ResNet-50 @

VGG-16
89%

87%
85%

® GoogleNet

Top-5 Accuracy

83% SqueezeNet

A
81% A AlexNet@ @SqueezeNet
799% AlexNet

77%
5E+08 5E+09 5E+10
Normalized Energy Consumption

® Original DNN A Magnitude-based Pruning [Han et al., NIPS 2015]

Reduce number of weights by removing small magnitude weights

-
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EM Energy-Aware Pruning

93%

91% ResNet-50 @ et
> _
(8]

o 89% ® GoogleNet ®
§ 87% GoogleNet m
<
"3_ 85%
2 83%
0 1.74x SqueezeNet
81% A
0 i AlexNet@ @SqueezeNet
799% AlexNet®  alexNet SqueezeNet
77%
5E+08 5E+09 5E+10

Normalized Energy Consumption

® Original DNN 4 Magnitude-based Pruning ~ ® Energy-aware Pruning (This Work)

Remove weights from layers in order of highest to lowest energy
3.7x reduction in AlexNet / 1.6x reduction in GooglLeNet

i [Yang et al., CVPR 2017] o MIL®eS .
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NetAdapt: Platform-Aware DNN Adaptation

 Automatically adapt DNN to a mobile platform to reach a
target latency or energy budget

* Use empirical measurements to guide optimization (avoid
modeling of tool chain or platform architecture)

Pretrained Budget

Platform
Network

: Empirical Measurements
Metric Budget

Metric Proposal A Proposal Z 040

Latency 3.8

Latency 15.6 14.3 ﬂ

Energy 10.5 - ] :
; l Energy 41 46 1

NetAdapt

Network Proposals
B C D Z
A A

A

Measure

\ 4

> b b >
>

7y
7y
Adapted * *

Network

[Yang et al., arXiv 2018]
Mii™ /n collaboration with Google’s Mobile Vision Team [ sy MILSSS, ..
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Improved Latency vs. Accuracy Tradeoff

* NetAdapt boosts the real inference speed of MobileNet
by up to 1.7x with higher accuracy

59%
57% 1 Y A
55% - °
53% A o— —A ® NetAdapt (This Work)

+0.3% accurac
51% - o o) AMobileNet Family

49% - '. A ¢ MorphNet

o
o/
47% o— o
45% - ® Ai03% accuracy
43% 4 @ 1.6x faster

Top-1 Accuracy

41% 1 I I 1 I
3 S} 7 9 11 13

Latency (ms)
*Tested on the ImageNet dataset and a Google Pixel 1 CPU

Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018
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Sparse Hardware

EIE
[Han et al., ISCA 2016] Weights

ReLU | b3
=

Supports Fully
Connected Layers Only

Storage of Weights Multiplication of ,
and Activations Scattered Partial Sums

Densely Packed
Weights and Activations

All-to all } { Mechanism to Add to

- -

[Parashar et al., b . Ay
ISCA 201 7] c = E Scatter
® B

. d 7 E * - network =
Supports Convolutional } by
. BB

Layers Only :
: 2 - Accumulate MULs
PE frontend PE backend

-
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Network Architecture Design

Build Network with series of Small Filters
GoogleNet/Inception v3

5x5 filter 551 filter Apply sequentially
1x5 filter
decompose
| separable
filters
VGG-16
5x5 filter Two 3x3 filters Apply sequentially

decompose . ;n

u -
i R ey MTLeee ..
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1x1 Bottleneck in Popular DNN models

64-d 256-d
compress

1x1, 64

reiua
\ 4

3x3, 64
¢rdu

1x1, 256
expand

ResNet

GoogleNet SqueezeNet

Filter A
e
concatenation sQ\U

1x1 convolution filters

3x3 convolutions 5x5 convolutions 1x1 convolutions
. 7Y 'y d
1x1 convolutions 1 1 4 eﬂ)a“ 1x1 and 3x3 convolution filters
1x1 convolutions 1x1 convolutions 3x3 max pooling
Yo Xo YD YD YD
»w o ) Y YD YOO ) Jo Xo ) YD
2 Jo X5 YD 2 Jo Xo YOI

compress

Previous layer

RelU I

u -
I'lii Resppchusouo MTLeee
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Tutorial Material on Efficient DNNSs

December 2017 | Volume 105 | Number 12

Proceedings: IEEE

Efficient Processing of Deep
Neural Networks: A Tutorial and Survey
System Scaling With Nanostructured Power and RF Components

Tutorial on Hardware Architectures for
Deep Neural Networks
MICRO-49 (Full Day: October 16, 2016)

Joel Emer Vivienne Sze Yu-Hsin Chen

: MIT, NVIDIA MIT MIT
Nonorthogonal Multiple Access for 5G and Beyond

) . X . . : Email: eyeriss at mit dot edu
Point of View: Beyond Smart Grid—A Cyber—Physic : System ix e

Updates

m or subscribe to our mailing list for updates on the Tutorial (e.g. notification of when
slides will be posted)

Overview

Deep neural networks (DNNs) are currently widely used for many Al applications including computer
vision, speech recognition, robotics, etc. While DNNs deliver state-of-the-art accuracy on many Al
tasks, it comes at the cost of high computational complexity. Accordingly, designing efficient
hardware architectures for deep neural networks is an important step towards enabling the wide
deployment of DNNs in Al systems.

http://eyeriss.mit.edu/tutorial.html

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, “Efficient Processing of Deep
Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE, 2017

u -
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Need More Comprehensive Benchmarks

Processors should support a diverse set of DNNs
that utilize different techniques

Example: Network Pruning
— Sparse and Dense

— Large and Compact network architectures
— Different Layers (e.g., CONV and FC)

— Variable Bit-width

before pruning after pruning

N

/ STRIG

2 N synapses ~
ofee)e
N

V=%

Reduce Precision Compact Network Architecture

e X191 X3 101100110/ 1/00oloololooltollololoool oo -
g-bit fixed CUACEEEE ) " ’
| " 187 ¢
< S —> kK S 1 1

Binary E

Uiy [Chen et al., SysML 2018] iy MILeee



Eyexam: Understanding Sources of
Inefficiencies in DNN Accelerators

A systematic way to evaluate how each architectural decision
affects performance (throughput) for a given DNN workload

Tightens the roofline model

(MA(i/cycIe) Slope = BW to only act. PE
...................................................... N Step 1: maximum Workload para"elism

....................................................... — Step 2: maximum dataﬂow para”elism
e —> Number of PEs (Theoretical Peak Performance)

..................................................... — Step 3: # of act. PEs under a finite PE array size
..................................................... S Step 4: # of act. PEs under fixed PE array dims.
---------------------------- —> Step 5: # of act. PEs under fixed storage cap.

PFevecemmsenmssenes s — Step 6: lower act. PE utilization due to insuff. avg. BW
B ccccsssssssss —> Step 7: lower act. PE utilization due to insuff. inst. BW

> (MAC/data)

peak
perf.

workload operational intensity

i [Chen et al., In Submission] srengiEe MRS v




Opportunities in Memories

and Devices
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Advanced Memory Technologies

Many new memories and devices explored to reduce data movement

AM Non-Volatile

Stacked DR
y Resistive Memories

/ / taline

Global

Row decoder
Row decoder

WS
dataflow

/ Z z Inter-bank data bus Global SA I1 = V1xG1
i i i /_; ________________________________________ VZ-
[l oramnie /T Eyeriss
i/ i Lo ig/Die (/ /) To remote g ; H
(CIY::II\teI) g I ) daesion |, = V%G,
[Gao et al., Tetris, ASPLOS 2017] ‘
[Kim et al., NeuroCube, ISCA 2016] =1y +1,
= V1><G1 + V2><G2
eDRAM .
_ [Shafiee et al., ISCA 2016]
[Chen et al., DaDianNao, MICRO 2014] [Chi et al.. PRIME, ISCA 2016]
LABORA MTL...
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El Binary Weight Classifier in SRAM

Wi Voo srav  BLB 127
VL — Ve = ) Wu XAVpr/Bn
| n=0
127
(1
</ ‘ ~
WL, Voo sram ° ~ z Wp X VWL,n
) r\T' lac. Weight
(1) restricted to +1

Weak because:.

1. Weights restricted to be +/-1
2.Bit-cell discharge subject to variation, nonlinearity

i [Zhang et al., VLS| 2016] sty MIL®ee




El More Compute In Memory

Precharge/Column Mux/Y-DEC

BLP BLP BLP BLP B
¥ ¥ 2 v L 2 2
[ Cross Bitline Processor ]
¥
Residual Digital Unit

inference/decisions

Bit-cell discharge current: ! Yoo 3 Vai-Va
5l 28 |5
ey < (Vi — V) 210 S
[G 3 YRR |
L& X IceU
Conventional [4]

I, varies widely
due to /..., variation

Pulse-Width Modulation

E I AVpis

i

. |
T |
-

[I AV
BL BLB
3T, H WL,
[ -W3
p WL,
To
'
'@ WLz :
2T, P
- WLo
L
bbbt
sl ri |5
i[} Q x16 |3 E
s 1z
E; Va cell 0 “

T
<1

Pulse width modulation on

WL (activation)
6T SRAM bitcell|
we _Wt [S. Gonugondla,
:]{W ISSCC 2018]

QH

Assumption:
Both DACs are ideal

Apply Va (activation)
to BL rather than WL
Directly apply V, on
GBL(LBL) by DAC

V, V& .
s et [A. Biswas,
Proposed Conv-RAM,
ISSCC 2018]
|V, has novariation due to .., | tewen  MTLeee




Benchmarking Metrics

for DNN Hardware

How can we compare designs?

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer,

“Efficient Processing of Deep Neural Networks: A Tutorial and Survey,”

Proceedings of the IEEE, Dec. 2017
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Metrics for DNN Hardware

Accuracy

— Quality of result for a given task

Throughput
— Analytics on high volume data

— Real-time performance (e.g., video at 30 fps)

Latency

— For interactive applications (e.g., autonomous navigation)

Energy and Power
— Edge and embedded devices have limited battery capacity

— Data centers have stringent power ceilings due to cooling costs

Hardware Cost

— 555

-
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Specifications to Evaluate Metrics

Accuracy
— Difficulty of dataset and/or task should be considered

Throughput
— Number of cores (include utilization along with peak performance)

— Runtime for running specific DNN models

Latency

— Include batch size used in evaluation

Energy and Power
— Power consumption for running specific DNN models

— Include external memory access

Hardware Cost

— On-chip storage, number of cores, chip area + process technology

-
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Example: Metrics of Eyeriss Chip

Process Technology @ 65nm LP

TSMC (1.0V) Name of CNN Model Text AlexNet
Total Core Area 1225 Top-5 error classification  # 19.8
(mm2) on ImageNet
Total On-ChIp 192 Supported LayerS All CONV
Memory (kB) Bits per weight # 16
Number of Multipliers 168 Bits per input activation # 16
Clock Frequency 200 Batch Size ## 4
(MHz) Runtime ms 115.3
Core area (mm?2) / 0.073 Power mW 278
RIIRIC] Off-chip Access per MBytes 3.85
On-Chip memory 1.14 Image Inference
W=D L2l Number of Images # 100
Measured or Measured Tested
Simulated

u -
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Ell Comprehensive Coverage

e All metrics should be reported for fair evaluation of design
tradeoffs

* Examples of what can happen if certain metric is omitted:

— Without the accuracy given for a specific dataset and task, one could
run a simple DNN and claim low power, high throughput, and low cost —
however, the processor might not be usable for a meaningful task

— Without reporting the off-chip bandwidth, one could build a processor
with only multipliers and claim low cost, high throughput, high accuracy,
and low chip power — however, when evaluating system power, the off-
chip memory access would be substantial

e Are results measured or simulated? On what test data?

-
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Evaluation Process

The evaluation process for whether a DNN system is a viable
solution for a given application might go as follows:

1. Accuracy determines if it can perform the given task

2. Latency and throughput determine if it can run fast enough
and in real-time

3. Energy and power consumption will primarily dictate the
form factor of the device where the processing can operate

4. Cost, which is primarily dictated by the chip area, determines
how much one would pay for this solution

R B RESEARCH LABORATORY
M PAla) RoscarchLasoratoRy MTL eee
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Summary

* Deep Learning is an important area of research
— Wide range of applications

* Challenge is to balance the key metrics
— Accuracy, Energy, Throughput, Cost, etc.

* Opportunities at various levels of hardware design

— Architecture, Joint Algorithm-Hardware, Mixed-Signal
Circuits/Memories, Advanced Technologies

— Important to consider interactions between levels to
maximize impact

For updates on Eyerissv2, Eyexam, NetAdapt, etc.

¥ Follow @eems_mit or join EEMS news mailing list

| 3|
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